organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,6'-Oxydichroman

Meng Wang^{a,b} and Yong-Hao Ye^{a,b*}

^aDepartment of Pharmacy, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China, and ^bCollege of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Correspondence e-mail: adler_20008@yahoo.com.cn

Received 15 November 2007; accepted 13 December 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.072; wR factor = 0.216; data-to-parameter ratio = 8.9.

The title compound, $C_{18}H_{18}O_3$, was synthesized from dichroman in concentrated sulfuric acid. The molecule has a twofold axis passing through the central O atom. The dihedral angle between the two symmetry-related benzene rings is $63.6 (3)^\circ$. Weak $C-H\cdots\pi$ interactions are present in the structure.

Related literature

For related literature, see: Allen *et al.* (1987); Li *et al.* (2006, 2007); Xiao, Shi *et al.* (2007); Xiao, Xue *et al.* (2007); Huang *et al.* (2007); Zhang *et al.* (2007); Shi *et al.* (2007); Cao *et al.* (2007); Ruan *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} C_{18} {\rm H}_{18} {\rm O}_{3} \\ M_{r} = 282.32 \\ {\rm Orthorhombic}, \, Fdd2 \\ a = 17.515 \, \, (4) \, {\rm \AA} \\ b = 29.660 \, \, (6) \, {\rm \AA} \\ c = 5.7680 \, \, (12) \, {\rm \AA} \end{array}$

Data collection

Bruker APEX area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.981, T_{max} = 0.983$ $V = 2996.4 (10) Å^{3}$ Z = 8 Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 298 (2) K 0.23 × 0.20 × 0.20 mm

4727 measured reflections 855 independent reflections 810 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.073$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.216$ S = 1.13855 reflections 96 parameters $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.32 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.55 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

Cg1 is the centroid of the ring C1-C6.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C8-H8B\cdots Cg1^{i}$	0.97	2.91	3.856 (6)	167
Symmetry code: (i) x -	$+\frac{1}{2}$, $-v + \frac{3}{2}$, $z - v$	1		

Symmetry code: (i) $x + \frac{1}{4}, -y + \frac{5}{4}, z - \frac{1}{4}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2049).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Cao, P., Ding, H., Ge, H.-M. & Zhu, H.-L. (2007). *Chem. Biodivers.* 4, 881–886.
 Huang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). *Eur. J. Med. Chem.* 42, 263–267.
- K. (2007). Eur. J. Intel. Chem. 42, 20–207.
 Li, H.-Q., Ge, H.-M., Chen, Y.-X., Xu, C., Shi, L., Ding, H., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodivers. 3, 463–472.
- Li, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361–1369.
- Ruan, B.-F., Huang, X.-F., Ding, H., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2006). *Chem. Biodivers.* **3**, 975–981.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Xiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 3703–3710.
- Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). *Bioorg. Med. Chem.* **15**, 4212–4219.
- Zhang, L.-N., Xiao, Z.-P., Ding, H., Ge, H.-M., Xu, C., Zhu, H.-L. & Tan, R.-X. (2007). *Chem. Biodivers.* **4**, 248–255.

supplementary materials

Acta Cryst. (2008). E64, o308 [doi:10.1107/S1600536807066779]

6,6'-Oxydichroman

M. Wang and Y.-H. Ye

Comment

Synthesized organic compounds with a pyran cycle are found being good biological activities (Li *et al.*, 2007; Xiao, Shi *et al.*, 2007; Xiao, Xue *et al.*, 2007; Huang *et al.*, 2007; Zhang *et al.*, 2007; Shi *et al.*, 2007; Cao *et al.*, 2007; Ruan *et al.*, 2006; Li *et al.*, 2006). So we prepared a series of derivatives with pyran cycles. Here we report the crystal structure of the title compound.

The title compound consists of an oxygen atom bridged two chroman (Fig. 1). The molecule has a twofold axis symmetry position at the central O1 atom. The dihedal angle between the two symmetry-related benzene rings is 63.6 (3)°. In each chroman, all the atoms, except C8 atom, are nearly coplanar, with mean deviation from plane by 0.021 (4) Å. C8 atom is located 0.577 (4)Å above the plane defined by other non-hydrogen atoms. All the bond values are within normal ranges (Allen *et al.*, 1987). There exists weak C8–H8B…*Cg*1 interaction (*Cg*1:C1—C6) (Table 1, Fig. 2).

Experimental

Dichroman was disolved in toluene solution and a few drops of concentrated sulfuric acid was added. The above solution was refluxed for two hours. After the solution was cooled to room temperature colorless microcrystals were precipitated. They were filtered, washed with toluene for three times. Yield: 32%.

Refinement

C-bound H atoms were included in the riding model approximation with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. 631 Friedel pairs were averaged before the final refinement as the absolute configuration could not be determined unambiguously.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry code (i): -x, 1 - y, z.

Fig. 2. Molecular packing of (I) viewed down the *c* axis. The weak C–H···*Cg* interactions are shown as dashed lines.

6,6'-Oxydichroman

Crystal data	
C ₁₈ H ₁₈ O ₃	$F_{000} = 1200$
$M_r = 282.32$	$D_{\rm x} = 1.252 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Fdd2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: F 2 -2d	Cell parameters from 872 reflections
a = 17.515 (4) Å	$\theta = 2.5 - 24.3^{\circ}$
b = 29.660 (6) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 5.7680 (12) Å	T = 298 (2) K
$V = 2996.4 (10) \text{ Å}^3$	Prism, colorless
<i>Z</i> = 8	$0.23 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker APEX area-detector diffractometer	855 independent reflections
Radiation source: fine-focus sealed tube	810 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.073$
T = 298(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -21 \rightarrow 21$
$T_{\min} = 0.981, \ T_{\max} = 0.983$	$k = -36 \rightarrow 32$
4727 measured reflections	$l = -7 \rightarrow 6$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.073$	$w = 1/[\sigma^2(F_o^2) + (0.1367P)^2 + 4.7011P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.216$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.13	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
855 reflections	$\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$
96 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 631 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: ?
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.5000	0.5000	0.0623 (13)	0.090 (2)
O2	0.7616 (2)	0.44456 (13)	0.5838 (9)	0.0779 (14)
C1	0.6782 (2)	0.43486 (12)	0.2525 (7)	0.0378 (9)
C2	0.6140 (2)	0.44952 (12)	0.1313 (7)	0.0387 (9)
H2	0.6008	0.4345	-0.0045	0.046*
C3	0.5687 (2)	0.48541 (13)	0.2029 (8)	0.0386 (9)
C4	0.5900 (2)	0.50701 (12)	0.4073 (8)	0.0412 (9)
H4	0.5609	0.5310	0.4615	0.049*
C5	0.6539 (2)	0.49345 (13)	0.5317 (8)	0.0413 (9)
H5	0.6670	0.5087	0.6669	0.050*
C6	0.69851 (19)	0.45734 (12)	0.4570 (7)	0.0360 (8)
C7	0.7245 (3)	0.39470 (15)	0.1747 (9)	0.0561 (12)
H7A	0.7590	0.4039	0.0521	0.067*
H7B	0.6904	0.3719	0.1122	0.067*
C8	0.7703 (3)	0.37452 (17)	0.3725 (12)	0.0640 (14)
H8A	0.7361	0.3583	0.4754	0.077*
H8B	0.8067	0.3531	0.3104	0.077*
C9	0.8113 (3)	0.40910 (16)	0.5053 (11)	0.0614 (15)
H9A	0.8355	0.3951	0.6384	0.074*
H9B	0.8511	0.4220	0.4091	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.081 (4)	0.128 (5)	0.060 (4)	0.032 (3)	0.000	0.000
O2	0.074 (2)	0.075 (2)	0.085 (3)	0.0149 (17)	-0.036 (2)	-0.021 (2)
C1	0.0383 (17)	0.0360 (17)	0.039 (2)	0.0011 (13)	-0.0009 (17)	-0.0039 (17)
C2	0.0395 (18)	0.0405 (17)	0.0360 (19)	0.0017 (14)	-0.0002 (17)	-0.0066 (16)
C3	0.0315 (16)	0.0445 (17)	0.040 (2)	0.0029 (13)	0.0022 (16)	0.0016 (17)
C4	0.0379 (18)	0.0384 (17)	0.047 (2)	0.0051 (14)	0.0054 (17)	-0.0053 (18)
C5	0.0408 (19)	0.0434 (19)	0.040 (2)	-0.0047 (15)	-0.0021 (17)	-0.0125 (17)
C6	0.0313 (15)	0.0370 (16)	0.040 (2)	-0.0023 (13)	-0.0014 (16)	0.0013 (16)

supplementary materials

C7	0.065 (3)	0.053 (2)	0.051 (3)	0.019 (2)	-0.011 (2)	-0.010 (2)
C8	0.059 (3)	0.057 (2)	0.076 (4)	0.020 (2)	-0.010 (3)	-0.003 (3)
C9	0.048 (2)	0.064 (3)	0.072 (4)	0.0163 (19)	-0.018 (3)	-0.001 (3)
Geometric paran	neters (Å, °)					
01—C3 ⁱ		1.514 (5)	C4	H4		0.9300
O1—C3		1.514 (6)	C5	Б—Сб		1.394 (5)
O2—C6		1.379 (5)	C5	5—Н5		0.9300
О2—С9		1.438 (6)	C7	И—С8		1.518 (7)
C1—C2		1.393 (5)	C7	/—H7A		0.9700
C1—C6		1.401 (6)	C7	′—H7B		0.9700
C1—C7		1.509 (5)	C8	З—С9		1.468 (7)
C2—C3		1.390 (5)	C8	3—H8A		0.9700
C2—H2		0.9300	C8	3—H8B		0.9700
C3—C4		1.393 (6)	C9	—Н9А		0.9700
C4—C5		1.388 (6)	С9	—Н9В		0.9700
C3 ⁱ —O1—C3		115.2 (6)	C5	G-C6-C1		118.9 (3)
С6—О2—С9		121.3 (4)	C1	—С7—С8		111.8 (4)
C2—C1—C6		118.6 (3)	C1	—С7—Н7А		109.3
C2—C1—C7		122.0 (4)	C8	З—С7—Н7А		109.3
C6—C1—C7		119.3 (3)	C1	—С7—Н7В		109.3
C3—C2—C1		123.4 (4)	C8	З—С7—Н7В		109.3
С3—С2—Н2		118.3	H7	7А—С7—Н7В		107.9
C1—C2—H2		118.3	C9	—С8—С7		112.1 (4)
C2—C3—C4		116.8 (3)	C9	—С8—Н8А		109.2
C2—C3—O1		120.9 (4)	C7	И—С8—Н8А		109.2
C4—C3—O1		122.4 (4)	C9	—С8—Н8В		109.2
C5—C4—C3		121.4 (3)	C7	И—С8—Н8В		109.2
С5—С4—Н4		119.3	H8	3A—C8—H8B		107.9
C3—C4—H4		119.3	02	2—C9—C8		112.3 (4)
C4—C5—C6		121.0 (4)	02	2—С9—Н9А		109.1
C4—C5—H5		119.5	C8	З—С9—Н9А		109.1
С6—С5—Н5		119.5	02	2—С9—Н9В		109.1
O2—C6—C5		119.8 (4)	C8	З—С9—Н9В		109.1
O2—C6—C1		121.3 (3)	Н9	РА—С9—Н9В		107.9
C6-C1-C2-C3	3	-0.1 (6)	C4	C5C6O2		-180.0 (4)
C7—C1—C2—C3	3	177.7 (4)	C4			0.3 (6)
C1—C2—C3—C4	1	-0.2 (6)	C2	2-C1-C6-O2		-179.7 (4)
C1—C2—C3—O	1	179.4 (3)	C7			2.4 (6)
C3 ⁱ —O1—C3—C	2	142.1 (4)	C2	2—C1—C6—C5		0.1 (5)
C3 ⁱ —O1—C3—C	4	-38.3 (3)	C7			-177.8 (4)
C2—C3—C4—C5	5	0.5 (6)	C2	с—С1—С7—С8		-158.0 (4)
O1—C3—C4—C	5	-179.1 (4)	C6	6—С1—С7—С8		19.9 (6)
C3—C4—C5—C6	5	-0.6 (6)	C1	—С7—С8—С9		-47.3 (6)
C9—O2—C6—C	5	-176.6 (4)	C6	6—O2—C9—C8		-31.5 (7)
С9—О2—С6—С	1	3.2 (7)	C7	и—С8—С9—О2		53.2 (7)
Symmetry codes:	(i) $-x+1, -y+1, z$.					

Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C8—H8b···Cg1 ⁱⁱ	0.97	2.906	3.856 (6)	166.49
Symmetry codes: (ii) $x+1/4$, $-y+3/4$, $z-1/4$.				

Fig. 1

