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Abstract

Random environmental fluctuations pose major threats to wild populations. As patterns of 

environmental noise are themselves altered by global change, there is growing need to identify 

general mechanisms underlying their effects on population dynamics. This notably requires 

understanding and predicting population responses to the color of environmental noise, i.e. its 

temporal autocorrelation pattern. Here, we show experimentally that environmental 

autocorrelation has a large influence on population dynamics and extinction rates, which can be 

predicted accurately provided that a memory of past environment is accounted for. We exposed 

near to 1000 lines of the microalgae Dunaliella salina to randomly fluctuating salinity, with 

autocorrelation ranging from negative to highly positive. We found lower population growth, and 

twice as many extinctions, under lower autocorrelation. These responses closely matched 

predictions based on a tolerance curve with environmental memory, showing that non-genetic 

inheritance can be a major driver of population dynamics in randomly fluctuating environments.

The demography and extinction risk of wild populations is largely determined by responses 

to random fluctuations in their environment1–7, the magnitude and predictability of which 

are currently altered by anthropogenic activities8,9. In addition to their amplitude, stochastic 

(i.e., random) fluctuations are characterized by their temporal autocorrelation, which 

determines the extent to which one time step is a good predictor for the next. Temporal 

autocorrelation, sometimes described as the color of noise in reference to the spectral 

decomposition of random fluctuations, is a ubiquitous feature of natural systems10,11. 

Because environmental autocorrelation characterizes the pattern and ordering of 
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environmental noise rather than its magnitude, it was originally thought to be irrelevant to 

expected population dynamics in a stochastic environment, which instead were predicted to 

only depend on the mean and variance of environmental fluctuations in population growth3. 

However, more recent theory has shown that environmental autocorrelation may have a 

dramatic impact on population growth and extinction risk in a stochastic environment12–16. 

The reason is that positive temporal autocorrelation facilitates phenotypic tracking of 

environmental fluctuations by phenotypic plasticity17,18, evolutionary responses to natural 

selection19, or both, thereby modifying the mean and variance of population growth rates. 

However theoretical predictions are scarcer for negatively autocorrelated fluctuations, where 

high and low conditions alternate rapidly but predictably. More importantly, we lack 

empirical validation of this theory in a form that combines the realism of a continuously 

varying environment (such as temperature, humidity, salinity) with the high replication 

required to properly investigate responses to stochasticity. High replication is all the more 

important as environmental autocorrelation is expected to influence the variance of 

population size among independent realizations of stochastic population dynamics, therefore 

increasing extinction risk12.

An increasing number of studies have inferred the level of environmental stochasticity in 

population growth in the wild20,21 and the demographic consequences of environmental 

autocorrelation22,23. However, attributing population size fluctuations to measured 

environmental factors is extremely challenging in the wild, where such factors may largely 

covary among each other, and the origin of their variation is unknown. Furthermore, 

observations from natural population generally consist of a single realization of a process 

with a limited number of time points (usually below 50), whereas assessing the range of 

likely outcomes for any stochastic process in the future requires many replicates, and/or long 

time spans. Experimental studies in the laboratory with short-lived organisms appears as a 

necessary bridge between theory and nature, because they allow testing theoretical 

predictions with ample replication and precision, potentially yielding general insights about 

population responses to environmental stochasticity. However, the few experimental studies 

about demographic consequences of environmental autocorrelation have had contrasting 

findings24–27. To achieve significant progress on this question, we need to overcome the 

specificities of each individual system by establishing robust and general mechanistic links 

between environments and population demographic processes.

Such a link can be provided by environmental tolerance curves, which measure how fitness 

or its life history components (survival and fecundity) respond to abiotic environmental 

variables such as temperature or salinity. Tolerance curves are increasingly popular tools 

connecting physiology and ecology in response to climate change28–30, notably because they 

share many commonalities across taxa and environmental factors, thus allowing for 

generalization. They are typically hump-shaped, with an optimum at some intermediate 

environmental value that coincides to some extent with the historical environment of the 

species31,32. This non-linear relationship between the environment and absolute fitness is 

predicted to strongly drive effects of environmental stochasticity on population dynamics 

and extinction risk12, but these predictions still largely lack empirical validation. 

Furthermore, environmental tolerance curves can potentially be influenced by the history of 

environments experienced by an individual30,33–35 (phenotypic plasticity) or its ancestors36 
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(trans-generational plasticity), but it is unclear to what extent population dynamics will be 

affected by such environmental memory effects. To answer these questions, we carried out a 

highly replicated experiment with a eukaryotic microorganism, in order to investigate how 

environmental autocorrelation influences population dynamics and extinction risk in a 

stochastic environment.

Results

We exposed six ancestral lineages (hereafter genotypes) of the facultative sexual microalgae 

Dunaliella salina to randomly varying salinities during 37 transfers (~100 generations). 

Using a liquid handling robot, we transferred each line twice a week (every 3 or 4 days), 

diluting 15% of the population of origin into fresh medium with controlled salinity, which 

differed across lines. More precisely, our treatments consisted of 164 time series with the 

same mean (µ = 2.4M NaCl) and variance (standard deviation σ = 1M NaCl), but 4 

autocorrelation levels, from negative (ρ = -0.5) to highly positive (ρ = 0.9). In doing so, we 

modulated the pattern of salinity change between two successive transfers, without 

modifying the overall magnitude of fluctuations (Figure 1 a. and b., upper panel). 

Importantly, 39 (out of 41) time series within each treatment were different, independent 

realizations of the same stochastic process, allowing investigation of the variance introduced 

by environmental stochasticity, which is known to be an important driver of extinction 

risk2,12. We tracked population densities and the proportion of extinct populations at each of 

37 transfers (~100 generations, over 4 months) using optical density, fluorescence and flow 

cytometry. We then estimated the intrinsic rate of increase between each successive 

transfers, assuming continuous logistic growth following the 15% dilution (Figure 1c).

In addition to three single strains (genotypes A: CCAP 19/18, B: CCAP 19/18 and C: CCAP 

19/15), we used the three possible mixes of two of these strains (genotype AB, AC and BC), 

to test for potential advantages of genetic diversity on population dynamics. One of the 

single genotypes (B) grew too slowly to compensate for dilution at each transfer and got 

extinct rapidly (Extended Data 1) even in constant treatments, so it was discarded from 

further analysis.

Environmental autocorrelation strongly affects population size

Environmental stochasticity initially caused a rapid increase of variation in population size 

among our different lines of a same stochasticity treatment (as materialized by the dashed 

confidence interval in Figure 2.a.), as expected because population growth accumulates 

linearly on the log scale during a phase of exponential growth2,12. The stochastic variation 

among lines then settled to an approximately constant value, characteristic of the stationary 

phase (days > 45, Figure 2a), where fluctuating population sizes spanned several orders of 

magnitude, in contrast with the small variance among replicates in constant environments 

(Extended Data 2). This is consistent with theory showing that stochastic environments can 

cause large fluctuations in population sizes around their expected carrying capacity2,12,37.

The distribution of log-population size was asymmetric for all treatments and genotypes, 

with a negative skew causing an excess of very small populations undergoing high extinction 

risk (Figure 2.b. and e). Remarkably, this skewness is consistent with models of a moving 
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optimum phenotype in a stochastic environment12 - equivalent to models of tolerance curves 

with an optimum environment12,35,38 -, but not necessarily with classic phenomenological 

models where noise is added to the population growth rate without an explicit tolerance 

curve2,3,39. This suggests that fluctuations in our experimental populations are driven to 

some extent by the interplay of a stochastic environment with a hump-shaped tolerance 

curve with an optimum. However, density dependence in population growth also impacts the 

distribution of population size, modifying the influence of the stochastic environment2,40. To 

control for this influence of density dependence, we analyzed the distribution of the intrinsic 

growth rate r, i.e. the rate of exponential growth at low population density, extracted from a 

model of continuous logistic growth (Figure 1.c). We found strong support for an 

asymmetrical distribution of r (ΔAIC = -3713 between a normal and a reverse gamma 

distribution), with an estimated skewness between -1.7 and -0.4 (Figure 3.d).

Using the population sizes estimations obtained from the reverse gamma model, we found 

important differences between the dynamics of populations exposed to different 

autocorrelation treatments. For each of the genotype x autocorrelation treatment (from 438 

to 833 data points), we computed the distributions of the population size during the 

stationary phase, and analyzed the influence of environmental autocorrelation on moments 

of these distributions. As environmental autocorrelation increased, populations underwent 

fewer episodes of negative growth, and smaller fluctuations in size (Figure 1). As a 

consequence, the mean (log) population size was larger under larger environmental 

autocorrelation (Figure 2c, slope = 0.71±0.11, p = 4.0.10-5), contrary to classical population 

dynamics predictions where the expected intrinsic growth rate only depends on the mean 

and variance of the environment3,4,6. The variance in log population size among replicate 

lines decreased with increasing autocorrelation (Figure 2d, slope = -3.0±0.71, p = 1.3.10-3). 

This contrasts with the common theoretical prediction that higher autocorrelation generates 

long batches of good/bad environments in different lines, thereby increasing population size 

variance among lines12–15, but is consistent with a contribution of environmental 

autocorrelation to phenotypic tracking of the environment (via phenotypic plasticity or 

genetic evolution), reducing the magnitude of population fluctuations19. We found a general 

trend for lower asymmetry (negative skewness closer to 0) with increasing temporal 

autocorrelation, but this effect highly depended on the strain (or mix) used and was not 

significant (Figure 3.d, slope = 0.19±0.25). Temporal autocorrelation of the stationary 

population size was highly variable within genotype x autocorrelation treatment (Figure 3.e). 

In particular, it was never found significantly different from 0, even in the highly 

autocorrelated treatment (ρ = 0.9), highlighting that temporal autocorrelation of the 

environmental factors translates only very weakly into autocorrelation of population 

sizes25,41–43.

Environmental memory governs population dynamics

To reach more mechanistic insights into drivers of stochastic population dynamics in our 

experiment, we used the known salinity and population measurements to estimate a hump-

shaped tolerance curve relating the intrinsic rate of increase r(T) following transfer T to the 

current salinity ST,
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r(T) = auniv + buniv × ST + cuniv × ST
2 , 1

where the subscript ‘univ’ is for univariate. This was compared to a bivariate tolerance curve 

that also includes an effect of memory of the previous environment (prior to the last 

transfer), via the salinity ST - 1,

r(T) = a + b × ST − 1 + c × ST + d × ST − 1
2 + e × ST

2 + f × ST − 1 × ST 2

where e determines the tolerance breadth with respect to the current environment, d the 

breadth of the environmental memory effect, and f the interaction between past and current 

salinity.

We fitted parameters of the tolerance curve with (equation 2) or without memory (equation 

1), under the same model of logistic growth as in the first section, assuming a Gaussian 

distribution of the population size around its expected value (given the value at the previous 

time step). We found strong support for the generalized bivariate tolerance curve (ΔAIC < 

-10-3 and p-values from likelihood ratio test < 10-9 for all genotypes, see Supplementary 

Table 1), revealing an important impact of environmental memory on population growth. 

Growth rates were highest for populations transferred from high to low salinity, while 

populations transferred from low to high salinities declined (Figure 3.a), notably because of 

high mortality that could be detected by flow cytometry (Extended Data 3a, b, c).

To quantify the extent to which tolerance curves and memory effects explain the variation in 

growth within and across autocorrelation treatments, we derived the moments of population 

growth rates predicted by combining these tolerance curves with the realized salinity time 

series, and compared them to their estimated counterparts that do not use information about 

salinity (Supplementary Table 1). The tolerance curve with memory correctly predicted 

increases in the mean (slope = 0.069±0.009, p = 1.5.10-5) and skewness (slope = 0.58±0.09, 

p = 2.9.10-5) of population growth rates with increasing environmental autocorrelation, and a 

decrease in their variance (slope = -0.12±0.01, p = 2.18.10-8), while all these effects were 

entirely missed by a memoryless tolerance curve (continuous vs dashed lines in Figure 3b, c, 

d). The predicted and observed responses to environmental autocorrelation were in very 

good quantitative agreement for the mean and variance of population growth rate (Figure 3b, 

c), and were qualitatively consistent for the skewness of population growth rate (Figure 3.d). 

Temporal autocorrelation of the growth rate displayed discrepancy between the fit from the 

data and prediction from the tolerance curves (Figure 3e). Nevertheless, the tolerance curve 

with memory allowed for negative autocorrelation of population growth rates despite 

positive environmental autocorrelation, as observed in the data but not possible with a 

memoryless tolerance curve.

A candidate mechanism: plasticity of glycerol content

Although a range of physiological mechanisms are probably involved in these population 

responses to salinity fluctuations, glycerol content is a key candidate phenotypic trait. 

Glycerol acts as an osmoregulator, with intracellular concentration responding nearly 

linearly to the environmental salinity44. It is the major mechanism that makes Dunaliella a 
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model species for salinity tolerance44. To investigate the possible role of this metabolite in 

our population responses to salinity, we tracked the dynamics of intracellular glycerol 

following a change in salinity. When going from high (3.5M NaCl) to low salinity, 

intracellular glycerol concentration first changed almost immediately, with significant 

differences in glycerol contents as soon as 16 minutes after transfer in 0.5, 2 or 3.5M NaCl 

(Supplementary Table 1), probably through excretion45, followed by a slower adjustment of 

glycerol level (Figure 4). In contrast, the reciprocal transfer from low (0.5M NaCl) to high 

salinity, which requires de novo production of glycerol44, triggered slower change in 

glycerol content, with significant differences between transfer in 0.5 and in 2M NaCl found 

only after 135 minutes (Figure 4 and Supplementary Table 1). Most cells even died before 

their glycerol content could be measured in the transfer to the highest salinity (Figure 4). 

This is consistent with our observation that transitions from low to high salinity are more 

detrimental to the population dynamics than the reverse (Figure 3a).

Extinction rates increase with decreasing autocorrelation

Nearly half the lines went extinct by the end of the experiment (Figure 5a). Environmental 

autocorrelation had a strong impact on extinction risk. Populations from low autocorrelation 

treatments (ρ = -0.5 and ρ = 0) went more extinct (72 and 61% extinct by the end of the 

experiment, median survival time: 77 days and 83 days, respectively) than populations from 

positive autocorrelation treatments (33 and 34% extinct by the end of the experiment for ρ = 

0.5 and ρ = 0.9, respectively; p < 1.10-4, log ranked test performed independently for all 

genotypes, see Supplementary Table 1 for details). We found no evidence for an effect of 

genetic variation on extinction risk in our experiment, as single-strain lines did not differ 

significantly from mixed-strain lines, and there was no indication that recombination 

contributed to population persistence in mixed-strain lines (Supplementary Information). 

Simulations using the tolerance curve with environmental memory combined with the actual 

times series of environments gave results qualitatively similar to our data (Figure 5b). By 

contrast, a memoryless tolerance curve reversed the predictions, with the lowest extinction 

risk predicted under negative or null autocorrelation. The reason for this reversal is that, 

without environmental memory (and neglecting rapid evolution), environmental 

autocorrelation does not help phenotypic tracking of the environmental optimum, and 

therefore has no direct effect on the distribution of population growth rates (dashed lines in 

Figure 3b-d), but only influences how growth rates are integrated into the population 

dynamics. Because all things being equal, more autocorrelated growth rates cause larger 

variance in population size (as confirmed in simulations without memory, p < 10-3), they are 

expected to increase extinction risk in the absence of environmental memory12,15. This 

effect is totally buffered by environmental memory: with higher mean and lower variance in 

growth rates, populations experiencing positively autocorrelated environments are less likely 

to fall below a critical threshold for extinction.

Discussion

Random environmental fluctuations largely contribute to natural baseline rates of 

extinction1–6, which are currently aggravated by trends such as global climate change. 

Furthermore anthropogenic activities, beyond their effects on mean environments, are 
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altering the patterns of these random fluctuations, including their temporal 

autocorrelation8,9. There is thus is a pressing need to empirically characterize and quantify 

drivers of extinction risk in an autocorrelated stochastic environment. Using a highly 

replicated experiment with many independent environmental time series, we found that 

environmental autocorrelation can have a strong impact on population dynamics and 

extinction risk. In other words, extinction risk depends not only on the mean and variance of 

environmental fluctuations, but also on the order in which environments are encountered, 

within and across generations. This implies that the color of environmental noise, as 

increasingly documented in the ecological literature10,13,15,16,24–26, is likely to be an 

important driver of population dynamics. Importantly, the impacts of environmental 

autocorrelation on population dynamics could be predicted accurately in our experiment 

using the simple and general concept of the environmental tolerance curve, which 

summarizes all influences of the environment with a few parameters. This validates the 

utility of this tool as a way to predict population dynamics in a changing environment, by 

connecting physiology to ecology28. However, we only reached accurate predictions when 

an influence of past environment was accounted for in these tolerance curves.

The large influence of environmental memory on population dynamics in our experiment 

implies that the phenotype of an individual cell is partly affected by the environment 

experienced by its recent ancestor(s), which can be described as trans-generational 

phenotypic plasticity, or environment-dependent parental effect, a form on non-genetic 

inheritance30. There is abundant evidence in microbes that prior exposure to stress can affect 

later stress responses46, and such acclimation experiments generally span over several 

cellular generations. In our experiment, genetic evolution could in principle also contribute, 

because some lines are highly polymorphic, but the time scale of ~3 generations between 

transfers is not consistent with large evolutionary change between transfers. In addition, 

clones isolated from mixed BC populations displayed similar tolerance curves as the whole 

population (Extended Data 5), confirming that (trans-generational) phenotypic plasticity is 

the major mechanism responsible for this short-term environmental memory.

Our experiment included elements of realism that are uncommon in the laboratory, such as 

continuously distributed fluctuations of an environmental variable, and a large number of 

independent realization of the same stochastic process. This represents a large step towards 

bridging the gap between theory and natural populations on quantitative rather than 

qualitative grounds, an important goal for population ecology. Note that in our batch culture 

setting, the environment changed every 3 or 4 days, i.e. every 2 to 5 generations (depending 

on salinity) for our model species D. salina, while salinity remained constant during the 

interval between transfers. This means that the autocorrelation we report is not a value per 

generation or per unit time as in theoretical models, but across transfers. This limitation is 

common to any experiment that uses organisms with continuous overlapping generations in 

batch culture, since changing the environment continuously over time in a stochastic way is 

essentially impossible. Such discretization does not hamper our conclusions about the 

influence of environmental correlation on population growth and extinction risk in our 

experiment, but it should be kept in mind when comparing quantitatively the effect of 

environmental autocorrelation in our experiment versus in wild populations of higher 
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organisms, where censuses and environmental measurements are made at regular intervals 

(typically a year2).

Microbes are inherently prone to transgenerational effects because they lack soma-germline 

differentiation, and therefore transmit their cytoplasm content and regulation factors to 

daughter cells upon reproduction. However, trans-generational effects mediated by non-

genetic inheritance are increasingly documented in multicellular eukaryotes47, and have 

been shown recently to affect demographic parameters in a fluctuating environment in an 

animal36. This suggests that our results are also relevant to natural populations of larger 

organisms with conservation concerns, and that plasticity and non-genetic inheritance should 

generally be considered when investigating extinction risk in a randomly changing 

environment.

Methods

Dunaliella strains

We used two closely related strains of the facultative sexual microalgae Dunaliella salina, 

CCAP 19/12 (A) and CCAP 19/15 (C), and one more distant strain CCAP 19/18 (B). The 

lines were not axenic nor clonal when received from Culture Collection of Algae and 

Protozoan (Glasgow).We exposed them to increasing salinities (up to 4.8M) during several 

weeks to eliminate putative non-Dunaliella species of eukaryotes and finally isolated them 

by cell sorting (BD FACS Aria IIu, up to 105 cells). We then initiated 1074 lines from six 

ancestral backgrounds, with either low or high genetic diversity. Single strain lines (A, B and 

C) were used for the low genetic diversity treatment, and high genetic diversity lines were 

initiated by a 50% mix of two strains (AB, BC and AC).

Experimental design

Each ancestral genetic background was exposed to three constant salinities (with 5 replicate 

lines per salinity), and 156 fluctuating salinity times series. The latter consisted of 39 

independent time series (with the first one replicated 3 times) for each of four 

autocorrelation treatments: ρ = -0.5 (blue noise), ρ = 0 (white noise), ρ = 0.5 and ρ = 0.9 

(red noise).

At each transfer, a 15% aliquot of each population was replicated in fresh medium with 

controlled salinity. The same dilution rate (d = 15%) was used in all treatments, and set so as 

to compensate for the intrinsic growth rate across variable environments for the slowest 

growing strain (strain B). However, growth rates were overestimated in our preliminary 

measurements, so that the dilution rate that we used caused the loss of most B lines before 

the end of the experiment.

Constant treatments were low ([NaCl] = 0.8M), medium (2.4M), and high (3.2M) salinities. 

The stochastic treatments involved continuously ranging, (near) normally distributed 

salinities, with same mean 2.4M and variance 1 among treatments, but temporal 

autocorrelation set by the treatment. We generated fluctuating salinity time series as follows:
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- Generate a first-order autoregressive (AR1) process of length 1000000, mean 

2.4, variance 1 and autocorrelation set by the treatment. An AR1 process is a 

stationary Gaussian process, in which the value at a given time step is a linear 

combination of the value at the previous time step plus an independent normally 

distributed noise.

- Truncate this theoretical process so as to keep only reachable salinity values. 

This involved removing salinities below 0 and above [NaCl]max = 4.8M, as well 

as salinities that made the transition from the previous time point impossible 

because of the constraints imposed by the 15% dilution upon transfer.

- Estimate the (reduced) variance of this truncated process

- Increase input variance (step += 0.05) and repeat all previous steps, until the 

reduced variance V = 1 ± 0.01

- Generate 39 times series of length 37 time steps for each autocorrelation 

treatment, using as input variance the value from the iterative search described 

above. The mean, variance, and temporal autocorrelation of these times series 

were checked to conform to their setpoint values. The distribution of salinities in 

all time series for the different autocorrelation treatments did not deviate from 

the expected Gaussian (Extended Data 4).

Transfers and growth

Experimental lines were cultured in 96 deep-well plates with artificial saline water + 2% 

Guillard’s F/2 marine water enrichment solution (Sigma; G0154-500ml). Lines were 

distributed in 18 plates, such that each combination of ancestral genotype x environmental 

treatment was equally represented in all plates. Population positions in each plate were then 

randomized across the 60 central wells (external wells were not used because they 

experience larger evaporation). A liquid handling robot (Biomek NX from Beckman) was 

used to serially transfer these lines twice per week (alternating three-day and four-day 

cycles) into fresh medium. The salinity in this new medium was set independently in each 

well by adjusting the volumes of a hyposaline ([NaCl]min = 0M) and a hypersaline 

([NaCl]max = 4.8M) solution, following

V ρ, i, T
Hyper = V tot

NaCl ρ, i, T − d NaCl ρ, i, T − 1,
NaCl max

V ρ, i, T
Hypo = V tot − V ρ, i, T

Hyper
3

where [NaCl]ρ,i,T and [NaCl]ρ,i,T - 1 are the setpoint salinities at transfers T and T - 1 

(respectively) for time series i of autocorrelation treatment ρ, Vtot = 800 µL is the total 

volume of culture, and d = 15% is the dilution rate as defined above.

Plates were covered with plastic lids, sealed with Parafilm and placed at a fixed position in a 

growth chamber, with temperature set at 24°C, and light at 200 μmol.m-2.s-1 for 12:12h LD 

cycles.
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Population density measures

After each transfer, cell density before dilution was measured using 3 complementary 

methods. We measured optical density (absorbance at 680nm) and fluorescence (excitation 

at 390-80nm, emission at 685-40 nm) in a 200 µL sample of the each population using a 

BMG ClarioStar spectrophotometer. Cells from the same sample were then counted by flow 

cytometry (Guava EasyCyte HT). Dunaliella cells were isolated from debris using forward 

scatter (FSC), side scatter (SSC), red (695/50 nm) and yellow (583/26 nm) fluorescence 

emissions (excitation 488 nm, See Extended Data 3a., b. and c. for details). Cytometer 

performance was checked using a standardized fluorescent bead reagent (EasyCheck Kit, 

Merck Millipore) before each measure. Because of time limitation, only half of the plates 

went into the flow cytometer after each transfer, while the remaining plates were read in the 

next transfer, such that each plate was passed through the flow cytometer once per week.

To calibrate among our different measures of population density, we first regressed the 

fluorescence and OD over the population density as estimated from cytometer counts (see 

Extended Data 3 d. and e.), excluding the data points where spectrometer measures were too 

low and exhibited high uncertainty (fluorescence < 400 and absorbance < 0.01). We 

obtained:

Duna OD = 5273448(OD − ODblank)
Duna OD = 11.543428(Fluo − Fluoblank) 4

where ODblank and Fluoblank are the fluorescence and absorbance in wells known to be 

empty (control wells or extinct populations) within each given plate.

Statistical analysis

We analyzed population dynamics using an ad hoc state-space model. As typical in state-

space models48, our model comprised two main components: (i) an underlying, unobserved 

process describing the true stochastic dynamics of the populations size; (ii) and an 

observation model, which describes how this process translates into measurements, with 

errors that are independent after conditioning by the underlying process. We wrote an 

explicit likelihood function in C++ and optimized it in R (version 3.5.2), using the TMB 

package49. R and C++ codes are available from the Dryad digital repository55.

Observation model—In a preliminary experiment, we determined the error distributions 

of cytometer counts, absorbance and fluorescence error. We made replicated (x3) measured 

of population sizes in serial dilutions of a Dunaliella culture, with concentration ranging 

from 30 to 106 cells.mL-1, and fitted generalized linear regression between measurements 

and the known relative population sizes, expressed as a ratio of the maximal population size. 

We compared AIC from normal, lognormal, poisson and negative binomial models. 

Absorbance and fluorescence error were respectively normally and log-normally distributed, 

while cytometer measures followed a negative binomial distribution, with mean the actual 

population size. We thus used as the observation model for cytometer counts C, fluorescence 

F and absorbance OD,
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C ∼ 𝒩 ℬ(N, θc)
log(F) ∼ 𝒩 (log(N , θF)

OD ∼ 𝒩 (N, θOD)
5

where ℬ denotes a negative binomial, N is the true population density (governed by the 

unobserved process), and the θ are parameters that control the error variances (or 

overdispersion for cytometer counts) of these measurements.

Process model—We assumed that population density followed continuous logistic 

growth:

dN t g, ρ, i
dt = r t g, ρ, i 1 −

N t g, ρ, i
Kg

6

where N(t)g,ρ,i is the population density for the population from strain g, environmental 

treatment ρ, and time serie i at time t, Kg the carrying capacity of genotype g and r(t)g,i,ρ its 

intrinsic growth rate in the environment experienced at time t. In the constant treatment 

analysis, Kg was also allowed to vary between salinity treatments (Kg,S).

Given that r(t)g,ρ,i is constant over the time interval between two successive transfer, 

population size at transfer T + 1 can be implemented from population size at transfer T by 

integrating equation 6 (ΔtT,T+1 = 3 or 4 days), following a 15% dilution rate (d):

N T + 1 g, ρ, i =
d N T g, ρ, i e

ΔtT , T + 1 r T g, ρ, i × Kg

Kg − d N T g, ρ, i e
ΔtT , T + 1r T g, ρ, i − 1

7

A convenient property of state-space models is that observation errors are independent 

conditional on the process50 (and independent of the process). Therefore, the overall log-

likelihood in our model was simply the sum of the log likelihood of the process (equation 7, 

8, 9, 10) and that of all observations (equation 5), producing an explicit formula amenable to 

numerical optimization.

Density dependence analysis using constant treatments: As our model was unable to 

estimate density dependence directly from the time series of fluctuating salinities, we first 

analyzed the population dynamics from constant time series in an independent model for this 

purpose. We considered that both the intrinsic growth rate rg,S and the carrying capacity Kg,S 

were constant across replicates and transfers for one strain g in one salinity S. The 

probability distribution of population size at transfer T + 1, for strain g and salinity treatment 

S is then

N T + 1 g, S, i ∼ logNormal LogisticGrowth N T g, S, i , β 8

where LogisticGrowth(d Ng,S,i,T) is the continuous logistic function given by equation 8 and 

β is the process error. For each genotype, likelihood ratio test between a model where Kg,S 
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was constant across salinity and a model where Kg,S varies with salinity was performed. We 

found that Kg,S differed significantly but slightly between salinity treatments (Extended Data 

2 d), so we used a constant Kg for each genotype in further analysis.

Fluctuating growth analysis: Environmental fluctuations caused variation in the intrinsic 

rate of increase r in all our stochastic lines. The distribution of r results from the interaction 

between moments of the stochastic environment (mean, variance and autocorrelation) and 

the growth response of each genotype to the environment. The distribution of r may be 

characterized by its mean, variance, but also skewness12 and potentially by the 

autocorrelation of r across transfers. We estimated the parameters of this distribution for 

each autocorrelation treatment x genotype, within the state space model described by 

equations 5 and 8. We fitted either an autocorrelated normal (equation 9) or a reverse gamma 

distribution (equation 10) for r(T)g,ρ,i,

r T g, ρ, i ∼ 𝒩 1 − ρr rg, ρ + ρ rg, ρ
r T − 1 g, ρ, i, 1 − ρrg, ρ

2 σrg, ρ
2

9

or

rmaxg, ρ
− r T g, ρ, i ∼ Γ αg, ρ, βg, ρ 10

where rmax, αg,ρ and βg,ρ are the maximal growth rate, the shape and the scale parameter for 

the gamma distribution for strain g in the ρ environment. Mean rg, ρ, standard deviation σg,ρ 

and skewness skew (rg,ρ) were simultaneously estimated (estimation and standard error) 

from rmaxg,ρ, αg,ρ and βg,ρ using the ADREPORT procedure of the TMB package.

Population densities were estimated as random variables with a residual component of 

variation, and were hence only very weakly affected by the assumed shape of the growth rate 

distribution (r2 > 0.99 between the normal and the reverse gamma estimates, see Extended 

Data 6). This allowed us to visualize the goodness of fit for the reverse gamma and the 

autocorrelated normal. Using the population size estimates, we computed the realized 

intrinsic growth rate, corrected for density dependence:

r(T)g, ρ, i =
Ln

Kg/d N(T)g, ρ, i + 1

Kg/N(T + 1)g, ρ, i + 1

Δ tT , T + 1

11

and plotted them against the predicted distribution fitted by the normal and reverse gamma 

model (Extended Data 1).

To assess the extent to which population fluctuations were driven by responses to fluctuating 

salinity, we then used salinity as an environmental covariate. We explicitly expressed the 

growth rate r(T)g,ρ,i as a function of both the current (Sg,ρ,i,T) and the previous salinity 

Sg,ρ,i,T−1. We modeled a bivariate tolerance curve using a 2nd order polynomial, with 

parameters depending on the strain g,
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r T g, ρ, i
S = ag + bg × Sρ, i, T − 1 + cg × Sρ, i, T + dg × Sρ, i, T − 1

2 + eg × Sρ, i, T
2 + f g

× Sρ, i, T − 1 × Sρ, i, T
12

leading to equation 2 in the main text.

Population size at T + 1 then followed a logistic growth (equation 7) with growth rate 

determined by current and previous salinity following equation 10, and we assumed a 

constant Gaussian distribution of the residuals generated by the process error, with standard 

deviation β:

log N T + 1 g, S, i ∼ 𝒩 log LogisticGrowth(N T g, S, i, T, r T g, ρ, i
S ) , β 13

Similar analysis was performed using only the salinity of growth (Sg,ρ,i,T) in order to fit a 

tolerance curve without environmental memory (equation 1 in the main text):

r T g, ρ, i
S = auniv, g + buniv, g × Sρ, i, T + cuniv, g × Sρ, i, T

2
14

Moments of population density and intrinsic growth rates—We used the 

population density outputs of the gamma model (equation 10) to estimate the mean, 

variance, skewness and autocorrelation of log population density of non-extinct lines during 

the stationary phase (day > 40), for each autocorrelation treatment × genotype combination 

(39 independent lines over up to 26 transfers – replicates 2 and 3 of series 1 were excluded 

from this analysis). Confidence intervals for these estimates were obtained by bootstrap 

(1000 simulations), where population densities were sampled for each simulation from a 

normal distribution with mean and standard deviation given by their corresponding estimate 

and standard error. We then performed mixed linear regression between these computed 

moments and the environmental autocorrelation, with ancestral genotype as a random factor, 

using the R package lme451. To include the uncertainty in the estimation of population size 

moments, we performed 1000 generalized linear regression with population moment 

sampled from a normal distribution with parameters their estimate and error, and corrected 

for multiple imputation using the R package MICE52.

Similar regressions were performed on 1000 simulations of the growth rate moments, 

sampled from a normal distribution with parameters the estimate and standard error obtained 

from the gamma model. Mean, variance, skewness estimates, and their associated errors, 

were directly fitted in the gamma model. Autocorrelation of the intrinsic rate of increase was 

computed using the realized population sizes estimated in the gamma model, with similar 

bootstrap and sampling as used for the population log density analysis.

Fitted moments of the intrinsic rate of increase were compared to analytical predictions 

based on the tolerance curves, with or without memory. Subsequent salinities in our time 

series closely follow a binormal distribution (except for a weak truncation caused by our 

experimental design, see Extended Data 4), with mean µ = 2.4M and variance σ2 = 1 at both 

steps, and correlation given by the environmental autocorrelation ρ. Combining this with the 
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tolerance curve with memory leads to explicit formulas in the Mathematica 11 notebook 

available from the Dryad repository55. In particular, we found that the mean growth rate r
increases linearly with the environmental autocorrelation ρ(E), while the variance Var(r) is a 

quadratic function of ρ(E). Analytic formula for the skewness and the variance are more 

complex, but show notably that environmental memory allows for negative autocorrelation 

of the growth rate ρ(r), even when the environment is positively autocorrelated, a pattern that 

we found in our data but that could not be achieved without a memory effect.

Without memory (equation 14), the moments of the distribution of growth rates take a 

simpler form, summarized in Supplementary Table 2 (details in Mathematica 11 notebook in 

Dryad digital repository55). In the absence of environmental memory, the mean, variance 

and skewness of the intrinsic rate of increase do not change with environmental 

autocorrelation ρ. Skewness is always negative for humped-shaped tolerance curves (cuniv < 

0). The effect of the environmental autocorrelation ρ(E) on the autocorrelation of the 

intrinsic rate of increase ρ(r) depends on the distance between the salinity optimum and the 

mean environment. When the phenotypic optimum corresponds to the mean environment, 

ρ(r) = ρ2(E), while ρ(r) tends rapidly towards ρ(E) as the mismatch between environmental 

mean and salinity optimum increases.

Survival analysis

We determined the extinction time for each population in the stochastic environment. 

Because OD, fluorescence and cytometry measures were not precise enough to discriminate 

between population sizes below 1000 cells.mL-1, we considered that a population was 

extinct from the time it fell below an estimated 1000 cells.mL-1 (corresponding to a small 

number of cytometer counts, and a negligible density compared with the carrying capacity 

close to 106) and remained under this threshold for at least 5 transfers. After this delay, 

observed growth events that occurred only in 8 populations were due to contamination.

The survival responses in each treatment were then assessed by plotting the Kaplan-Meier 

survival curves (non-parametric model for the ratio of non-extinct populations through time), 

and analyzing differences in survival by log rank tests (ggsurvplot R package 53). 

Independent analyses were performed for each genotype, and average extinction rates and 

autocorrelation effects were found similar in all genotypes except B. To illustrate these 

effects, we plotted the Kaplan-Meier survival curves and median survival time (time by 

which 50% of the population were extinct) for the joined genotypes in each autocorrelation 

treatment (Figure 5).

Simulations

Tolerance curves fitted with (equation 12) and without (equation 14) memory were used to 

simulate population dynamics under our fluctuating salinity treatments. Process noise and 

observation errors were not simulated. Population size variance was analyzed using the same 

bootstrap method as used for the real dynamics, except that here the true simulated 

population sizes were known and not sampled from their estimation distribution. 

Simulations did not include demographic stochasticity, so simulated lines were considered 

extinct after population densities were found below 1000 cells.mL-1.
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Intracellular glycerol dosage

A background culture of genotype C was used to measure variation in intracellular glycerol 

concentration in response to salinity changes. The ancestral population was cultivated in 

2.4M for 10 days until it reached the late exponential phase. It was then split and acclimated 

for 7 days in 50mL flasks at low (0.5M) and high (3.5M NaCl) salinities. Each of these 

flasks was then split again and transferred to 0.5M, 2M and 3.5M NaCl in 50mL flasks, and 

sampled after 16, 45, 72 minutes, 2h15, 4h15 and 1 day for glycerol dosage.

Intracellular glycerol concentration was estimated from the difference between total and 

extra-cellular (after cell filtration) glycerol concentrations. 800µL Free Glycerol Reagent 

(Sigma Aldrich) was mixed to 200µL culture (with or without cells), and we measured 

optical density at 540nm after 5 minutes incubation at 37°C. Glycerol concentration was 

then interpolated from a (linear) standard curve. Dunaliella densities were also estimated by 

flow cytometry, and we made two independent replicates of all measures. Intracellular 

glycerol concentration per cell was computed as

glycerol intra =
glycerol total − glycerol extra

Dunaliella ,

where [] denotes a density/concentration. We computed the first-order standard errors of the 

intra-cellular glycerol concentration using the delta method, accounting for the 

(independent) error of the cytometer, the total and the extracellular glycerol measures 

(Figure 4). We then performed Wald test to assess whether different glycerol levels were 

found under different treatments (Supplementary Table 1).

Extended Data
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Extended Data Fig. 1. Population dynamics summary for each of the six ancestral genotypes.
(same color as Figure 2). a. Distribution of r: lines represent the estimated distribution fitted 

in the gamma model (solid lines) and histograms are based on the 3119 realized growth rates 

estimated from the population dynamics of each line, including residual deviation from the 

underlying model (gamma). b. Tolerance curves: lighter grey indicate higher growth rate, the 

thick bold line corresponds to the growth rate that allows overcoming the biweekly dilution 

(r = 0.542), and the thin bold line to r = 0.c. Estimated survival curves.
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Extended Data Fig. 2. Population dynamics in constant salinities.
a. Time series of population sizes for all lines of ancestral genotype A in the 3 constant 

salinities (light blue: 0.8M, blue: 2.4M, dark blue: 3.2M – 5 replicates each) are plotted 

(shaded lines), together with the mean population size (solid line) ± standard deviation 

(dashed lines). Population sizes> 1000 are plotted on the log scale and mean and standard 

deviation were estimated on the log scale, excluding extinct lines. Note that at 3.2M, the 

population size slowly decreases over time because its exponential growth slightly 

undercompensates the biweekly dilution. b. Distribution of population size in genotype A 

during the stationary phase (except at 3.2M where no stationary phase is reached), for all 

constant environmental treatments. Note the reduced variances and skewnesses as compared 

with the stochastic environments (Figure 2). c. and d.: Growth rate (r) and carrying capacity 

(K) of all ancestral genetic backgrounds, estimated in the 3 constant salinities, with their 

standard errors. Salinity has a significant effect on K (p = 5.2.10-15, likelihood ratio test), but 

this was neglected in the population dynamic analysis in fluctuating environment because 

the biweekly 15% dilution implied that exponential growth was prevalent in our experiment 

(Extended Data 1).
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Extended Data Fig. 3. Raw measurements.
a, b and c. Cytometer (Guava® EasyCyte) plots. Dunaliella shape and size do not allow 

distinction from debris, but a gate can designed based on chlorophyll (red and yellow) 

autofluorescence. Dead cells were detectable after transfers from low to high salinity. They 

show an immediate decrease in red fluorescence, and are not taken into account when 

measuring population size. d and e. Regression between spectrometer measures (685nm 

fluorescence – 10722 points and 680nm optical density – 7332 points, see Supplementary 

Table 1 for details). Fluorescent values below 400 and optical density values below 0.01 

(vertical lines) were discarded from the analysis and colors represent the day of each 

measure (from 0 (black) to 133 (light blue).
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Extended Data Fig. 4. Salinity distribution in the stochastic treatments.
a. Salinity time series of 10 of the 39 independent lines for each of the four autocorrelation 

treatments (same colors as Figure 2). b. Distribution of salinities in the 39 independent 

salinity series experienced by the six ancestral genetic background in the four 

autocorrelation treatments. Note that truncation of salinities that could not be reached with 

our dilution level did not much affect the final distribution of salinities in our treatments, 

which was similar to the Gaussian expectation in the absence of truncation (line).
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Extended Data Fig. 5. Tolerances curves of 3 clones from BC genotype under autocorrelation 0.
We measured exponential growth (starting 3 independent replicates from 5000 cells and 

measuring population size after 3 days) in 75 previous x current cross salinities ranging from 

0.1 to 4.7M. Raw growth rate ranging from -1.5 (black) to 1 (light grey) were measured 

(dots) and bivariate tolerance curves (color and curves) were fitted using equation 12 (see 

Method section). Clones displayed similar plasticity as found in the total population 

(Extended Data 1, genotype BC).
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Extended Data Fig. 6. Comparison between population sizes fitted in the state-space model 
including an autocorrelated normal (x) or a gamma (y) distribution of the intrinsic growth rate r.
The same colors and symbols as Figure 2 were used to represent autocorrelation and 

genotypes of the 22497 data points.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Salinity, growth rates and population dynamics for two time series with different 
environmental autocorrelations.
a. Times series number 19 for ancestral genotype AC and autocorrelation 0. b. Times series 

number 22 for ancestral genotype AC and autocorrelation 0.9. For the population growth 

rate, colors indicate whether growth rate compensates (blue, r > 0.542) or not (red) the bi-

weekly dilution. Population size estimates and standard errors from the reverse gamma fit 

(solid line and ribbon) are represented together with the three raw measurements at each 

transfer (dots): cytometer counts (black), fluorescence (dark gray) and optical density (light 

gray). c. Estimated logistic population dynamics during transfers 14 to 19 (days 49 to 76), 

accounting for the biweekly dilution (arrows down). Red points and error bars correspond to 
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the estimates and standard error for population size fitted in the model. Note that even when 

the population reaches high densities (here > 2.105, while carrying capacity is estimated 

around 106), the biweekly 15% dilution leads to nearly exponential growth after each 

transfer. The colored straight lines materialize the exponential phase, over which the 

population grows at rate r, the intrinsic rate of increase, colored in the same way as in the 

times series of r above.
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Figure 2. Population dynamics in a stochastic environment.
Colors correspond to the temporal autocorrelation of salinity time series: -0.5: blue, 0: green, 

0.5: orange, 0.9: red. a. Time series of population sizes under the 156 stochastic salinity 

series are plotted for genotype A (shaded lines), together with the exponential of the mean 

log population size (solid line) ± standard deviation (dashed lines). Population densities 

larger than 1000 cells.mL-1 are plotted on the log scale, on which mean and standard 

deviation were also estimated, excluding extinct lines. Population sizes under 1000 are 

plotted on the linear scale, thus allowing tracking extinctions. b. Histograms of log-

population size during the stationary phase for genotype A (day > 40). Panels c-f: Moments 

of the distribution of log population size during the stationary phase (computed on 22497 

points). Different symbols represent different genotypes: A (■), C (+), AB (▲), AC (×) and 

BC (●), and bootstrapped 95% confidence interval are represented. The solid line represents 

the generalized linear regression on environmental autocorrelation.
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Figure 3. Population growth rate in response to environmental autocorrelation.
a. Tolerance curve with environmental memory relating growth rate r (intrinsic rate of 

increase) to the current (ST) and previous salinities (ST - 1), for genotype C (gray surface, 

black to light gray: r = -2 to r = 1), compared with the 3119 growth rates fitted under the 

reverse gamma model, under each autocorrelation treatment (points – same colors as Figure 

2). The thick black line corresponds to the growth rate that allows overcoming the biweekly 

dilution (r = 0.542) and the thin black line shows r = 0. Ellipsoids at the bottom materialize 

the joint distributions of pre- and post-transfer salinities, under our four autocorrelation 

treatments. Panels b-e: Moments of the intrinsic rate of increase of lines A (■), C (+), AB 

(▲), AC (×) and BC (●) in the four autocorrelation treatments. Mean (b.), variance (c.), 

skewness (d.) and autocorrelation (e.) of r are plotted against environmental autocorrelation 

for all genotypes, with their standard errors. Predictions from the tolerance curve with (solid 

line) or without (dotted line) environmental memory are also plotted for genotype C.
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Figure 4. Intracellular glycerol concentration in genotype C after transfer to a new salinity.
The transfers were at time = 0, from 0.5M (dashed lines) or 3.5M (solid lines), to 0.5M 

(blue), 2M (purple) and 3.5M (red) NaCl. Transfer from 0.5 to 3.5M caused high mortality, 

and thus could not be analyzed. Each measurement was replicated twice, and first-order 

standard errors (bars) were computed using the delta method, accounting for the independent 

errors of the extra-cellular, total glycerol and population size (cytometer) estimations. The 

first time point corresponds to 16 min post-transfer.
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Figure 5. Population extinctions across environmental autocorrelations.
a. Survival curves (Kaplan-Meier) for the pooled genotypes A, AB, AC, BC and C, under 

the four autocorrelation treatments (same colors as in Figure 2). For each autocorrelation 

treatment, the solid lines show the estimated proportion of non-extinct populations, among 

the initial 195 populations (39 independent time series x 5 genotypes), and the dashed lines 

indicate 95% confidence bands. Stars and numbers indicate median survival times (times at 

which 50% of the populations has gone extinct) in the corresponding survival curve. b-c: 

Survival curves estimated from simulations parametrized with (b) or without (c) 

environmental memory, using the same salinity time series as in the experiment.

Rescan et al. Page 30

Nat Ecol Evol. Author manuscript; available in PMC 2020 July 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Results
	Environmental autocorrelation strongly affects population size
	Environmental memory governs population dynamics
	A candidate mechanism: plasticity of glycerol content
	Extinction rates increase with decreasing autocorrelation

	Discussion
	Methods
	Dunaliella strains
	Experimental design
	Transfers and growth
	Population density measures
	Statistical analysis
	Observation model
	Process model
	Density dependence analysis using constant treatments
	Fluctuating growth analysis

	Moments of population density and intrinsic growth rates

	Survival analysis
	Simulations
	Intracellular glycerol dosage

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

