
RESEARCH ARTICLE

Highly accurate prediction of flammability

limits of chemical compounds using novel

integrated hybrid models

Mohanad El-HarbawiID
1*, Brahim Belhaouari SamirID

2, Lahssen El blidi1, Ouahid Ben

Ghanem3,4

1 Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia, 2 Division of

Information & Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University,

Doha, Qatar, 3 Department of process plant operations, Qatar Technical, Doha, Qatar, 4 Chemical

Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh, Perak, Malaysia

* melharbawi@ksu.edu.sa

Abstract

Two novel and highly accurate hybrid models were developed for the prediction of the flam-

mability limits (lower flammability limit (LFL) and upper flammability limit (UFL)) of pure com-

pounds using a quantitative structure–property relationship approach. The two models were

developed using a dataset obtained from the DIPPR Project 801 database, which comprises

1057 and 515 literature data for the LFL and UFL, respectively. Multiple linear regression

(MLR), logarithmic, and polynomial models were used to develop the models according to

an algorithm and code written using the MATLAB software. The results indicated that the

proposed models were capable of predicting LFL and UFL values with accuracies that were

among the best (i.e. most optimised) reported in the literature (LFL: R2 = 99.72%, with an

average absolute relative deviation (AARD) of 0.8%; UFL: R2 = 99.64%, with an AARD of

1.41%). These hybrid models are unique in that they were developed using a modified math-

ematical technique combined three conventional methods. These models afford good prac-

ticability and can be used as cost-effective alternatives to experimental measurements of

LFL and UFL values for a wide range of pure compounds.

Introduction

Flammability can be broadly defined as the ease with which a material can be burned or

ignited under specific conditions. The parameters-of-concern frequently used to characterise

the flammability of chemical substances include the flash point, autoignition temperature, lim-

iting oxygen concentration, lower flammability limit (LFL), and upper flammability limit

(UFL) [1]. According to the American Society for Testing and Materials (ASTM), the LFL and

UFL are defined as the lowest and highest concentrations (percentage) of the fuel (gas or

vapor) in air capable of propagating a flame [2]. Flammability limits are commonly expressed

using units of volume percent [3–7]. Most hydrocarbons are extremely volatile under relatively

normal operating conditions [8–10]; thus, their flammability limits can be used to establish
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guidelines for the safe handling of these volatile substances. The flammability-limit values for

pure compounds are typically found in material safety datasheets provided by the manufactur-

ers. Extensive flammability data for pure gases and some gas mixtures can also be found in

Bureau of Mines Bulletin publications [4–6, 11, 12] and elsewhere in the literature [13–15].

Many scientists performed experimental studies on flammability in the 1800s [3, 16] and

1900s [4–6, 11–13, 17]. Since then, several methods involving conventional experimental

equipment, such as 20-L explosion apparatuses, have been introduced and utilised by numer-

ous researchers to determine the flammability limits of gases and liquids [2, 18]. Shu and Wen

[19] used this type of apparatus to investigate the flammability limits, maximum explosion

overpressure, minimum oxygen concentration, and flammability zone of o-xylene. Chang

et al. [20, 21] employed it to study the flammability of benzene and methanol with different

vapor mixing ratios, as well as the flammability characteristics of 3-picoline/water mixtures.

Liao et al. [22] conducted experiments to study the flammability limit of natural gas–air mix-

tures. Brooks and Crowl [23, 24] used the apparatus to study the flammability of vapours

above aqueous solutions of ethanol and acetonitrile, as well as the flammability of methanol,

ethanol, acetonitrile, and toluene mixtures. Wu et al. [25] employed a 20-L apparatus to inves-

tigate the flammability and explosion characteristics of methane with three different inert

gases (CO2, N2, and Ar) at 1 atm and 30 or 100˚C. Liaw et al. [26] used a 20-L spherical explo-

sion vessel to study the flammability of a mixture containing acetone + steam, methanol

+ steam, methyl formate + steam, isopropyl alcohol + steam, isopropyl alcohol + nitrogen, and

acetone + nitrogen.

Flammability limits can be determined using various established standard test methods: (i)

ASTM methods (ASTM E681 and ASTM E918), (ii) the National Fire Protection Association

method (NFPA 69), (iii) American Society of Heating, Refrigerating, and Air-Conditioning

Engineers methods, and (iv) European methods (DIN 51649 and EN 1839). For details regard-

ing these test methods, readers are referred to the work of Britton [27].

Even though these experimental standard tests are recommended for measuring the flam-

mability limits of combustible gases, they are expensive and time-consuming. Additionally,

because new chemicals are constantly being introduced in various industries, an easier and

more cost-effective alternative to the experimental determination of flammability limits is

needed. Scientists and engineers increasingly rely on desktop-based modelling methods for

this purpose. One such method is the quantitative structure–property relationship (QSPR),

which can quickly provide flammability-limit estimations with reasonable accuracy at a frac-

tion of the cost and/or time of experimental testing.

QSPR studies have been widely applied for the prediction of the flammability limits of

numerous substances. Many researchers have applied the QSPR for the estimation of LFL or

UFL values. For example, Albahri [28] proposed models for estimating the flammability limits

using the group contribution method. Gharagheizi developed different models for estimating

the LFLs [29, 30] and UFLs [31, 32] of pure compounds using a QSPR method. Lazzús [33]

employed an artificial neural network to predict the flammability limits of organic compounds

according to their molecular structures. Rowley and Rowley [34] developed a method for pre-

dicting the LFLs of organic compounds via the group contributions approach and the heat of

formation of the fuel. Bagheri et al. [35] suggested a model for the prediction of LFLs through

a robust QSPR approach. Pan et al. [36–38] utilised the QSPR and developed models for esti-

mating the flammability limits of organic compounds. Albahri [39] developed a neural net-

work-based structural group contribution model for the prediction of LFLs. Frutiger [40] used

the Marrero/Gani method to develop models for the prediction of LFLs, UFLs, flash points,

and autoignition temperatures of organic chemicals. Chen et al. [41] proposed a QSAR model

with four descriptors for predicting the LFLs of organic compounds. These models are
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compared in the “Results and discussion” section. Rowley [42] presented a comprehensive

review of the use of QSPR models and other models for estimating LFL/UFL values.

In this study, we extracted 1057 LFL and 515 UFL data published by DIPPR Project 801

[14] to develop two new accurate models for predicting the LFLs and UFLs of pure compounds

using the QSPR approach. These models were developed by combining three methods: multi-

ple linear regression (MLR), logarithmic, and polynomial method. To the best of our knowl-

edge, no QSPR model for the prediction of any property, including the LFL and UFL, based on

a combination of these three methods has been reported in the literature.

Materials and method

Dataset collection and preparation

The dataset utilised in this study was obtained from the DIPPR Project 801 database [14]. The

data were published by the American Institute of Chemical Engineers and can be considered

as a reliable, comprehensive, and accessible source for the hazard and safety properties of pure

compounds. The dataset covers a myriad of organic compounds with multiple functional

groups, namely; hydrocarbons, halogenated hydrocarbon compounds, ethers, ketones, alco-

hols, aldehydes, amides, esters, amines, acids, nitriles, nitro compounds, and heterocyclic com-

pounds. The first step in preparing the dataset was to design a ‘molecular structure table’ based

on the molecular fragments (groups), for describing the molecular structure of the pure com-

pounds. In this study, 1057 LFL values were selected from DIPPR Project 801 to develop the

LFL model. The same dataset was previously used by Gharagheizi [29]. UFL values for 515

pure compounds were also selected from the DIPPR Project 801 database and used as the

main UFL dataset (S1 and S2 Tables of the Electronic Supplementary Material). The molecular

descriptors of all these pure compounds were determined using the software package Dragon
[43]. This software is generally used for molecular descriptor calculations; details regarding its

usage can be obtained from its website (http://www.talete.mi.it/) or from the Handbook of

Molecular Descriptors [44]. The molecular descriptors (S1 and S2 Tables) were subsequently

used as datasets for MATLAB processing to predict the best-fit models that afforded the most

accurate predicted results (i.e. closest agreement between the experimental and predicted val-

ues). A brief description of the molecular descriptors used in this study is presented in S1 and

S2 Tables).

Model development

The QSPR process quantitatively correlates the structural properties of molecules (the descrip-

tors) with their functional properties (in this case, the LFL and UFL values) for a set of similar

compounds. The process uses linear statistical methods, such as MLR, polynomial regression,

and partial least-squares, or nonlinear methods, such as support vector machines (SVMs), arti-

ficial neural networks (ANN), etc., to generate mathematical models that relate the experimen-

tally measured properties of the compounds with a set of chemical descriptors.

In this study, we integrated MLR, logarithmic, and polynomial models to combine the

inherent strengths of each model and enhance the predictive accuracy of the resultant model.

In the case of linear regression, the dependent (prediction) variable was represented as Y,

while the independent variables (descriptors) were represented as X1, X2, . . ., Xp, where p rep-

resents the pth predictor variable. The relationship between the response variable Y and the

descriptors X1, X2, . . ., Xp can be expressed as a linear regression model (Eq (1)) [45]:

Y ¼ f ðX1;X2; . . . . . ...XpÞ þ ε; ð1Þ
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where ε represents the normal random error (residual) reflecting the difference between the

observed and the predicted values. Eq (1) can be expressed in a linear form as

Y ¼ a0 þ a1X1 þ a2X2 þ . . . :þ apXp þ ε; ð2Þ

where ao, a1, . . ., ap are the regression coefficients for the MLR model. Eq (2) is in a linear

form and can be expressed in a nonlinear form (i.e. logarithmic form):

Y ¼ b1lnX1 þ b2lnX2 þ . . . :þ bplnXp þ ε; ð3Þ

where β1, β2, . . ., βp are the regression coefficients for the logarithmic model.

The MLR (Eq (2)) and logarithmic model (Eq (3)) were then integrated with a polynomial

model (Eq (4)) [46].

Y ¼ g0 þ g1o
1 þ g2o

2 þ . . . :þ gmo
m þ ε ð4Þ

This interaction yielded the final hybrid model) Eq (5)):

Y ¼ a0 þ
Xn

i¼1

aiXi þ
Xm

i¼1

gio
1 þ

Xk

i¼nþ1

dioXi þ
Xn

i¼1

bi lnXi þ
Xn

j¼1

Xn

i¼1

lj;iXj lnXi; ð5Þ

where

n represents the number of parameters for the MLR model,

m represents the number of parameters for the polynomial model,

k represents the number of interactions between the MLR model and the polynomial

model,

Xk

i¼nþ1

dioXi represents the interactions between the MLR and polynomial models, and

Xn

j¼1

Xn

i;¼1

lj;iXjlnXi represents the interactions between the MLR and logarithmic models.

The parameters for the MLR model are ω = ∑Xi, αi = βi for i� n, γi = βi+n for i�m, δi =

βi+n+m for i� k, and 2n+m+k+n2 = p, α0,α1,. . .. . .αn. γ1. . .. . .γm. β1. . .. . . βn are the parameters

for the logarithmic model. λ0,0,λi,i,. . .. . .λn,n and δ1. . .. . .δk are the parameters for the interac-

tions between the descriptors.

The interaction between the polynomial and logarithmic models was found to have a negli-

gible effect on the results of the proposed model.

To estimate the overall parameters of the proposed model, we used the least-squares error

method. The corresponding prediction equation is

Y
_

¼ a0 þ
Xn

i¼1

a
_

iXi þ
Xm

i¼1

g
_

io
i þ

Xk

i¼nþ1

d
_

ioXi þ
Xn

i¼1

b
_

i lnXi þ
Xn

j¼1

Xn

i¼1

l
_

j;iXjlnXi ð6Þ

The algebraic matrix for the proposed models is given as follows:

Y
_

¼ Ψ � Θ
_

; ð7Þ

where

Y
_

¼ ða
_

0
; a
_

1
. . . . . . a

_

n; g
_

1
; . . . . . . g

_
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_
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_
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1
; . . . . . . g

_
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_

1
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_

n; l
_

1;1
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_

n;nÞ

¼ ðΨ 0ΨÞ� 1Ψ 0Y
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and

C ¼

X1;1 . . . . . .Xn;1 o1 oX1;1 . . . . . . ..oXn;1 lnX1;1 . . . . . . .. lnXn;1 X1;1lnX1;n . . . . . . . . . . . .Xn;1lnXn;1

: : : : : : : : :

: : : : : : : : :

: : : : : : : : :

X1;N . . . . . .Xn;N oN oX1;N . . . . . . ..oXn;N lnX1;N . . . . . ... lnXn;N X1;N lnX1;N . . . . . . . . .Xn;N lnXn;N

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Here, N represents the number of LFL/UFL experimental values for the pure compounds.

The MATLAB software (version 7.8.0.347) was employed to build the code and predict the

LFL and UFL values using the algorithm shown in Fig 1.

The average relative deviation (ARD, Eq (8)), average Absolute relative deviation (AARD,

Eq (9)), average absolute error (AAE, Eq (10)), and standard deviation (square root of the vari-

ance, ŝ2, Eq (11)) were used to confirm the accuracy of the developed model.

ARD ¼
100

N

XN

i¼1

FLCal � FLExp

FLExp

 !

i

ð8Þ

AARD ¼
100

N

XN

i¼1

FLCal � FLExp

FLExp

�
�
�
�
�

�
�
�
�
�
i

ð9Þ

AAE ¼
100

N

XN

i¼1

FLCal � FLExp

�
�

�
�
i

ð10Þ

s^2 ¼

XN

i¼1

ðFLCal � FL�CalÞ
2

i

N � 1
ð11Þ

Here,

N represents the number of substances,

FLCal represents the calculated flammability value (LFL or UFL),

FLExp represents the experimental flammability value (LFL or UFL), and

FL�Cal represents the mean FL value.

To determine the significant coefficients that define the relationship between the flamma-

bility limits of each compound and their molecular structures, the MLR, logarithmic, and poly-

nomial models were combined via the group contribution method, as indicated by Eq (5).

MATLAB was employed to perform the calculations. The code was written using an 80%/20%

training/testing split. The purpose of the training process was to calibrate the model and to

optimise the optimal coefficients according to the least-squares method. This method yields

the best-fitting curve between the predicted results and the DIPPR 801 LFL/UFL values. The

validation process was used for predicting the values not included in the training set. To

reduce the number of coefficients in the final models without losing accuracy, R2 hypothesis

testing was performed for each coefficient to evaluate its significance in the developed model.

Coefficients with insignificant values were eliminated to simplify the models. Only the most

significant coefficients obtained from the hypothesis testing were selected and used in Eq (5)

to build the final models and then to predict the results.
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Fig 1. Algorithm for the prediction of the LFL and UFL using MATLAB.

https://doi.org/10.1371/journal.pone.0224807.g001
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Results and discussion

The training set was initially subjected to the least-squares method for developing the different

models. The MATLAB program utilised the DIPPR data (80% of the entire dataset) to train

the code and then to compute the coefficients for the developed models (αi,γi,δi,λi,j) using Eq

(5). The MATLAB code then analysed the remaining data (20% of the entire dataset) using the

coefficients obtained from the training dataset to evaluate how well the models had been

trained and how accurately the models could predict the results. The testing set was not used

during the training process and was only used to compare the predicted results. For the devel-

opment of the LFL model, 846 components were utilised for the training set, and 211 were

used for the testing set. The LFL model was constructed according to the 105 molecular

descriptors, as described in S1 Table. For the UFL model, 412 components were utilised for

the training set, and 103 were used for the testing set. Furthermore, 82 molecular descriptors

were used to build the UFL model (S2 Table). For the proposed method, the interactions

among the three models generated a large number of coefficients, which enhanced the accu-

racy of the models. For instance, the number of coefficients for the LFL model was 6421, and

the model had an R2 of 99.72%. For the UFL model, the number of coefficients was 12481, and

the model had an R2 of 99.64%. It is highly recommended to use the proposed models with the

aforementioned numbers of coefficients. This is because if the number of coefficients is

reduced (e.g. from 6421 to 357 for LFL and from 12481 to 175 for UFL), the accuracy of the

LFL and UFL models decreases (to R2 = 96% and R2 = 78%, respectively). Table 1 presents the

comparison results for the accuracies of the three models interacting together (proposed mod-

els) and the three models individually.

LFL prediction accuracy and validation

Table 2 presents the statistical parameters of the training, testing, and total datasets. The devel-

oped model was capable of predicting the LFL with a high accuracy (R2 = 99.69% for the train-

ing set, R2 = 99.83% for the testing set, and R2 = 99.72% for the whole dataset). Additionally,

the R2, ARD, AARD, AAE, and ŝ2 values of the training and testing sets were very similar.

This indicates that the predicting abilities of the proposed model were stable. To validate the

proposed model, we tested the MLR, polynomial, and logarithmic models separately. The out-

put accuracies (R2) of these methods were 76.06%, 12.64%, and 52.36%, respectively (Table 1).

The proposed model (MLR + logarithm transformation) exhibited far more accurate predic-

tion (R2 = 99.72%) than the individual models, indicating that the proposed concept of using a

hybrid model based on the interaction between these three models enhanced the accuracy of

Table 1. Comparison of the accuracy between the developed model and other models.

Model R2 (%) ŝ2

LFL

MLR 76.06 0.06

Polynomial 12.64 0.21

Logarithmic 52.36 0.11

MLR + logarithmic + polynomial (proposed model) 99.72 6.6 × 10−4

UFL

MLR 84.73 1.06

Polynomial 74.30 1.95

Logarithmic 76.55 1.64

MLR + logarithmic + polynomial (proposed model) 99.64 0.041

https://doi.org/10.1371/journal.pone.0224807.t001
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the results. This is because the combination of the three models took more predictor variables

(X1, X2, . . ., Xn) into consideration during the processing of the data by the MATLAB code

and optimised the coefficients (αi,γi,δi,λi,j) for use in the best model. The most significant coef-

ficients were optimised using MATLAB and applied to Eq (5) to obtain the best model for pre-

dicting the LFL.

All QSPR models require further validation before they can be considered reliable. The pro-

posed model was validated using a dataset consisting of a random selection of 20% of the com-

ponents in the dataset. The predicted results were validated against the experimental values of

the dataset and were found to be consistent, with no significant deviations. An excellent fit was

achieved (R2 = 99.72%), as illustrated in Fig 2. The ARD, AARD, AAE, and standard deviation

were 0.1%, 0.8%, 1.2%, and 6.6 × 10−4, respectively. As shown in Figs 3–5 among the 1057

components, there were approximately 800 components with ‘zero’ error between the pre-

dicted LFL values and DIPPR 801 values. The results predicted using the model were also com-

pared with results obtained using models developed by other authors, as shown in Table 3.

Albahri [39] developed a model for predicting the LFL with a higher accuracy than our

model (R2 = 99.98%). However, the number of compounds used in his study (543) was smaller

than that utilised in the present study (1057). To test the efficiency of our novel MATLAB

code, we utilised the dataset provided by Pan et al. [37] and developed an accurate LFL model

(Eq (12)). The results of Pan et al. [37] were compared with our results, as shown in S3 Table.

Pan et al. [37] developed four different models. The support vector machine (SVM) model had

the highest accuracy (R2 = 99.97%), which was equal to the accuracy of our model (Eq (12)).

However, none of the four models of Pan et al. [37] were presented as a mathematical equa-

tion.

LFL ¼ 17:1352ðSIC0Þ� 1:8536ðAACþ PW5Þ þ 1:044ðAACÞðAAC þ PW5Þ�

11:266ðSIC0ÞðAAC þ PW5Þ� 76:4768ðPW5Þ
2
ðAACþ PW5Þ þ 13:4096ðSIC0Þ

2

ðAACþ PW5Þ þ 28:0829ðSIC0Þ
2
ðSIC0þ GATS1vÞ þ 0:032ðSIC0Þ

3
ðSIC0þ GATS1vÞþ

518:4484ðAACþ PW5ÞðPW5Þ
3
� 9:1264ðAAC þ PW5ÞðSIC0Þ

3
� 165:743

ðPW5þ SIC0ÞðPW5Þ
2

ð12Þ

Here,

Table 2. Statistical parameters of the developed models.

Statistical parameters Training set Testing set Whole dataset

LFL

No. of compounds 846 211 1057

R2 (%) 99.69 99.83 99.72

ARD (%) 0.09 0.08 0.10

AARD (%) 1.67 0.8 0.80

AAE (%) 1.30 0.65 1.20

ŝ2 6.7 × 10−4 7.8 × 10−4 6.6 × 10−4

UFL

No. of compounds 412 103 515

R2 (%) 99.34 99.33 99.64

ARD (%) 0.088 0.084 0.086

AARD (%) 1.76 1.78 1.41

AAE (%) 11.68 11.75 9.87

ŝ2 0.033 0.033 0.041

https://doi.org/10.1371/journal.pone.0224807.t002
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SIC0 represents information indices (structural information content, neighbourhood sym-

metry of 0-order),

AAC represents topological descriptors (mean information index on atomic composition),

PW5 represents topological descriptors (path/walk 5 Randic shape index), and

GATS1v represents two-dimensional (2D) autocorrelations (Geary autocorrelation—lag 1/

weighted by atomic van der Waals volumes).

UFL prediction accuracy and validation

It can be clearly concluded from Table 2 that the developed model was able to predict the UFL

values with a high accuracy (R2 = 99.34% for the training set, R2 = 99.33% for the testing set,

and R2 = 99.64 for the whole dataset). The UFL values obtained using the proposed model

were compared with the experimental values from DIPPR 801. A good fit was achieved (R2 =

99.64%), as illustrated in Fig 6. The ARD, AARD, AAE, and standard deviation were 0.086%,

1.41%, 9.87%, and 0.041, respectively. As shown in Figs 7–9,among the 515 components,

approximately 470 exhibited ‘zero’ error between the predicted UFL values and the DIPPR 801

values. The results predicted by the model were also compared with results obtained using

models developed by other authors, as shown in Table 3.

Gharagheizi [31] was able to predict a simple UFL equation with six coefficients using a

dataset containing only five descriptors. The accuracy of his model was high (R2 = 0.9202).

Additionally, Pan et al. [36] developed two simple UFL models with six and four coefficients

based on the MLR method and a dataset containing only four descriptors. The accuracy of the

two models were not high (R2 = 0.57 and 0.758 respectively). To test the accuracy of our devel-

oped algorithm and MATLAB code, we utilised Gharagheizi’s dataset [31] and developed a

UFL equation (Eq (13)). The model predicted the UFL with an R2 of 92.72%. This indicates

that the accuracy of the proposed model is slightly higher than that of Gharagheizi’s model

Fig 2. Comparison between predicted and DIPPR 801 LFL values.

https://doi.org/10.1371/journal.pone.0224807.g002
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Fig 3. AAR histogram for the LFL model.

https://doi.org/10.1371/journal.pone.0224807.g003

Fig 4. AARD histogram for the LFL model.

https://doi.org/10.1371/journal.pone.0224807.g004
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[31]. Details are presented in S4 Table.

UFL ¼ 14:011 � 0:765 MLOGP � 33:853ðJhetvþ PW5Þ þ 0:834ðSIC0þMATS4mÞþ

32:167ðJhetv � PW5Þ � 281:86ðPW5Þ
2
þ 35:904ðSIC0Þ

2
þ 2622:185ðPW5Þ

3
�

23:301ðSIC0Þ
3
þ 11:134ðJhet þ PW5ÞPW5

ð13Þ

Here,

Jhetv represents topological descriptors (balaban-type index from van der Waals weighted

distance matrix),

MATS4m represents 2D autocorrelations (Moran autocorrelation-lag 4 weighted by atomic

masses), and

MLOGP represents molecular properties (Moriguchi octanol–water partition coefficient

(log P)).

Conclusion

A new method was proposed for the development of flammability-limit (LFL and UFL) models

based on a QSAR approach. The development of these models was based on code written

using the MATLAB software (version 7.8.0.347) and a combination of MLR, logarithmic, and

polynomial models. To develop the LFL and UFL models, 1057 and 515 pure compounds were

used, respectively, spanning many families of compounds. Therefore, the developed models

have a wide range of applicability. The developed models predicted the LFL and UFL with

high accuracy (R2 = 99.72% and R2 = 99.64%, respectively) and are more accurate than previ-

ously reported models.

Fig 5. ARD histogram for the LFL model.

https://doi.org/10.1371/journal.pone.0224807.g005
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Table 3. Comparison of several QSAR models and their accuracies.

Method No. of Compounds R2 (%) AAE (%) ARD (%) AARD (%) References

LFL

Artificial neural network 454 93.00 4.1 - - Albahri [28]

Genetic algorithm 1056 97.90 5.0 - - Pan et al. [37]

Genetic algorithm 354 96.70 4.3 - - Pan et al. [38]

Genetic algorithm multivariate linear regression 1057 98.60 4.62 - - Gharagheizi [30]

Artificial neural network 509 91.70 10.76 Rowley and Rowley [34]

Artificial neural network 418 98.65 - - 8.6 Lazzús [33]

MLR 458 91.4 0.3442 - - Chen et al. [41]

MLR 1615 90.61 0.186 - - Bagheri et al. [35]

Neuro-fuzzy inference system 1615 92.90 0.153 - - Bagheri et al. [35]

Artificial neural network 543 99.98 0.02 - - Albahri [39]

Proposed model 1057 99.72 1.2 0.1 0.80 This work

UFL

Artificial neural network 464 92.2 11.8 - - Albahri [28]

Genetic algorithm + MLR 579 75.8 1.75 - - Pan et al. [36]

Genetic algorithm + MLR 354 96.7 4.3 - - Pan et al. [38]

Genetic algorithm + multivariate linear regression 865 92 9.7 Gharagheizi [31]

Genetic algorithm + multivariate linear regression 1294 95 - 3.56 25.76 Gharagheizi [32]

Artificial neural network 418 98.18 - - 7.1 Lazzús [33]

Proposed model 515 99.64 9.87 0.086 1.41 This work

https://doi.org/10.1371/journal.pone.0224807.t003

Fig 6. Comparison between predicted and DIPPR 801 LFL values.

https://doi.org/10.1371/journal.pone.0224807.g006
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Fig 7. AAR histogram for the UFL model.

https://doi.org/10.1371/journal.pone.0224807.g007

Fig 8. AARD histogram for the UFL model.

https://doi.org/10.1371/journal.pone.0224807.g008

Prediction of flammability limits of chemical compounds using novel integrated hybrid models

PLOS ONE | https://doi.org/10.1371/journal.pone.0224807 November 14, 2019 13 / 16

https://doi.org/10.1371/journal.pone.0224807.g007
https://doi.org/10.1371/journal.pone.0224807.g008
https://doi.org/10.1371/journal.pone.0224807


Supporting information

S1 Table. Functional groups and detailed results for the LFL.

(XLS)

S2 Table. Functional groups and detailed results for the UFL.

(XLSX)

S3 Table. Results comparison for the Pan et al. [37] dataset.

(XLS)

S4 Table. Results comparison for the Gharagheizi [36] dataset.

(XLS)

Acknowledgments

The authors acknowledge the financial support provided by the Deanship of Scientific

Research at King Saud University for this work through Research Group No. RGP-303.

Author Contributions

Conceptualization: Mohanad El-Harbawi.

Data curation: Lahssen El blidi.

Methodology: Mohanad El-Harbawi.

Resources: Mohanad El-Harbawi.

Software: Brahim Belhaouari Samir, Ouahid Ben Ghanem.

Fig 9. ARD histogram for the UFL model.

https://doi.org/10.1371/journal.pone.0224807.g009

Prediction of flammability limits of chemical compounds using novel integrated hybrid models

PLOS ONE | https://doi.org/10.1371/journal.pone.0224807 November 14, 2019 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224807.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224807.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224807.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224807.s004
https://doi.org/10.1371/journal.pone.0224807.g009
https://doi.org/10.1371/journal.pone.0224807


Writing – original draft: Mohanad El-Harbawi.

Writing – review & editing: Lahssen El blidi.

References
1. Ma T. Ignitability and explosibility of gases and vapors. New York: Springer; 2015.

2. ASTM E681-09(2015). Standard test method for concentration limits of flammability of chemicals

(vapors and gases). West Conshohocken, Pennsylvania: ASTM International; 2015.

3. Le Chatelier H. Estimation of fire damp by flammability limits. Ann Mines. 1891; 8: 388–395.

4. Coward HF, Jones GW. Limits of flammability of gases and vapors. In: U.S. Bureau of Mines, Bulletin

503. U.S. Bureau of Mines; 1952.

5. Zabetakis MG. Flammability characteristics of combustible gases and vapors. In: U.S. Bureau of Mines,

Bulletin 627. U.S. Bureau of Mines; 1965.

6. Kuchta JM. Investigation of fire and explosion accidents in the chemical, mining and fuel-related indus-

tries-A manual. In: U.S. Bureau of Mines, Bulletin 580. U.S. Bureau of Mines; 1985.

7. Crowl DA, Louvar JF. Chemical process safety: fundamentals with applications. 3rd ed. Prentice-Hall;

2010.

8. Griffiths JF. Flame and combustion. 3rd ed. Routledge; 2019.

9. Murzin DY. Chemical reaction technology. Walter de Gruyter GmbH & Co KG; 2015.

10. El-Harbawi M, Shaaran SN, Ahmad F, Wahi MA, Abdul A, Laird DW, et al. Estimating the flammability

of vapours above refinery wastewater laden with hydrocarbon mixtures. Fire Saf J. 2012; 51: 61–67.

11. Clement JK. The influence of inert gases on inflammable gaseous mixtures. In: Bureau of Mines, Tech-

nical Paper 43. Bureau of Mines; 1913.

12. Burgess DS, Furno AL, Kuchta JM, Mura KE. Flammability of mixed gases. In: U.S. Bureau of Mines,

Report of Investigations. U.S. Bureau of Mines; 1982.

13. Coward HF, Brinsley F. The dilution limits of inflammability of gaseous mixtures. J Chem Soc. 1914;

105–106: 1859–1885.

14. Project 801, Evaluated process design data, public release documentation, design institute for physical

properties (DIPPR). American Institute of Chemical Engineers (AIChE); 2006.

15. Babrauskas V. Ignition handbook database. Fire Science Publishers; 2003.

16. Humphry D. On the fire-damp of coal mines and on methods of lighting the mines so as to prevent its

explosion. Philos Trans R Soc London. 1816; 106: 1–22.

17. NFPA. Fire hazard properties of flammable liquids, gases and volatile solids. NFPA 325M. Quincy,

Massachusetts: National Fire Protection Association; 1984.

18. ASTM E1515-14. Standard test method for minimum explosible concentration of combustible dusts.

West Conshohocken, Pennsylvania: ASTM International; 2014. www.astm.org.

19. Shu C-M., Wen P-J. Investigation of the flammability zone of o-xylene under various pressures and oxy-

gen concentrations at 150˚C. J Loss Prev Process Ind. 2002; 15: 253–263.

20. Chang Y-M, Tseng J-M, Shu C.-M, Hu K-H. Flammability studies of benzene and methanol with various

vapor mixing ratios at 150˚C. Korean J Chem Eng. 2005; 22: 803–812.

21. Chang Y-M, Yun R-L, Wan T-J, Shu C-M. Experimental study of flammability characteristics of 3-pico-

line/water under various initial conditions. Chem Eng Res Des. 2007; 85: 1020–1026.

22. Liao SY, Cheng Q, Jiang DM, Gao J. Experimental study of flammability limits of natural gas–air mix-

ture. J Haz Mat. 2005; 119: 81–84.

23. Brooks M., Crowl D. Vapor flammability above aqueous solutions of flammable liquids. J Loss Prev Pro-

cess Ind. 2007; 20: 477–485.

24. Brooks M., Crowl D. Flammability envelopes for methanol, ethanol, acetonitrile and toluene. J Loss

Prev Process Ind. 2007; 20: 144–150.

25. Wu SY, Lin NK, Shu CM. Effects of flammability characteristics of methane with three inert gases. Pro-

cess Saf Prog. 2010; 29: 349–352.

26. Liaw HJ, Chen CC, Lin NK, Shu CM, Shen SY. Flammability limits estimation for fuel–air–diluent mix-

tures tested in a constant volume vessel. Process Saf Environ Prot. 2016; 100: 150–162.

27. Britton LG. Two hundred years of flammable limits. Process Saf Prog. 2002; 21: 1–11.

28. Albahri TA. Flammability characteristics of pure hydrocarbons. Chemical Eng Sci. 2003; 58: 3629–

3641.

Prediction of flammability limits of chemical compounds using novel integrated hybrid models

PLOS ONE | https://doi.org/10.1371/journal.pone.0224807 November 14, 2019 15 / 16

http://www.astm.org
https://doi.org/10.1371/journal.pone.0224807


29. Gharagheizi F. A QSPR model for estimation of lower flammability limit temperature of pure compounds

based on molecular structure. J Haz Mat. 2009; 169: 217–220.

30. Gharagheizi F. A new group contribution-based model for estimation of lower flammability limit of pure

compounds. J Haz Mat. 2009; 170: 595–604.

31. Gharagheizi F. Prediction of upper flammability limit percent of pure compounds from their molecular

structures. J Haz Mat. 2009; 167: 507–510.

32. Gharagheizi F. Chemical structure-based model for estimation of the upper flammability limit of pure

compounds. Energy Fuels. 2010; 24: 3867–3871.

33. Lazzús JA. Neural network/particle swarm method to predict flammability limits in air of organic com-

pounds. Thermochim Acta. 2011; 512: 150–156.

34. Rowley JR, Rowley RL, Wilding WV. Estimation of the lower flammability limit of organic compounds as

a function of temperature. J Haz Mat. 2011; 18: 551–557.

35. Bagheri M, Rajabi M, Mirbagheri M, Amin M. BPSO-MLR and ANFIS based modeling of lower flamma-

bility limit. J Loss Prev Process Ind. 2012; 25: 373–382.

36. Pan Y, Jiang J, Wang R, Cao H, Cui Y. Prediction of the upper flammability limits of organic compounds

from molecular structures. Ind Eng Chem Res. 2009; 48: 5064–5069.

37. Pan Y, Jiang J, Wang R, Cao H, Cui Y. A novel QSPR model for prediction of lower flammability limits of

organic compounds based on support vector machine. J Haz Mat. 2009; 168: 962–969.

38. Pan Y, Jiang Y, Ding X, Wang R, Jiang J. Prediction of flammability characteristics of pure hydrocar-

bons from molecular structures. AIChE J. 2010; 56: 690–701.

39. Albahri TA. Prediction of the lower flammability limit percent in air of pure compounds from their molecu-

lar structures. Fire Saf J. 2013; 59: 188–201.

40. Frutiger J, Marcarie C, Abildskov J, Sin G. Group-contribution based property estimation and uncer-

tainty analysis for flammability-related properties. J Haz Mat. 2016; 318: 783–793.

41. Chen CC, Lai CP, Guo YC. A novel model for predicting lower flammability limits using Quantitative

Structure Activity Relationship approach. J Loss Prev Process Ind. 2017; 49: 240–247.

42. Rowley JR. Flammability limits, flash points, and their consanguinity: critical analysis, experimental

exploration, and prediction. PhD Thesis, Brigham Young University, 2010.

43. Dragon for Windows (Software for Molecular Descriptor Calculations), Version 5.4. Talete S.R.L.; 2006

(http://www.talete.mi.it/).

44. Todeschini R, Consonni V. Handbook of molecular descriptors. Wiley-VCH; 2000.

45. Chatterjee S, Hadi AS. Regression analysis by example. 4th ed. New York: John Wiley; 2006.

46. Angelov PP. Evolving rule-based models: a tool for design of flexible adaptive systems. Physica-Ver-

lag: A Springer-Verlag Company; 2002.

Prediction of flammability limits of chemical compounds using novel integrated hybrid models

PLOS ONE | https://doi.org/10.1371/journal.pone.0224807 November 14, 2019 16 / 16

http://www.talete.mi.it/
https://doi.org/10.1371/journal.pone.0224807

