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Abstract

Understanding the relationships between conformations of proteins and their stabilities is one key to address the protein
folding paradigm. The free energy change (DG) of unfolding reactions of proteins is measured by traditional denaturation
methods and native hydrogen-deuterium (H/D) exchange methods. However, the free energy of unfolding (DGU) and the
free energy of exchange (DGHX) of proteins are not in good agreement, though the experimental conditions of both
methods are well matching to each other. The anomaly is due to any one or combinations of the following reasons: (i)
effects of cis-trans proline isomerisation under equilibrium unfolding reactions of proteins (ii) inappropriateness in
accounting the baselines of melting curves (iii) presence of cryptic intermediates, which may elude the melting curve
analysis and (iv) existence of higher energy metastable states in the H/D exchange reactions of proteins. Herein, we have
developed a novel computational tool, OneG, which accounts the discrepancy between DGU and DGHX of proteins by
systematically accounting all the four factors mentioned above. The program is fully automated and requires four inputs:
three-dimensional structures of proteins, DGU, DGU

* and residue-specific DGHX determined under EX2-exchange conditions
in the absence of denaturants. The robustness of the program has been validated using experimental data available for
proteins such as cytochrome c and apocytochrome b562 and the data analyses revealed that cryptic intermediates of the
proteins detected by the experimental methods and the cryptic intermediates predicted by the OneG for those proteins
were in good agreement. Furthermore, using OneG, we have shown possible existence of cryptic intermediates and
metastable states in the unfolding pathways of cardiotoxin III and cobrotoxin, respectively, which are homologous proteins.
The unique application of the program to map the unfolding pathways of proteins under native conditions have been
brought into fore and the program is publicly available at http://sblab.sastra.edu/oneg.html
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Introduction

Each protein adopts a specific well-defined three-dimensional

(3D) structure, which is important for its biological activities. The

relationships between the conformations of such proteins and their

stabilities have intrigued researchers for many decades [1]. The

conformational stabilities indicate the free energy differences

between the folded (N) and the unfolded conformations (U) of

proteins. In general, the stabilization free energies of protein

molecules have been determined from the studies of protein

unfolding caused by denaturants and temperature [2]. Under a

reversible and two-state unfolding process, the population of ‘N’

and ‘U’ of a protein could be precisely estimated by using optical

techniques such as fluorescence spectrometry and circular

dichroism. The free energy of unfolding (DGU) of proteins is

calculated by fitting their unfolded population (U) plotted with

respect to denaturant concentration or temperature, to an

appropriate two-state model equation [3]. The classical melting

analyses provide clues on understanding the mechanism of

unfolding (two-state/multi-state processes) and the 3D structural

architectures (domains organization) of proteins [4]. Hence,

estimation of an accurate DGU (free energy of unfolding) for

proteins at ambient conditions is indispensable to unambiguously

address the thermodynamic and kinetic events of the proteins.

Residue-specific free energy changes of proteins have been

determined under native conditions by using hydrogen-deuterium

(H/D) exchange method in conjunction with NMR technique [5].

In a typical H/D exchange experiment, when a protein is

dissolved in deuterium oxide (D2O), backbone amide protons

(NHs) of the protein begin to exchange with deuterium. The H/D

exchanges of the NHs can be interpreted with the two-state model

proposed by Hvidt [6]. In the model, Closed (NH) and Open (NH)

represent folded and unfolded conformations of proteins, respec-

tively.

Closed(NH)/?
kcl

kop
Open(NH)�?krc

Exchanged ð1Þ
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The rate constants kop and kcl are for the unfolding and the

refolding reactions, respectively. Exchange takes place only from

the unfolded state with the rate constant of krc, which can be

predicted using the method reported by Bai et al. [7]. Under EX2

exchange conditions, where kcl is many-folds greater than krc, kex

(exchange rate constants of amide protons) is defined as:

kex~(kop � krc)
�

(kcl)~KHX � krc ð2Þ

where KHX is the residue-specific equilibrium constant for NHs in

proteins. The residue-specific free energy is then determined using

the following relationship.

DGHX~{RTln(KHX) ð3Þ

where R is the gas constant and T is the absolute temperature.

The free energy of exchange of protein is averaged out to four

largest residue-specific DGHX of the protein [8,9].

When the DGHX (estimated from H/D exchange method) and

the DGU (determined from melting curves) are true representa-

tions of global unfolding events of the proteins, both the

parameters of the proteins must be in good agreement under

similar experimental conditions. Contrary to the expectation,

proteins show strong discrepancies between their DGHX and DGU

values. If the discrepancy is smaller, it can be well accounted to the

effect of cis-trans proline isomerisation and/or to the effect of

baselines of melting curves [8,9,10], whereas larger differences

between DGHX and DGU are attributed to the possible existence of

cryptic intermediates accumulating in the equilibrium unfolding

reactions of proteins under native conditions [11,12]. The cryptic

intermediates elude the melting curve analyses of proteins as they

are short-lived and unstable and hence, the intermediates cause

underestimation of the DGU. However, the cryptic intermediates

can be qualitatively detected by denaturant-dependent H/D

exchange method in conjunction with NMR technique [11,12]. In

this method, exchange rates (kex) of NHs of proteins are measured

at low concentrations of denaturant, which only affect the

equilibrium between folded and unfolded conformations of

proteins. Notwithstanding the advantages of detecting cryptic

intermediates and residues constituting each intermediate from

such studies, the methods are laborious, expensive, time

consuming and also requires sound experimental knowledge.

Proteins that are not accumulating cryptic intermediates in their

unfolding pathways may also depict discrepancies between the

DGHX and the DGU and the discrepancy may probably due to the

existence of metastable states causing overestimation of the DGHX.

Detecting exact metastable states of proteins is a challenging

experimental task of protein folding [13]. In this context,

computational methods will be an excellent alternative to address

the possible existence of cryptic intermediates/metastable states in

the unfolding events of proteins under native conditions. To date,

there were no unique programs to address the above mentioned

discrepancies in the stabilities of proteins, to our best knowledge.

However, it should be mentioned that there are several programs

to predict exchange rates of amide protons of proteins and also to

predict the folding/unfolding rates of proteins from their amino

acid sequences. For instance, programs such as SPHERE [14] and

CamP [15] are predicting the krc and the protection factors of NHs

in proteins from their amino acid sequences, respectively.

Dovidchenko et al. [16] have recently described a method on

prediction of amino acid residues protected from H/D exchange

in a protein chain. Wolynes et al. used a statistical approach to

figure-out the energetic of protein conformations and relative

foldability for contagious segments present in proteins [17,18].

RAFT (rapid autonomous fragment test) program predicts

autonomous folding unit based on the analysis of inter-residue

contacts of structural segments present in the native structure of

proteins [19]. COREX/BEST, which is an interesting program

developed by VJ Hilser [20], defines native state ensembles and

also maps rigidities and flexibilities of various regions of proteins.

In the present study, we have herein developed a computational

program, OneG, which predicts possible existence of cryptic

intermediates/metastable states of proteins from their 3D

structures, DGU, DGU
* and residue-specific DGHX determined

under native conditions. The OneG employs ‘contact order

matrix’ strategies for all amide protons (NHs) that are hydrogen

bonded in regular secondary structural elements of proteins, to

achieve the task. The robustness of the program has been

validated by predicting cryptic intermediates of proteins such as

cytochrome c and apocytochrome b562 for which experimentally

characterized cryptic intermediates have been well documented in

the literature. It is important to point-out that the program does

not imply/support for the absence of cryptic intermediates/

metastable states in the native unfolding of proteins for which the

DGU and DGHX are in good agreement (this aspect is beyond the

scope of the article). Similarly, there is no straightforward

correlation between the accumulation of cryptic intermediates of

proteins under native conditions and the free energy discrepancies

(DGU vs. DGHX) of the proteins. In this background, the

applications of the program have also been dealt in detail on

understanding the unfolding events of two structurally similar

proteins (cardiotoxin III (2CRT) and cobrotoxin (1COD)), under

native equilibrium conditions.

Results and Discussion

Estimations of krc and DGHX for amide protons (NHs) in
proteins

The intrinsic exchange rate constants, krc, for NHs of a protein

can be estimated under defined experimental conditions (pH,

temperature and ionic strength) on the basis of model compound

studies [7,21] and using the equation-4:

krc~ka �Ra � 10-pDzkb �Rb � 10(pD-pKD)zkw �Rw ð4Þ

where ka, kb and kw are rate constants of acid, base and water

catalyzed exchange reactions, respectively; Ra, Rb and Rw are the

effect of residues that are on the left and the right sides of amide

protons under considerations at acidic, basic and neutral

conditions, respectively; pKD is the molar ionization constant of

D2O; pD is the pH-meter reading corrected to deuterium effect.

The effect of temperature on the intrinsic exchange rates of the

NHs is calculated using the following equation.

k(T)~k(293)exp({E½1=T{1=293�=R) ð5Þ

where k(T) and k(293) are rate constants at desired temperature

and 293 K, respectively; E is the activation energy and its value for

acidic, basic and neutral exchange reactions are 14 kcal/mol/K,

17 kcal/mol/K and 19 kcal/mol/K, respectively; T is the

absolute temperature in Kelvin and R is the gas constant. Solving

the equations-4 & -5 yields the equation-6 (mathematical

derivations not shown).

krc~10(X-pD)z10(YzpD-pKD)z10(Z) ð6Þ
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where,

X~log kazlog Raz(Ea=4:57) � (1=293{1=T) ð7Þ

Y~log kbzlog Rbz(Eb=4:57) � (1=293{1=T) ð8Þ

Z~log kwzlog Rwz(Ew=4:57) � (1=293{1=T) ð9Þ

The OneG calculates the values of krc for NHs in protein using

its PDB file and the equation-6, at defined pH, temperature and

ionic strength. Figure 1 outlines the four stages for successfully

completing a test run of OneG and the essential steps of stage-I for

calculating krc of NHs are depicted in the Figure S1. Using atomic

coordinates of proteins, the program determines disulfide bridges,

cysteine residues and geometrical confirmations of Xaa-Pro

peptide bonds in proteins and accounts them on calculating the

krc for NHs in the proteins. Any two cysteins in a protein are

considered as cystine, when the distance between the two sulphur

atoms of the cysteine residues is within 2.3 Å [22] and this

particular function of the program has been validated by

predicting the cysteine and cystine residues in cardiotoxin III

(PDB ID: 2CRT) and cytochrome C (PDB ID: 1HRC, Table 1).

The reliability of the program on predicting cis-trans proline

conformations in proteins is discussed in the next heading. The krc

values of NHs in ubiquitin (PDB ID: 1UBQ) and cardiotoxin III

have been calculated using the OneG and the data have been

compared with the krc values of NHs in the proteins as determined

by manual calculation (Figure 2). The data in Figure 2A and 2B

were fitted to a simple linear equation and the fitted parameters

such as slope and positive correlation coefficient were found to be

0.999 and 1.0, respectively, for both proteins. These observations

unambiguously demonstrate the reliability of the OneG on

calculating the krc of NHs in proteins. The program, then,

calculates residue-specific free energies, protection factors and

DGHX of proteins with the only requirement of having NMR-

derived kex of NHs in the proteins (estimated under EX2

conditions in the absence of denaturants). Instead of providing

residue-specific kex of NHs, residue-specific DGHX (second input)

can also be directly given to the program. Upon given the third

input of DGU (determined from the melting curve analyses of

proteins), the program carries forward all the parameters derived

in this stage to its second stage for accounting the consistency

between the DGHX, exchange free energy of the proteins and

DGU, unfolding free energy of the proteins.

cis-trans isomerisation effect of proline residues on the
DGHX of proteins

All standard amino acids, except proline, are connected to one

another through amide linkages in proteins, whereas proline is

linked to the preceding amino acid through an imide bond. The

amide bonds are exclusively in trans conformations in folded

proteins [24]. Contrary to this, the imide bond favours cis or trans

Figure 1. Flowchart of OneG used to predict cryptic intermediates of proteins. Flowchart outlines key-steps used to account the
discrepancy between the DGU and the DGHX and to predict the possible existence of cryptic intermediates/metastable states of proteins.
doi:10.1371/journal.pone.0032465.g001
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conformations much more equally as the free energy differences

between these two conformers are insignificant in proteins [25].

Similarly, amide bonds prefer negligible percentage of (about

0.03%) cis-conformations in the unfolded states, whereas imide

bond (Xaa-Pro) prefers remarkable percentage of cis-conforma-

tions in the unfolded states and the percentage varies (6–38%)

depending on the chemical properties of the residue (Xaa)

preceding proline [24]. When a protein having cis-prolines is

unfolded by denaturants, the unfolding process of the protein is

probably a three-state reaction under equilibrium conditions as

shown below:

Ncis<Ucis<Utrans ð10Þ

where Ncis is the folded protein with proline residues in cis-

conformation; Ucis and Utrans are the unfolded protein with proline

residues in cis and trans conformations, respectively. The free

energy change (DGU) of the protein estimated by denaturation

method accounts the equilibrium constants of both steps in the

reaction. But, H/D exchange method determines equilibrium

constant for the first step only, since cis-trans proline isomerisation

is a slow process under native conditions. Due to which, the DGU

determined by optical methods is usually less than the DGHX

determined by H/D exchange method. The DGHX corrected to

the effect of the cis-trans proline isomerisation is denoted as DGHX
*,

which can be readily calculated using methods reported by

Huyghues-Despointes et al. [9]. The DGU and the DGHX
* of a

protein will be in good agreement when the discrepancy between

the DGU and DGHX is merely due to cis-trans isomerisation of

proline residues present in the protein.

In order to estimate the effect of cis-trans isomerisation of proline

residues in proteins, the OneG program uses a bee-line for the

calculations as shown in the Figure 1 and detailed steps of the

stage-II of the program are shown in the Figure S2. The program

first determines number of proline residues and their conforma-

tions in a protein using PDB file of the protein itself. The reliability

of the program on predicting cis-trans proline conformations in

proteins such as ubiquitin, RNase A (PDB ID: 5RSA) and

cardiotoxin III is depicted in Table 2. A quick inspection to the

table suggests that the OneG program predicts the exact

conformations of proline residues in the proteins. The OneG

Figure 2. Calculation of krc of NHs in proteins from their 3D structures. Correlation between krc values estimated by manual calculation and
the OneG program for NHs in proteins (A) Ubiquitin (1UBQ) and (B) Cardiotoxin III (2CRT) at pH 7.0, 298 K.
doi:10.1371/journal.pone.0032465.g002

Table 1. Comparison of the actual and the predicted (by OneG program) cysteine and cystine residues in Cardiotoxin III and
Cytochrome C.

Sl.
No

Protein
(PDB ID)

No. of
Cys#

Position
of Cys

Distance measured
by manual method*

Actual Conformation
of Cys residue

Distance calculated
by OneG program

Predicted
conformation
of Cys residue

S-S Pair Distance S-S Pair Distance

1. Cardiotoxin III
(2CRT)

8 3 C3–C21 2.02 Cystine C3–C21 2.018 Cystine

21

14 C14–C38 2.01 Cystine C14–C38 2.013 Cystine

38

42 C42–C53 2.02 Cystine C42–C53 2.023 Cystine

53

54 C54–C59 2.02 Cystine C54–C59 2.022 Cystine

59

2. Cytochrome C
(1HRC)

2 14 none 8.71 Cysteine none 8.712 Cysteine

17

#Cys denotes Cysteine residue.
*The manual distance measurements for determining the cysteine and cystine residues in proteins were carried-out using PyMol molecular visualization tool [23].
doi:10.1371/journal.pone.0032465.t001
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calculates DGHX
* of proteins based on the KPro values derived

from the model compound studies to all twenty types of Xaa-Pro

and the values are stored as default parameters in the program.

Table 3 lists DGHX and DGU reported in the literature for 16

different proteins along with their DGHX
* calculated by the OneG

program. The discrepancies between the DGHX and DGU of the

proteins that are listed under ‘Group I’ could be well accounted by

proline isomerisation effect alone, since the DGHX
* and DGU of

those proteins are in good agreement within the tolerance level of

0.4 kcal/mol [8,9]. Contrary to these observations, the discrep-

ancies between DGHX and DGU of the proteins listed under

‘Group II’ could not be addressed by proline isomerisation effect

alone. This finding implies that the discrepancies may probably

stem from different origins that need to be identified and

accounted not only for determining the exact DG (change in free

energy) of the proteins and also to understand the correlations

between the kinetic and thermodynamic unfolding events of the

proteins. The discrepancy may also be originated due to the

default consideration of Kpro values from the model compounds in

the program. It is possible that the KPro estimated based on the

model compounds in a set of particular experimental conditions

may not be a true representation to Xaa-Pro of a protein in a

totally different solution conditions. For instance, Tyr(92)-Pro(93)

of RNase A was found to have 33% cis in heat unfolded states of

the protein [37], which largely differs from predicted percentage

(24%) of cis conformations for the imide bond. However, values of

Kpro estimated from the model compounds account reasonably the

cis-trans isomerisation of Xaa-Pro peptide bonds in the unfolded

states of most proteins [9,24,25]. Thus, the OneG program

calculates DGHX
* of proteins using the KPro obtained from the

model compounds, by default. However, the program provides an

option to use KPro determined from the studies on proteins for

calculating the DGHX
*. The program then compares the DGHX

* of

proteins with their DGU and carries forward the values of DGHX
*,

DGHX and DGU to the next stage of the program for further

calculations.

Baselines effect of melting curves on the estimation of
the DGU

Denaturant-induced unfolding of proteins under equilibrium

conditions is generally monitored by optical probes for estimating

the DGU of the proteins [38,39]. In a typical all-or-none unfolding

experiment, the observed signals representing the ratio of folded

and unfolded states of proteins are plotted with respect to

denaturant concentrations. The data are then fitted to the non-

linear least squares equation-11 proposed by Santoro and Bolen

for estimating the DGU of proteins [40].

Sx~f(SnzSu � exp(m�C{DGU)=RT)
.

(1zexp(m�C{DGU)=RT)gð11Þ

where, Sx is the observed signals at various concentrations of

denaturant, C is the concentration of denaturant in molarities,

DGU is the free energy of unfolding in the absence of denaturant,

m is slope of a plot depicting DGU versus concentrations of

denaturant, Sn and Su are the signals of the folded and the

unfolded states of proteins in the absence of denaturant,

respectively. The Sn and Su are further defined to be linear with

respect to denaturant concentrations as shown in equations-12 and

-13, respectively.

Sn~Ynzmn � C ð12Þ

Su~Yuzmu � C ð13Þ

wherein, Yn and Yu are intercepts; mn and mu are slopes; the

subscripts ‘n’ and ‘u’ denote the folded and the unfolded

conformations, respectively. The equation-11 treats the pre- and

post-baselines of the melting curve to be linear with respect to

denaturant concentrations. The equation will underestimate or

overestimate the DGU of proteins, when the baselines of the

Table 2. Comparison of the actual and the predicted conformations (by OneG program) of Xaa-Pro peptide bonds in Ubiquitin,
Rnase A and Cardiotoxin III.

Sl.
No

Protein
(PDB ID)

No. of
Prolines

Position of
Prolines

Distance measured
by manual method*

Actual
Conformation of
Xaa-Pro peptide
bond

Distance calculated by
OneG program

Predicted
conformation of
Xaa-Pro peptide
bond

Ca-Ca Ca-Cd Ca-Ca Ca-Cd

1. Ubiquitin (1UBQ) 3 19 3.81 2.88 Trans 3.811 2.878 Trans

37 3.83 2.85 Trans 3.829 2.852 Trans

38 3.81 2.96 Trans 3.812 2.961 Trans

2. RNase A (5RSA) 4 42 3.86 2.90 Trans 3.858 2.898 Trans

93 3.04 3.88 Cis 3.039 3.883 Cis

114 2.91 3.82 Cis 2.912 3.817 Cis

117 3.83 2.88 Trans 3.828 2.878 Trans

3. Cardiotoxin III (2CRT) 5 8 3.85 2.80 Trans 3.847 2.803 Trans

15 3.79 2.76 Trans 3.792 2.763 Trans

30 3.82 2.79 Trans 3.816 2.787 Trans

33 3.80 2.76 Trans 3.802 2.759 Trans

43 3.81 2.82 Trans 3.811 2.818 Trans

*The manual distance measurements for determining the conformations of the Xaa-pro peptide bonds in proteins were carried-out using PyMol molecular visualization
tool [23].
doi:10.1371/journal.pone.0032465.t002
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melting curves of proteins deviate from their linear predictions. It

has been shown that when the pre- and post-transitions baselines

of heat-induced denaturation of lysozyme were treated by non-

linear equations, the change in enthalpy (DH) of the protein

estimated by optical and calorimetric methods were in good

agreement [10].

We emphasize the effect of baselines of melting curves on the

estimations of the DGU of ubiquitin from its GdnHCl-induced

denaturation profile, herein. Figure 3 shows the equilibrium

denaturation curve obtained for ubiquitin dissolved in D2O at

pH 7.0, 288 K, using GdnHCl as the denaturant. The data in

Figure 3A have been fitted to the equation-11 using Kaleidagraph

software (Synergy Software) and the fitted parameters were as

follows: values of DGU, m and Cm were 7.5 kcal/mol, 3.87 kcal/

mol/M and 1.94 M, respectively; Cm is the concentration of

denaturant at which the protein is half-unfolded. Inspection to the

Figure 3A indicated that the changes in the ellipticity at 222 nm of

the folded protein were in opposite direction to the unfolding

transitions, at low concentrations of denaturant (from 0 to 2 M). It

suggested that the action of the denaturant on the protein

molecules was not in a linear fashion. In these circumstances, fit of

the data to the equation-11 would definitely underestimate the

DGU of the protein molecules. Hence, the pre-transition baseline

of the data may presumably be treated by an exponential function

shown in the following equation.

Sn~Io � exp({s�c)zIc ð14Þ

where, ‘s’ is the concentration of denaturant at which changes in

optical signals of the folded molecules begin to assume a linear

fashion with respect to denaturant concentrations; ‘c’ is the

concentration of denaturant; ‘Ic’ is an asymptote; ‘Io’ is amplitude,

which is further defined by the following equation:

Io~Ynzm � C ð15Þ

By substituting the equations-14 &-15 in the equation-11, the

following equation is derived.

Sx~ ðYnzmn � C � exp({s�c)zIc)z(Yuzmu � C � exp(m�C{DG)=RT )
n o

=

(1zexp(m�C{DG)=RT )
n o ð16Þ

The fit of the data in the Figure 3B to the equation-16 yielded

the following fitted parameters: values of DGU, m and Cm were

8.6 kcal/mol, 3.91 kcal/mol/M and 2.20 M, respectively. The

pre-transition baselines of the data in Figure 3A and Figure 3B

have been extrapolated up to 7 M of denaturant concentrations

using the fitted parameters obtained by treating the data to the

equations-11&-16, respectively. When the data were treated by the

equation-11, the ellipticity at 222 nm representing folded proteins

was linearly changing with respect to denaturant concentrations

and consequently the population of unfolded species in the melting

region of the curve was overestimated (Figure 3A). In contrary,

when the data were treated by the equation-16, the ellipticity

representing folded proteins was constant especially in the melting

region (Figure 3B) and consequently the equation may estimate

exact population of the unfolded species in the region. The

difference in the values of DGU obtained by fitting the melting

curve to the equations-11&-16 was 1.1 kcal/mol. Strikingly, DGU
*

(8.6 kcal/mol) of ubiquitin by fitting its melting curve to the

equation-16 was in good agreement with the DGHX
* (8.8 kcal/

mol) of ubiqutin reported at similar experimental conditions [41].

Thus, it is obvious that pre- and post-transition baselines of

melting curves can obscure the accurate determination of the DGU

of proteins, when they are not treated by suitable equations. OneG

program offers three functions (linear, exponential and polynomi-

al) to account the effect of pre- or/and post- transition baselines of

melting curves of proteins and constructs non-linear equations as

per the options chosen (Figure 1 and Figure S3, which outlines the

detailed steps of the stage-III of the program). The equations can

be used to fit the melting data for determining the free energy of

unfolding of proteins as explained above. The resultant DGU of

the proteins is denoted as DGU* in the present study. The OneG,

then, compares the DGU* with the DGHX* of the proteins. The

two values must be in good agreement for proteins for which the

equilibrium unfolding pathways are all-or-none (typical two-state)

process.

Predicting cryptic intermediates/metastable states in the
unfolding kinetics of proteins under native conditions

If there is a remarkable difference between the DGHX
* and

DGU
* of a protein, the origins of the discrepancies may probably

stem from many facets. The following factors must be seriously

considered to avoid any spurious data from the experiments: (i)

experimental conditions such as solvents (H2O/D2O) and buffer

solution must be identical in both melting analysis and H/D

exchange methods [9,38,39] (ii) the melting curve must be

adequately defined with sufficient data points [38,42] (iii)

denaturant concentrations must be accurately determined using

refractive index method [39,43] (iv) H/D exchange method must

Table 3. The values of DGU, DGHX and DGHX* (free energy of
exchange corrected to effect of cis-trans proline
isomerisation) of sixteen different proteins are herein listed.

Sl. No. Proteins@ DGHX DGHX* DGU (DGHX* - DGU)

GROUP I

1 OMTKY3 [26] 8.2 7.2 7.2 0

2 Barnase [27] 10.1 9.9 9.8 0.1

3 CI2 [28] 7.6 7.1 7.0 0.1

4 434cro [29] 4.0 3.9 3.7 0.2

5 RNase T1 [9] 10.7 8.2 7.9 0.3

GROUP II

6 HEWL [30] 12.4 12.2 11.7 0.5

7 RNase H (E. coli) [9] 10.9 9.3 9.9 0.6

8 Barstar [31] 6.2 6.0 5.0 1.0

9 HPr (E. coli) [9] 5.8 5.7 4.7 1.0

10 Src SH3 domain [32] 6.2 6.1 4.7 1.4

11 CBTX [33] 3.9 3.8 2.3 1.5

12 T4 Lysozyme [34] 17.7 17.5 16.0 1.5

13 Apocytochrome
b562 [35]

5.5 5.3 3.3 2.0

14 CTX III [33] 6.6 6.3 4.2 2.1

15 PPL [36] 7.0 7.0 4.9 2.1

16 Cytochrome c [11] 13.0 12.7 10.0 2.7

@Parentheses contain references from which the values of the free energies of
the proteins have been referred.
The values of DGHX* of the proteins have been calculated using the OneG
program. Free energy values of the proteins were represented in kcal/mol.
doi:10.1371/journal.pone.0032465.t003
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be performed under pure EX2-exchage mechanism [9]. While the

experimental conditions of both optical and H/D exchange

methods are matching well to each other, the discrepancies arising

between the DGU and the DGHX of proteins must be either due to

accumulation of cryptic intermediates or metastable states in the

unfolding kinetics of proteins under native conditions. Since

cryptic intermediates are weakly stabilized, they can easily elude

from analysis of melting curves of proteins, which in turn causes

underestimation of DGU. On the other hand, DGHX would be

overestimated, when the H/D exchange reactions of most slowly

exchanging NHs are happening through the metastable states of

proteins. The metastable states are, in general, heterogeneous

denatured-like ensembles of proteins, which are higher in energy

than that of denatured states of the proteins. In order to detect

cryptic intermediates, denaturant-dependent exchange rates of

NHs of proteins need to be estimated under native conditions,

using NMR (nuclear magnetic resonance) spectroscopy. Residue-

specific folding (kf/kcl) and unfolding rates (ku/kop) of NHs of

proteins should be determined using H/D exchange methods in

conjunction with NMR and mass spectrometry (MS) techniques in

order to explore the energetic ensembles of metastable states of

proteins. Using the experimental strategies, cryptic intermediates

that are accumulating in the unfolding kinetics of proteins such as

cytochrome c [44], apocytochrome b562 [35], RNase H [45] have

been reported in the literature. Similarly, existence of heteroge-

neous mixture of denatured-like conformations of OMTKY3 has

been shown at residue level resolutions from the comprehensive

analysis of H/D exchange data of the protein, derived from NMR

and MS techniques [46]. Though these experiments can be used

to detect and structurally characterize the cryptic intermediates

and metastable states of proteins, the methods are expensive,

laborious and prerequisite sound knowledge in protein chemistry.

In the fourth stage, the OneG scans proteins to predict either for

cryptic intermediates or metastable states that may exist in

unfolding kinetics of the proteins (Figure 1 and Figure S4). On the

basis of the 3D structures of proteins, DGU, DGU* and residue-

specific DGHX, the program executes its predictions using ‘contact

order matrix’ strategies, which have been elaborately discussed in

‘Design and implementation’ section. The program accounts the

DGHX of all NHs that are participating in the regular secondary

structural segments of proteins. This is based on the fact that the

NHs that are involving in the formation of H-bonds either at

surface areas or loop regions of proteins undergo H/D exchanges

through local structural fluctuations [45,47,48]. In outline, the

program divides the NHs into a few numbers of groups based on

distance constraints of 7 Å and contact order matrix (see ‘Design

and implementation’). Briefly, NH of any residue in a group will

be in contact with NH of, at least, any one residue in the same

group within 7 Å and residues in a group will be away from any

residues of another group, at least with distance of 7 Å. In other

words, each group is distinct from other groups in terms of

distance constraints and structural contexts. Hence, the program

Figure 3. GdnHCl-induced changes in 222 nm ellipticity in ubiquitin in the far-UV region. Solid line through the data in ‘A’ was the fit to
the equation-11 and in ‘B’ to the equation-16. Pre-transition baselines were extrapolated using fitted-parameters up to 7 M GdnHCl (refer text).
doi:10.1371/journal.pone.0032465.g003

Figure 4. Figurative representation of cryptic intermediates of Cytochrome C. The cryptic intermediates detected by experimental
methods and predicted by OneG are shown in Figure 4A and Figure 4B, respectively. The backbone structures of the protein and residues
representing each intermediate are shown in ribbon and stick models, respectively. Figure 4A shows cryptic intermediates, proposed on the basis of
experimental methods, in blue, green, yellow and red colours. The residues (for which exchange kinetics were observed by experiments) representing
each intermediate are shown in sticks. Figure 4B shows residues constituting three distinct intermediates as predicted by OneG program, in blue,
magenta and yellow colours.
doi:10.1371/journal.pone.0032465.g004
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predicts that each distinct group is the representation of possible

cryptic intermediate of proteins. Furthermore, the free energy

coverage of each and every group is compared with other groups

and groups that are having same free energy coverage are denoted

as cooperative units. When the program fails to identify distinct

cryptic intermediates (or more than one group) on the basis of

contact order matrix, the program, by default, begins searching for

possible existence of metastable states of proteins, which may lead

to the overestimation of DGHX. The concept of higher energy

denatured states has already been introduced in the discussion of

slow cis-trans proline isomerisation in the denatured states

[9,24,25]. Extending this argument, any relaxation of the

denatured protein that occurs more slowly than refolding should

give rise to higher energy metastable denatured state in the

exchange experiment. In other words, the lifetime of the

denatured state sampled in exchange experiments may be less

than the time required for relaxation of denatured protein to its

ground state. Perhaps this relaxation process involves diffusion of a

relatively compact set of conformers, crossing from the transition

state, to the broader distribution of conformers that are

characteristic of the denatured ground state. In order to predict

the metastable states of proteins, the program cluster all residues

for which DGHX.DGX (refer ‘Design and implementation) and

the residues may constitute either a continuum or distinct groups

of higher energy metastable denatured states of the protein

[46,49]. As discussed above for the cryptic intermediates, the

residues constituting metastable states are grouped and coopera-

tive unfolding among the groups are analysed on the basis of

‘contact order matrix’ and ‘free energy coverage’, respectively.

The robustness of the program on predicting the cryptic

intermediates/metastable states has been validated using proteins

such as cytochrome C, apocytochrome b562, cardiotoxin III and

cobrotoxin. The agreement between the predicted data and the

experimental data of the proteins is depicted in Table 4 and the

comparative analyses of each protein are discussed below in detail.

Cytochrome C
Cytochrome c is a simple helical protein consisting of 104

residues. The DGU and DGHX of the protein were reported as

10.0 kcal/mol and 13.0 kcal/mol, respectively [10]. The discrep-

ancy between the two values was 2.7 kcal/mol, after accounting

the effect of cis-trans proline isomerisation (Table 3). The

discrepancy has been attributed to the existence of four distinct

cryptic intermediates that are populating in the unfolding kinetics

of the protein as determined by denaturant-dependent H/D

exchange in conjunction with NMR techniques [44,50]. In the

original article of the work, the four cryptic intermediates are

denoted by four colour codes for sake of clarity: blue consisted of

residues from N- and C-termini helices; green consisted of residues

from 60’s helix and region spanning from 20–35; yellow consisted

of residues from the region spanning 36–61; red consisted of

residues from the region spanning 70–85 (Table 4). Strikingly,

OneG predicted three distinct cryptic intermediates of cytochrome

c. First group consisted of residues such as K7, I9, F10, V11, Q12,

K13, C14, A15, H18, R91, E92, D93, L94, A96, K99, A101 and

T102 from the N- and C- termini helices of the protein and free

energy coverage of the group was 4.6–11.2 kcal/mol. This group

showed perfect resemblance to the blue cryptic intermediate of the

protein detected by the experimental methods. Second group

predicted by the OneG consisted of residues (L64, M65, Y67, E69,

N70, K73, Y74, I75 and I85) from 60’s helix and 70’s loop regions

of the protein and free energy coverage of the group was 4.5–

8.7 kcal/mol. The second group represented the green and red

cryptic intermediates together. The program was unable to

discriminate the green from red, as the residues from the two

regions were within 7 Å, the cut-off distance constraint used in the

program. Third group predicted by the program consisted of three

residues (N52, K53 and N54), which exactly resembled the yellow

cryptic intermediate of the protein. The free energy coverage of

the group was 4.5–4.9 kcal/mol. Figure 5 depicts structural

contexts of the three cryptic intermediates (Blue, Magenta and

Yellow) predicted by the OneG and the four cryptic intermediates

(Blue, Green, Red and Yellow) characterized by experimental

methods, on the 3D structures of the protein.

Apocytochrome b562

Apocytochrome b562 is a monomeric, four helix bundle protein

consisting of 106 residues. The DGU and the DGHX of the protein

were reported as 3.3 kcal/mol and 5.5 kcal/mol, respectively [35].

The discrepancy of 2.2 kcal/mol observed between the DGU and

the DGHX of the protein was merely due to the existence of cryptic

intermediates of the protein under native conditions [35,50].

Fuentes and Wand have demonstrated the existence of three

distinct cryptic intermediates of the protein and also characterized

at structural levels: the first cryptic intermediate consisted of

residues from the two central helices of the protein; the second and

third cryptic intermediates were comprised of residues from the C-

terminal helix and N-terminal helix of the protein, respectively

(Table 4). Interestingly, OneG predicts three distinct cryptic

intermediates of the protein. The first and third intermediates

predicted by the program were composed of residues such as V26,

K27, D28, A29, L30, K32, R34, L38, D39, A40, Q41, K42 and

A43 from central helices and residues such as E8, L10, N11, N13,

L14, K15, V16, I17 and E18 from N-terminal helix, respectively.

The predicted first and third intermediates were well resembled

with the first and the third intermediates characterized by

experimental methods, respectively (Table 4 & Figure 5). How-

ever, the second cryptic intermediate predicted by OneG was

constituted by residues (I67, L68, V69, G70, Q71, I72, A75, L76,

A79, N80, E81, V84) from third helix, which is part of central

helical segments and also residues (A87, Q88, A89, A90, A91 and

Q93) from C-terminal helix of the protein. This observation is

contrary to the second cryptic intermediate characterized by

experimental method for the protein, because the intermediate

detected by the experiments was constituted by residues from the

c-terminal helix only. However, scrutinizing the structural

architectures of the protein uncovered that though the third helix

is sandwiched by second helix and c-terminal helix, the residues of

third helix are much closer to residues from c-terminal helix, vis-à-

vis their contacts with residues of second helix. Moreover, the c-

terminal helix is a kink-helix as the region connecting the c-

terminal helix and third helix of the protein is tightly pulled

suggesting the two helices are likely to unfold in a cooperative

manner. Since the OneG predicts cryptic intermediates purely on

the basis of 3D structures of proteins, the second intermediate of

apocytochrome b562 predicted by the program is very convincing,

though the predicted structures of the intermediate were not

exactly same to the experimentally characterized structure of the

second intermediate. The free energy coverage of the first, second

and third intermediates were 2.83–5.23 kcal/mol, 1.48–4.95 kcal/

mol and 2.08–3.42 kcal/mol, respectively.

Cardiotoxin III (CTXIII)
Cardiotoxin III is monomeric, single polypeptide chain

consisting of 60 amino acids and an all b-sheet protein with four

disulfide bridges [51]. The DGU and DGHX of CTX III have been

reported to be 4.2 and 6.6 kcal/mol, respectively [33]. After

accounting the effects of cis-trans proline isomerisation of the
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protein using the OneG, the recalculated free energy of exchange

(DGHX*) of CTX III was 6.3 kcal/mol (Table 3). The DGU and

DGU
* of the protein were same, as the chemical denaturation data

of CTX III was well fitted to equation-11 [33,52]. The

discrepancy existing between the DGU and DGHX of the protein

has been left unaddressed to date. In order to account the

discrepancy, we have herein used the OneG for searching possible

existence of any cryptic intermediates of proteins under native

conditions, using the 3D structure (2CRT), the DGU and the

residue-specific DGHX of the protein. The program predicts two

distinct cryptic intermediates of the protein: the first cryptic

intermediate was predicted to be situated in the triple-stranded

domain of the protein and was constituted by residues such as

C21, K23, M24, F25, M26, V27, V32, V34 and K35; the second

Table 4. Structural contexts of cryptic intermediates/metastable states characterized to present in the proteins using experimental
methods and/or OneG computational tool.

Protein

NHs having H-
bonds in regular
secondary
structures

No. of cryptic
intermediates/
metastable states

Structural context of cryptic
intermediates/metastable states
detected by experiments

Structural context
of cryptic
intermediates/
metastable states
predicted by OneG

Actual Predicted Actual Predicted No. Region Residues No. Region Residues

Cytochrome C 38 38 4 CI* 3 CI I N- and C-
terminal

K7 K8 F10 V11 Q12
K13 T19 R91 E92 D93
L94 I95 A96 Y97 L98
K99 K100 A101

I N- and C- terminal K7 I9 F10
V11 Q12
K13 C14
A15 H18
R91 E92
D93 L94
A96 K99
A101 T102

II 60’s helix L32 H33 M65 E66
Y67 L68 E69 N70

II 60’s helix and
70’s loop

L64 M65
Y67 E69
N70 K73
Y74 I75 I85

III Region spanning
36–61

F36 G37 W59 III Region spanning
36–61

N52 K53
N54

IV 70’s loop Y74 I75 I85

Apocytochrome
b562

49 49 3 CI 3 CI I Helix II and
Helix III

K32 M33 R34
A35 A36 A37 G70
Q71 A75 L76 K77

I Helix II V26 K27
D28 A29
L30 K32
R34 L38
D39 A40
Q41 K42
A43

II Helix IV A87 Q88 A89
A90 A91

II Helix III and
Helix IV

L67 L68
V69 G70
Q71 I72
A75 L76
A79 N80
E81 V84
A87 Q88
A89 A90
A91 Q93

III Helix I L14 K15 V16 I17 III Helix I E8 L10 N11
N13 L14
K15 V16 I17
E18

Cardiotoxin III 20 20 No ED# 2 CI Not Applicable I Triple-stranded
domain

C21 K23
M24 F25
M26 V27
V32 V34
K35

II Double-stranded
domain

C3 K5 K12

Cobrotoxin 14 14 No ED MS$ Not Applicable I Strands III, IV
and V

K26 K27
R28 W29
E38 N53
C55

*CI denotes Cryptic intermediates;
#ED denotes Experimental data;
$MS denotes Metastable states.
doi:10.1371/journal.pone.0032465.t004
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cryptic intermediate was composed of three residues (C3,K5 and

K12) from the double-stranded domain of the protein (Table 4

and Figure 6). The free energy coverage of the first and second

intermediates was 2.43–5.62 kcal/mol and 1.68–4.70 kcal/mol,

respectively. Interestingly, the kinetic folding pathways of CTX III

have been characterized to proceed through an intermediate

accumulating in the burst phase (,5 ms) of the protein [53]. Based

on the refolding rate constants of NHs of CTX III obtained from

quenched-flow H/D exchange experiments, it has been shown

that the triple-stranded b-sheet was formed before the double-

stranded b-sheet segment in the refolding kinetics of the protein.

Moreover, it has also been demonstrated that the triple-stranded

b-sheet segment of the protein was persistently found in the

intermediate states identified along the acid-induced and alcohol-

induced unfolding pathways of CTX III [54,55]. To this extent,

the predictions of OneG on the possible existence of two cryptic

intermediates of CTX III under native conditions are consistent

with the data reported from equilibrium and kinetic studies of the

protein.

Cobrotoxin (CBTX)
Cobrotoxin (CBTX) and CTX III are homologous proteins and

they are belonging to the three-finger toxin family of elapidae snake

venoms [56]. The two proteins share high degree of similarities in

primary, secondary and tertiary structures to each other [57]. The

DGU and DGHX of CBTX have been reported to be 2.3 and

3.9 kcal/mol, respectively [33,58]. As the effect of cis-trans proline

isomersation of the protein accounted only 0.1 kcal/mol and the

DGU
*of the protein was same as DGU [33], the resultant

discrepancy of 1.5 kcal/mol was observed between the DGU and

DGHX of the protein and the discrepancy have not yet been

addressed, to date. In order to reconcile the discrepancy, OneG

was employed as explained in the above sections and the program

predicted single cluster consisting of residues from various

secondary structural elements of the protein. It implied that there

were no possible cryptic intermediates populating in the unfolding

kinetics of the protein under native conditions. As the result, the

program, by default, attempted to trace for possible existence of

metastable states of the protein, with the tolerance limit of

2.4 kcal/mol (DGX of CBTX, refer design and implementation).

Strikingly, the program predicted a metastable state of the protein,

consisting of residues such as K26, K27, W29, R28, E38, N53 and

C55, which were dispersed in the strands 3, 4 & 5 of the protein

(Table 4 and Figure 7). It has been shown that the chemical

unfolding and refolding of the protein proceeded by all-or-none

process without the accumulation of intermediates [59]. The

kinetic refolding pathways of the protein characterized by chevron

plot and using hydrogen-deuterium exchange method in conjunc-

tion with multidimensional NMR techniques suggested that a

broad continuum of kinetic intermediates, but not distinct

intermediates, were populated in the refolding pathways of the

protein [59,60]. To this extent, the OneG prediction for a

metastable state of CBTX is in good agreement to the results

observed from the equilibrium and the kinetic studies carried-out

on the protein. However, it is worthy to mention that the extent of

cooperative disruptions of H-bonds in the metastable states of

proteins can be unequivocally confirmed by combined NMR and

mass spectrometry analyses of H/D exchange of proteins under

EX1 conditions [13,61].

Concluding remarks
We have herein demonstrated a computational tool, OneG, to

address the discrepancy that may arise between the DGU and the

DGHX of proteins, by systematically accounting the following

factors: (i) effect for cis-trans proline isomerisation (ii) effect of

baselines of melting curves on the estimation of DGU and (iii)

Figure 5. Figurative representation of cryptic intermediates of apocytochrome b562. Three cryptic intermediates of the protein detected
by experimental methods and predicted by OneG are shown in Figure 5A and Figure 5B, respectively. The intermediates are denoted by blue, green
and red colour codes in both cases. The backbone structures of the protein and residues representing each intermediate are shown in ribbon and
stick models, respectively. Figure 5A shows residues for which exchange kinetic data were reported in the literature.
doi:10.1371/journal.pone.0032465.g005
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possible existence of cryptic intermediates/higher energy metasta-

ble states in the unfolding kinetics of proteins under native

conditions. The program prerequisites four inputs, PDB file of

proteins, DGU, residue-specific DGHX and DGU
* of the proteins,

to successfully complete a test run in a fully automated manner.

The robustness of the program has been validated through

accounting the discrepancies between DGU and the DGHX of

proteins such as cytochrome c and apocytochrome b562 for which

experimental rationalizations to reconcile the discrepancies have

already been reported in the literature. To our best knowledge,

OneG is a unique tool of this kind for systematically analyzing

conformational stabilities of proteins. The program is publicly

available at http://sblab.sastra.edu/oneg.html. The applications

of the OneG program extend beyond rationalizing the conforma-

tional stabilities of proteins. The program reveals the degree of

cooperative actions among the predicted cryptic intermediates/

metastable states. This information may be useful to explore the

energy landscapes of the proteins. It is worthy to point-out that

several methods have been proposed in the literature to predict

rates of folding and rates of unfolding of proteins under defined

conditions [62,63] and consequently, the DGU of the proteins can

be reasonably calculated. In these connections, developing a tool

to predict the residue-specific exchange rate constants at defined

conditions (such as pH, temperature, denaturants) on the basis of

3D structures of proteins itself, would also be quite interesting in

the near future. The success on the task, in turn, will lead to

computationally explore the energetic levels of residues that

unfold/refold by various mechanisms (global, sub-global and local

structural fluctuations) under native conditions of proteins.

Foreseeing the potential applications of the OneG in structural

biology, we do anticipate a great scope to improve the software

tool at many different aspects.

Methods

OneG algorithm
OneG algorithm has been implemented using PERL scripting

language [64]. The program accepts both amino acid sequences

(represented by single letter codes) and PDB (Protein Data Bank)

co-ordinates of proteins for predicting krc values of NHs. In order

to calculate the krc values, OneG considers temperature in Kelvin,

pH in pD (pD = pH+0.4), ionic strength in molarity and activation

energies in cal/mol [7,21]. The values of krc and DGHX for the

NHs of protein molecules are expressed in minute21 and kcal/

mol, respectively. When a PDB file is the input, the OneG

determines the cis/trans conformation of Xaa-Pro (Xaa is any one

of the twenty standard alpha amino acids and Pro denotes proline)

peptide bond in the protein using the following relationship:

D~f(UX{PX)2z(UY{PY)2z(UZ{PZ)2g1\2 ð17Þ

where D is the distance between the Ca of Xaa and Ca or Cd of

proline residue in angstrom; U and P stand for Xaa and Pro

residues of Xaa-Pro peptide bond, respectively; X, Y and Z are the

atomic co-ordinates of an atom considered. The Xaa-Pro peptide

bond is considered as trans-conformation, when the distance

between Ca of Xaa and Ca of Pro (Ca —Ca) is greater than the

Figure 6. Possible existence of cryptic intermediates of CTX III.
The five b-strands (S1–S5), three loops and a globular head in the
structure of CTX III (2CRT) are shown by ribbon diagram. The blue and
red sticks represent residues in the cryptic intermediates I & II,
respectively, as predicted by OneG program.
doi:10.1371/journal.pone.0032465.g006

Figure 7. Possible existence of metastable states of CBTX. The
overall backbone folding of CBTX (1COD) is shown in ribbon model
using PyMol and the five b-strands of the protein are labelled (S1–S5).
The residues, predicted by OneG program, constituting the metastable
states of CBTX are shown in sticks model.
doi:10.1371/journal.pone.0032465.g007
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distance between Ca of Xaa and Cd of Pro (Ca—Cd). Similarly,

when Ca—Cd.Ca—Ca, the Xaa-Pro peptide bond is considered

as cis-conformation [65]. In outline, the program has four stages

for each complete cycle. In the first stage, the krc, DGHX and

protection factors (provided exchange rate constants, kex, are

given) of NHs in a protein molecule under consideration are

calculated. If the solvent used is other than D2O, users need to

specify the reference rates the solvent. In the second stage, the

DGHX
*, the recalculated DGHX after accounting for the effect of

cis/trans proline isomerisation, is compared with DGU of the

protein molecule. The tolerance level of 0.4 kcal/mol is set as

default in the OneG program based on the fact that the more

prevalent trans form of prolines in proteins contributes about

0.3 kcal/mol to the effect, in general [8,9]. In the third stage,

OneG provides options for fitting the pre- or/and post- transition

baselines of melting curves of proteins. The DGU
*, the recalculated

DGU after treating the baselines of melting curve of the protein to

an appropriate two-state model equation, is compared with

DGHX
* of the protein. In the fourth stage, the program predicts

the possible existence of cryptic intermediates/metastable states in

the unfolding kinetics of protein on the basis of the 3D structure,

DGU, DGU
* and residue-specific DGHX of the protein.

The fourth stage of the program has a few numbers of steps as

follows: First, the program detects all NHs that are hydrogen

bonded in the given 3D protein structure, using method described

by Stickle et al [66]. According to the method, the hydrogen bond

(H-bond) distance should be , = 3.28 Å and bond angles at the

acceptor atom (N—O = C) and at the donor atom (O—N–Ca)

should lie between 90u–180u [66]. Second, of the hydrogen

bonded NHs, NHs that are located in the regular secondary

structural segments of proteins are segregated on the basis of H-

bond patterns (a stretch of i to i+3 or i to i+4 H-bonds for helical

conformations and a stretch of i+n to j+n H-bonds for sheets,

wherein n is 0,2,4,6 and so on.) and torsion angles (F, y angles for

a-helices, 310 helices, parallel b-sheets and anti-parallel b-sheets

are (257630, 247630), (260630, 230630), (2119630,

2113630) and (2139630, 135630), respectively). Third, the

program generates all possible residue pairs for the NHs (NHs for

which DGHX are available) and calculates distance in angstrom

between the backbone nitrogen atoms of the two residues in each

pair. The program then generates a ‘contact order matrix’ in

which each pair is assigned either with the value of 1 or 0: the

value of 1 is given to a pair when the distance between the two

residues is within 7 Å otherwise 0 is given. Fourth, the program

groups the residue-pairs such that any pair in a group must have at

least another pair having a residue common to each other. The

program avoids redundancy in grouping the residue-pairs and

generates atomic coordinate files in PDB format for residues in

each group/cluster. If OneG finds more than a cluster for a

protein, each cluster is distinct from other clusters in terms of

structural contexts. Consequently, each cluster is attributed to

possible existence of a cryptic intermediate in the unfolding

kinetics of the protein. However, two cryptic intermediates, which

are distinct in terms of structural context but indistinguishable in

terms of free energy coverage, are represented as cooperative

unfolding units.

The program reports no possible existence of cryptic interme-

diates for a protein, if it predicts single cluster. Only under the

circumstance, the program is directed, by default, to predict

possible existence of metastable states of proteins, which may lead

to the overestimation of the DGHX, whereas cryptic intermediates

accumulating in the unfolding kinetics of proteins lead to

underestimation of DGU. The program generates a cluster

consisting of all NHs for which DGHX.DGX, which is defined

as shown, herein.

DGX~DGU
�z(DGHX{DGHX

�) ð18Þ

Thus, the DGX is the DGU corrected for the effects of cis-trans

proline isomerisation and baselines of melting curves of the proteins.

As we discussed in the above paragraph, the residues that are herein

grouped into single cluster will be further divided into subgroups on

the basis of contact order matrix and any possible cooperative units

among the subgroups will then be defined on the basis of ‘free

energy coverage’. The reliability of the OneG on the prediction of

possible existence of cryptic intermediates/metastable states in the

unfolding kinetics of proteins has been tested on the following four

proteins: Cytochrome C (1HRC), apocytochrome b562 (1APC),

Cardiotoxin III (2CRT) and Cobrotoxin (1COD). Of the four

proteins, existence of cryptic intermediates in the unfolding kinetics

of cytochrome c and apocytochrome b562 has been already

documented using experimental methods, in the literature [35,44].

Chemical denaturation
GdnHCl (guanidine hydrochloride) induced unfolding of ubiquitin

dissolved in D2O (deuterium oxide) was monitored in the wavelength

range from 220 to 230 nm using the AVIV circular dichroism

spectrometer. Each spectrum was the average of five scans. The path

length was 1 mm and the bandwidth was set to 1 nm. All mea-

surements were made with suitable background corrections. The

changes in ellipticity at 222 nm were plotted against the concentration

of GdnHCl and the data were fitted to equations 11 & 16 (refer text) to

determine the DGU of ubiquitin. The data analyses were performed

using Kaleidagraph software (Synergy Software, USA).

Supporting Information

Figure S1 Flowchart depicting the Stage I of OneG. Key-

steps used to calculate the krc of NHs in proteins and DGHX of

proteins are outlined.

(TIF)

Figure S2 Flowchart depicting the Stage II of OneG. The

flowchart outlines the key-steps used to account the effect of cis-

trans proline isomerisation on the DGHX of proteins.

(TIF)

Figure S3 Flowchart depicting the Stage III of OneG.
The Flowchart enumerates systematically the various steps to

frame two-state model equations for appropriately treating the

pre- and post-baselines of melting curves of proteins.

(TIF)

Figure S4 Flowchart depicting the Stage IV of OneG.
The key-steps involved in the OneG algorithm on predicting

cryptic intermediates/higher energy metastable in the unfolding

kinetics of proteins under native conditions, are shown.

(TIF)
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