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Models are frequently used to study, understand, and quantify 
the relationship between the components of a biological sys-
tem.1 Mathematical models play an important role in systems 
biology to understand the underlying mechanisms such as 
physiological, pathological, and pharmacological responses. 
Examples of system models include the blood glucose model 
by Cobelli et al.,2 the tumor growth model by Adam,3 and the 
humoral coagulation network model by Wajima et al.4 Identifi-
ability of these models or reduced versions of these models 
is an important component in their application to modeling 
experimental results.

Application of mathematical models is routine in pharma-
cokinetics (PK) and in pharmacokinetic–pharmacodynamic 
(PKPD) studies. Estimation of unknown parameters in the 
model is a critical step in understanding the underlying expo-
sure–response relationship and has an important role in deci-
sion making. A unique solution for the unknown parameters 
that links any set of inputs to a set of outputs is a critical 
requirement for any model-based analysis. Although this may 
be relaxed to a finite set of solutions in the special case of 
“flip–flop” PK.5 the process of assessing for a unique solution 
for the parameters is encompassed within the framework of 
identifiability analysis. Parameters in the model that are not 
identifiable, i.e., not able to be estimated, pose challenges dur-
ing the estimation step, leading to both imprecise parameter 
estimation and misleading conclusions or failure of the mod-
eling process. Issues with identifiability are often intuitive for 
simple models (e.g., attempting to estimate the bioavailable 
fraction for an orally administered drug when data are only 
available after oral administration) but not so obvious in the 
case of more complex models (see the work on ivabradine 
by Evans et al.6). Recent developments in PK, PKPD, and 
systems pharmacology have centered on the development of 
more mechanistic (and hence complicated) models, and it is 
likely that identifiability of these models may not be intuitive.

Various methods are available in the literature for assess-
ment of identifiability of linear and nonlinear PK models.7–10 
Assessment of identifiability based on evaluation of the 
Jacobian matrix was investigated by Jacquez11 and Jac-
quez and Perry12 for fixed-effects models. Although these 
are a very important aspect of model validation as illus-
trated by Cobelli and DiStefano13 and Yates et al.,14 iden-
tifiability analyses are often not practiced routinely, which 
may be due to the complexity of the mathematical compu-
tation involved in its execution or ease of availability and 
use of software. Bortz and Nelson15 briefly mentioned the 
importance of identifiability analysis in their work on mixed-
effects modeling of and model selection for HIV infection 
dynamics.

Clinical studies are now more often analyzed using a 
population analysis approach.16 Population models are 
encompassed within the framework of nonlinear mixed-
effects models that have natural hierarchies. It is desired in a 
population-based approach that all of the underlying param-
eters (fixed and random-effects parameters) are identifiable 
and should have an expected reasonable precision in their 
estimates. Currently, existing approaches to identifiability 
focus on identifiability of the fixed-effects parameters, and no 
specific approaches have been proposed to formally study 
the identifiability of random-effects parameters in population 
models. An exploration of this area in PK was recently pro-
posed by Knutsson and Aarons.17

Identifiability of models is classified into two types: struc-
tural and deterministic identifiability. Structural identifiability, 
also termed a priori identifiability, is related to the structure 
of the underlying mathematical model and reflects whether 
the parameters in the assumed model have a unique solu-
tion given perfect input–output data. Structural identifiabil-
ity classifies a model into any one of the three following 
subtypes:
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1.	 Structurally globally identifiable: All parameters in the 
model have unique solutions.

2.	 Structurally locally identifiable: One or more parameters in 
the model have a finite number of alternate solutions.

3.	 Structurally unidentifiable: One or more parameters 
in the model have an infinite number of alternate 
solutions.

Deterministic identifiability, also termed a posteriori iden-
tifiability or practical identifiability18 or numerical identifi-
ability,19 relates to the informativeness of the data and is 
influenced by the study design and its execution. Deter-
ministic identifiability deals with assessment of whether 
the parameters in a model can be estimated precisely 
given imperfect input–output data. In its most basic form, 
deterministic identifiability requires that the number of 
observations (n) is greater than or equal to the number of 
unknown parameters (p). Of note, all structurally unidentifi-
able models are deterministically unidentifiable, whereas a 
structurally identifiable model need not be deterministically 
identifiable. Although few software tools20,21 were designed 
to assess the structural identifiability, no dedicated soft-
ware is available to assess deterministic identifiability. How-
ever, any software that has been developed for an optimal 
design of experiments22,23 can be used to explore the deter-
ministic identifiability.

The purpose of this paper is to develop and evaluate 
a unified approach for identifiability analysis of both fixed 
and mixed-effects PKPD models that encompasses both 
structural and deterministic identifiability. Note here we only 
consider PK models, but the methods are also applicable 
to PKPD models. The proposed approach is described in 
the following theory section. Furthermore, we provide the 
results for three specific objectives and a general discus-
sion. The specific objectives are (i) to evaluate the method 
for assessing identifiability for simple fixed-effects PK mod-
els; (ii) to explore the method for testing identifiability of 
random-effects parameters in simple population PK mod-
els; and (iii) to apply the method for identifiability analy-
sis of a more complicated parent-metabolite PK model. A 
description of the notation for nonlinear fixed- and mixed-
effect models in general, and the methods for evaluating 
the proposed approach based on the specific objectives is 
given in the methods section.

THEORY
Criteria for identifiability analysis
In this work, assessment of both structural and deterministic 
identifiability is based on an information theoretic approach 
(see Mentré et al.22 for an introduction to this approach for 
nonlinear mixed-effects models) involving computation of 
the Fisher information matrix (MF). In this approach, the 
sensitivity of the model-predicted response to changes in 
the parameter values is evaluated at each design point. 
Parameters are defined by θ, a p × 1 vector (θ = [θ1,…,θp]

T), 
and the design points representing the time points of obser-
vation by ξ, a n × 1 vector (ξ = [ξ1,…,ξn]

T). We use T to indi-
cate the matrix transpose. In this manuscript, we use bold 
face notation to represent a vector or a matrix.

(1)

The sensitivity of the system is defined by the Jacobian 
matrix (J), a n × p matrix of all first partial derivatives overall 
design points. D in the above expression represents the dose 
administered and f denotes the structural model.

Random noise in the observed response across the obser-
vation points is represented by the variance–covariance 
matrix (Σ);

(2)

Σ is a n × n square matrix and is computed from the prod-
uct of the residual variance or random noise (σ2) and a n × 
n identity matrix (In). Equal variances across all observation 
points (σ1

2 = σ2
2 = … = σn

2) are assumed. The assumption 
of equal variances can be relaxed without affecting the pro-
posed identifiability method.

For a fixed-effects model, the MF is constructed as

(3)

MF in this instance represents the fixed-effects parameters 
and does not include the residual variance term.

The determinant is represented as MF D, ,ξξ θθ ∑∑,( ) .
Here, we propose a general and a revised criterion based 

on the |MF| for the assessment of identifiability of models.

General criterion: Given a standard dose D, a specific design 
ξ, a parameter vector θ, and a matrix showing an assumed 
random noise in the observed response Σ, the MF of an iden-
tifiable model is invertible and its determinant is greater than 
zero. This general criterion is given as:

(4)

A singularity of the MF with a determinant value of zero 
indicates that the model has one or more underlying param-
eters that are not identifiable. The MF of a model that is not 
identifiable will be rank deficient and may contain a column 
and row of zeros. Although theoretically this criterion holds 
well, it may fall down on practical utility due to two reasons: (i) 
accuracy issues with matrix algebra operations can result in 
determinants for unidentifiable models to be represented as 
very small positive or negative values rather than zero and (ii) 
it requires a search across a large multidimensional design 
space to assess whether there exists a set of design vari-
ables that may satisfy the above criterion. In order to simplify 
the application of the criterion, we propose a second, revised 
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criterion that is robust to the above shortfalls. It is based on 
the relation between the |MF| and the random noise associ-
ated with the observed response.

Revised criterion: For all values of design variables (ξ), where 
n > p, and all design variables have a unique value (i.e., ξi ≠ 
ξj for all i ≠ j), the |MF| approaches infinity as the associated 
noise approaches zero.

(5)

This criterion has greater practical utility than the general 
criterion as there are no limitations associated with its com-
putation. As this criterion accounts for all designs, there is no 
necessity to search over the design space and an arbitrary 
set of values that fulfils the condition above in Eq. (5) can be 
chosen.

For fixed-effects models, the log of the determinant will be 
linearly related to the log of the random noise if the model 
is structurally identifiable. In the case of mixed-effects mod-
els, where MF includes fixed-effects, random-effects, and the 
residual variance, we find

(6)

In the above expression, Ω is a vector of the variances 
of the random effects representing between the subject vari-
ability (BSV) in the population. V represents the first-order 
approximated likelihood of the variance. See Retout and 
Mentré for details relating to the expression for the popula-
tion Fisher information matrix.24 The asymptote of the log |MF| 
in this case will not approach infinity. The numerical value to 
which Ψ asymptotes will have functional dependence on V. 
The relationship between the log of the determinant and the 
log of the random noise will be smooth and will asymptote 
to a constant Ψ in the space ℜ+. We show this relationship 
graphically which for identifiable models shows the conver-
gent nature, to the asymptote, of the relationship.

In the following sections, assessment of identifiability is 
based on the revised criterion across the models.

Results
Evaluation of the method for assessing identifiability of 
simple fixed-effects PK models
Assessment of the structural identifiability of the simple fixed-
effects PK models indicated that both Bateman and Dost 
models were unidentifiable when all parameters (including 
F) were considered to be estimable. Both of these models 
were rendered identifiable by fixing F to a constant param-
eter value (Figure 1, see Supplementary Table S1 online). 
It is seen that unidentifiable models showed a discontinuous 
relationship for the log |MF| vs. log random noise, whereas a 
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Figure 1  Graphical representation of log |MF| vs. log random noise (σ2) for simple fixed-effects pharmacokinetic models. In this graph, log 
|MF| above the abscissa are as represented. Data below the abscissa represent the negative determinants that do not have log values and 
are shown for the purpose of displaying discontinuity of the line. (a,c) Bateman model, (b,d) Dost model; upper row: all parameters estimated, 
lower row: F fixed.
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continuous linear relationship was observed for identifiable 
models.

Identifying unidentifiable parameter(s) in the model: The 
results of the case deletion assessment for identifying the 
unidentifiable parameters in the Bateman fixed-effects model 
indicate that F is the unidentifiable parameter in the model 
(Supplementary Table S2 online).

Exploration of the method for testing the identifiability 
of random-effects parameters in simple population PK 
models
The criterion for assessment of identifiability of random-
effects parameters was explored for the Bateman and Dost 
population PK models. The results for these mixed-effects 
models indicated that both the models were unidentifiable 
when all parameters were considered to be estimable. Fix-
ing F alone rendered the Bateman model to become iden-
tifiable, whereas the Dost model was still unidentifiable. 
The Dost model was only identifiable when F and its BSV 
parameter ωF were fixed (Figure 2, Supplementary Table 
S1 online).

Application of the method for identifiability analysis of a 
parent-metabolite PK model
Application of the criterion for assessment of identifiability of 
the motivating PK model was performed separately for mod-
els describing intravenous and oral administration. Both the 

models were considered for a fixed-effects analysis (as per 
the previous identifiability analysis reported by Evans et al.6) 
and for a full mixed-effects analysis.

Assessment of the intravenous PK model: The intravenous 
fixed-effects model was unidentifiable when all parameters in 
the model were considered to be estimable. Fixing the value 
of V3 (volume of distribution of metabolite in the central com-
partment) rendered the model structurally identifiable. The 
results of this analysis are in agreement with Evans et al.6 
Results of the analysis of mixed-effects model revealed that 
all random-effects parameters were identifiable in the model. 
Although the fixed-effect parameter V3 was unidentifiable, 
its corresponding random-effect parameter ωV3 was identifi-
able (Figure 3, Supplementary Table S3 online). Note here 
that in the full mixed-effects model, the typical value of V3 
remained unidentifiable.

Assessment of the oral PK model: The oral fixed-effects 
model was unidentifiable when assessed with all param-
eters in the model. The model was still unidentifiable when 
v3 was fixed. This was not unexpected as the model con-
sidered two additional parameters, namely, the fractions of 
parent and metabolite absorbed (FI and FS, respectively) fol-
lowing the oral administration of parent. Fixing one of these 
fractions (e.g., FI) rendered the model identifiable, whereas 
FS was identifiable as its corresponding volume term V3 was 
already fixed in the model. Therefore, the oral fixed-effects 
model has two unidentifiable parameters. Assessment of the 

Figure 2  Graphical representation of log |MF| vs. log random noise (σ2) for simple mixed-effects Pk models. In this graph, log |MF| above the 
abscissa are as represented. Data below the abscissa represent the negative determinants that do not have log values and are shown for 
the purpose of displaying discontinuity of the line. (a,c,e) Bateman model, (b,d,f) Dost model; left column: all parameters estimated, middle 
column: F fixed, right column: F and ωF fixed.
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full mixed-effects model indicted that all of the random-effects 
parameters were identifiable. Random-effects parameters 
ωV3 and ωFI were still identifiable, although their correspond-
ing fixed-effects parameters (V3 and FI, respectively) were 
unidentifiable (Figure 3, see Supplementary Table S3 
online).

Discussion

Analysis of the results from both simple and a more compli-
cated PK models have shown that the |MF| shows a continu-
ous linear log–log relationship with the associated random 
noise for structurally identifiable fixed-effects models. Simi-
larly for structurally identifiable mixed-effects models, we also 

see a continuous relationship between log |MF| and log resid-
ual variance, although the relationship is no longer linear on 
this scale due to the noninfinite asymptote.

An important feature of this analysis is that all identifiable 
models considered here yielded positive values of |MF| for all 
values of the residual variance. This, however, is not in itself 
sufficient to confirm identifiability, as nonidentifiable models 
also yielded positive |MF| values for some values of the resid-
ual variance. This emphasizes the need to show two neces-
sary conditions for claiming identifiability for a model: (i) log 
|MF| should have a continuous relationship with log residual 
variance and (ii) |MF| should approach infinity (or a noninfi-
nite asymptote for mixed-effects models) as residual variance 
approaches zero. The requirement to satisfy these two condi-
tions requires |MF| to be positive at varying random noise.

Figure 3  Graphical representation of log |MF| vs. log random noise (σ2) for parent-metabolite PK model of ivabradine. In this graph, log |MF| 
above the abscissa are as represented. Data below the abscissa represent the negative determinants that do not have log values and are 
shown for the purpose of displaying discontinuity of the line. (a,c,e,g) Intravenous model, (b,d,f,h) oral model; (a,b) all parameters estimated 
(fixed-effects model), (c,d) V3 ± FI fixed (fixed-effects model), (e,f) all parameters estimated (mixed-effects model), (g,h) V3 ± FI fixed (mixed-
effects model).
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Evaluation of the results for the Bateman and Dost fixed- 
and mixed-effects models indicate that this method is capa-
ble of evaluating the structural identifiability of fixed- and 
random-effects parameters in population models. Analysis of 
the population models reveal that random-effects parameters 
may or may not follow the same rule as their corresponding 
fixed-effects parameters in regard to the identifiability. At this 
point, there does not appear to be a standard rule that could 
be applied to assess the identifiability of a random-effects 
parameter given known identifiability of a fixed-effects param-
eter. However, in the limited examples explored here, we see 
that in cases where the fixed-effects parameter is identifiable, 
the corresponding random-effects parameter is also always 
identifiable. However, other than for the Dost model, there 
appear to be circumstances when the random-effects param-
eters are identifiable despite the corresponding fixed-effects 
parameters being unidentifiable. This emphasizes the need 
to assess the identifiability of random-effects parameters 
in population models. Results from the assessment of the 
parent-metabolite PK model strengthen the ability of the cur-
rent approach in assessing the identifiability of models with 
greater complexity and where identifiability may not be obvi-
ous. However, further investigations are needed to evaluate 
more precisely the identifiability of the random-effects param-
eters by assessing the MF and to understand how they differ 
from their corresponding fixed-effects parameters in regard 
to identifiability.

Assessment of deterministic identifiability was not explicitly 
performed in this work. However, due to the known relation-
ship between the information in a design and the standard 
error of the estimator (via Cramér-Rao inequality25,26), it is 
straightforward from this analysis to choose a design that 
performs sufficiently well to meet the needs of determinis-
tic identifiability. Once structural identifiability of the model is 
established, a formal assessment of the diagonal elements 
of the inverse of MF can be made to assess the precision 
of parameter estimates for a candidate design at a value 
of residual variance of interest. It is noticed that highly con-
strained designs will impact the parameter estimation in the 
form of high standard error values. These are consequences 
of deterministic identifiability issues that can be studied eas-
ily by the current approach before the study execution. Unlike 
other traditional available approaches for structural identifi-
ability analysis that involve significant mathematical com-
putation, our proposed approach is simple and any optimal 
design software (e.g., PFIM,27 PopED,28 and PopDes29) can 
be used for assessing the identifiability of a model.

The proposed method, using an information theoretic 
approach, can be used to assess complete identifiability of 
population PK models. The criterion was able to evaluate the 
model in relation to indirectly assessing for a unique solu-
tion for individual parameters, a consequence of structural 
identifiability as shown in this study using simple and motivat-
ing PK models. The approach developed in this study can be 
used formally to assess the identifiability of proposed can-
didate models during study design. In the case of popula-
tion models, the MF can be studied separately, block wise to 
assess identifiability of the respective model parameters. The 
determinant of each submatrix can be studied to assess the 
identifiability of fixed effects, random effects, and error terms, 

respectively. We have not explored nonzero off-diagonal ele-
ments in the between subject variance–covariance matrix, 

however, we believe that the techniques described here are 
likely to be generalizable to this and other circumstances. We 
also believe that the identifiability of random-effects param-
eters, such as the random effect on bioavailable fraction in 
the Bateman model, would be affected in presence of covari-
ances (non-zero off diagonals), such as between clearance 
and volume of distribution, in the variance–covariance matrix, 
and further exploration is warranted.

In conclusion, we have developed an informal unified 
approach for the assessment of both structural and deter-
ministic identifiability for both fixed and random-effects 
parameters in population models. The approach was 
evaluated against both simple PK models with known identi-
fiability issues and expanded to a more complicated parent-
metabolite model. This approach is not limited to PK models 
and is extendable to identifiability analysis of population 
PKPD models.

METHODS

Notation for nonlinear fixed- and mixed-effect models. We 
consider nonlinear models where the observed response is 
nonlinear in the parameter values. The notation for a nonlin-
ear fixed-effects model is

(7)

y
j is the observed response at the jth observation, and εj 

denotes the random error in the jth observation. All other vari-
ables are defined as before, and we are using the same nota-
tion throughout the article.

Population models are encompassed within the framework 
of nonlinear mixed-effects models. Population models have 
two-stage hierarchy in describing the observed response 
across the individuals in a group of population.

Stage I constitutes the model for the data (structural model) 
representing the observed response in the population, which 
is given by

(8)

Here, yij represents jth response in ith individual.
Stage II constitutes the model for heterogeneity (covariate 

model) in the parameter values between individuals, which is 
given for any parameter θ in the model by

(9)

θi represents the parameter value in ith individual (we have 
dropped the index specifying the parameter for simplicity but 
note that parameters may have covariance), g is the func-
tional form of the covariate model, Zi is a vector of covariates 
in ith individual, θ  is the population mean value of the param-
eter estimate, ηi is the random effect for the ith individual, and 

y D Nj j j j

iid

= ( ) + ( )f , , ~ ,ξ σθθ ε ε; 0 2

y D Nij i ij ij ij

iid

= ( ) + ( )f , , ~ ,ξ ε ε σθθi  ;  0 2

θ θ η η ωi i i

iid

N= ( ) ⋅ ( )( ) ( )g Zi, ~ ,exp  ;  0
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ω is the variance of the random effect across the population. 
For the entire model, the BSV in all parameters with random 
effects is given by a q × q matrix ‘Ω’, where q is the number 
of fixed-effect parameters that have a random effect (q ≤ p).

(10)

Diagonal elements represent the variances, and off-diago-
nal elements represent the covariances of the BSV.

Objective 1: Evaluation of the method for assessing identifi-
ability of simple fixed-effects PK models. The criterion was 
explored by evaluating two simple PK models with known 
identifiability properties.

The first model considered was a one-compartment 
first-order input–output model (also known as “Bateman 
model”).30,31 The model is given by:

(11)

The estimated parameters in the model are clearance (CL), 
volume of distribution (V), absorption rate constant (ka), and 
bioavailable fraction (F), while k denotes the derived elimina-
tion rate constant.

The second model considered is the so-called “Dost 
model,”32 which is a simplification of the Bateman model.

(12)

The parameters in this model are similar to the parameters 
in the Bateman model, except k′ is a hybrid parameter that 
represents both the absorption and elimination rate con-
stants (where k′ = ka = k).

Identifiability analyses were performed using MATLAB 7.12 
(version R2011a).33 A constant dose of 100 mg and a generic 
study design for the sampling times (ξ = [0, 0.25, 0.5, 0.75, 1, 2, 
4, 8, 12, 18, 24]T) was assumed for both models. An arbitrary set 
of the parameter values was used (Table 1). The identifiability 

was assessed for both models based on two scenarios: (i) F 
was considered to be an unknown and estimable parameter 
and (ii) F was assumed to be known and fixed. Values for the 
random noise were log(σ2) = (−5, −4, −3, −2, and −1).

Identifying unidentifiable parameter(s) in the model. For 
unidentifiable models, the unidentifiable parameters were 
identified by a case deletion methodology. A specific column 
corresponding to a specific parameter was removed from the 
Jacobian matrix, and the subsequent effect on the determi-
nant was evaluated. Cases (parameters) for which the dele-
tion provided a linear relationship in log |MF| vs. log random 
noise were taken as unidentifiable. The Bateman model was 
chosen as an illustrative example to show this method with 
two sets of parameterization (V, CL ka, F and V, ka, k, F).

Objective 2: Exploration of the method for testing identifiability 
of random-effects parameters in simple population PK models. 

ΩΩ  =
















ω ω

ω ω

11 1q

q1 qq

�
� � �
�

f D
D F k

V k k
k t k t

k
CL
V

j
a

a
j a j, ,ξ θθ( ) = ⋅ ⋅

⋅ −
− ⋅( ) − − ⋅( )( )

=

( )
exp exp  ;

f D
D F k t

V
k tj

j
j, , expξ θθ( ) =

⋅ ⋅ ⋅
− ⋅( )( )′

′

Table 1  Empirical set of parameter values used for the assessment of 
identifiability of simple PK models (fixed and mixed-effects models)

Parameter Mean value (θ) BSV (ω)†

CL 4 0.1

ka 1 0.1

V ‡ 20 0.1

F ‡ 1 0.1

k′ 0.5 0.1

PK, pharmacokinetics.
†Used for the mixed-effects models only. ‡Common parameters in the Bate-
man and Dost model.

Figure 4  Schematic representation of the combined parent-
metabolite pharmacokinetic model of ivabradine. y1 represents 
the observations corresponding to the parent (ivabradine) and 
y2 represents the observations corresponding to the metabolite 
(S-18982).

Oral dose

Intravenous dose Ivabradine

S-18982

Peripheral
compartment

Central
compartment

FI

y2

kaI

kaS
FS

fm

V1 V2

CL1

y1

Q1/V2

Q1/V1

Q2/V4

V3

CL2

Q2/V3

V4

Gut

Table 2  Empirical set of parameter values used for the assessment of 
identifiability of the fixed and mixed-effects parent-metabolite PK model for 
ivabradine

Parameter Mean value (θ) BSV (ω)†

CL1
‡   25 0.2

V1
‡ 200 1.4

Q1
‡   75 1.7

V2
‡ 650 0.4

CL2
‡ 150 0.2

V3
‡ 100 0.3

Q2
‡ 250 0.1

V4
‡ 650 0.7

fm
‡ 0.5 0.1

kaI 1.5 0.2

FI 0.8 0.1

kaS 2 0.2

FS 0.8 0.1

PK, pharmacokinetics.
†Used for the mixed-effects models only. ‡Common parameters in the intra-
venous and oral PK models.
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The Bateman and Dost models were also used to explore the 
criterion for testing identifiability of random-effects parameters 
in a population analysis. The study design, dose, fixed-effects 
parameters and random noise in the observed response were 
the same as for Objective 1. The number of individuals in the 
population was set to 100. The parameter values, including the 
random-effects values, are presented in Table 1. Assessment 
of identifiability of the mixed-effects models was conducted 
using the POPT (Population OPTimal design) software tool,34 
a MATLAB application. Three scenarios were considered: (i) F 
and its corresponding random-effect BSV parameter ωF were 
considered to be unknown and estimable parameters, (ii) F 
was assumed to be known and fixed, whereas ωF was consid-
ered to be unknown and estimable, and (iii) F and ωF were both 
assumed to be known and fixed.

Objective 3: Application of the method for identifiability anal-
ysis of a parent-metabolite PK model. A combined parent-
metabolite model describing the PK of ivabradine and its 
N-desmethylated metabolite (S-18982) was used as the 
motivating model (a schematic is provided in Figure 4). 
Ivabradine is a bradycardiac agent used in the treatment 
of angina pectoris and ischemic heart disorders. Probable 
identifiability issues associated with this model were first pro-
posed by Duffull et al.35 and a structural identifiability analysis 
based on a similarity transformation approach was reported 
by Evans et al.6 Ivabradine is administered either intrave-
nously or as oral dose.

In the case of intravenous administration, the drug is 
known to follow two-compartment pharmacokinetic behav-
ior with first-order elimination. Metabolism of the parent pro-
duces S-18982, an active metabolite. The metabolite is also 
known to undergo two-compartment disposition similar to the 
parent.

In the case of oral administration, a certain portion of the 
parent is known to undergo presystemic metabolism in the gut 
producing S-18982, which is then absorbed into the systemic 
circulation. There is also a possibility that a certain portion of 
the parent is neither absorbed into the systemic circulation 
nor undergoes presystemic metabolism. This portion of the 
parent can either convert into other, unknown metabolites, 
or may be eliminated from the gut. The parameters describ-
ing bioavailability for the parent and metabolite following oral 
administration of parent are denoted FI and FS, respectively. 
In the current study, identifiability analyses were performed 
separately for models describing intravenous and oral dose 
administration, each in two stages for fixed- and mixed-
effects models, respectively, using POPT with an empirical 
set of parameter values (Table 2). All other study variables 
were similar as described for the simple example models. 
Algebraic equations used in the assessment of identifiability 
of intravenous and oral PK model are provided in the Sup-
plementary Data online. The POPT code (p_model.m and 
popt_ini.m) of the oral mixed-effects PK model of ivabradine 
is available as Supplementary Data online.
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