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Summary Differentiated thyroid carcinomas (in contrast to the rarer anaplastic form) are unusual among human cancers in displaying a
remarkably low frequency of p53 mutation and appear to retain wild-type (wt) p53 function as assessed by the response of derived cell lines to
DNA damage. Using one such cell line, K1, we have tested the effect of experimental abrogation of p53 function by generating matched sub-
clones stably expressing either a neo control gene, a dominant-negative mutant p53 (143ala) or human papilloma virus protein HPV16 E6. Loss
of p53 function in the latter two groups was confirmed by abolition of p53-dependent ‘stress’ responses including induction of the cyclin/CDK
inhibitor p21WAF1 and G1/S arrest following DNA-damage. In contrast, no change was detected in the phenotype of ‘unstressed’ clones, with
respect to any of the following parameters: proliferation rate in monolayer, serum-dependence for proliferation or survival, tumorigenicity,
cellular morphology, or tissue-specific differentiation markers. The K1 line therefore represents a ‘neutral’ background with respect to p53
function, permitting the derivation of functionally p53 + or – clones which are not only iso-genic but also iso-phenotypic. Such a panel should be
an ideal tool with which to test the p53-dependence of cellular stress responses, particularly the sensitivity to potential therapeutic agents, free
from the confounding additional phenotypic differences which usually accompany loss of p53 function. The results also further support the
hypothesis that p53 mutation alone is not sufficient to drive progression of thyroid cancer to the aggressive anaplastic form.
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Mutation of the tumour suppressor gene p53 leading to loss of
function (with or without dominant-negative activity), is well-
established as a key event in human tumorigenesis (Greenblatt et
al, 1994). The high frequency of mutation observed in most
cancers clearly reflects a strong selective advantage, which is
supported by both in vitro (Michalovitz et al, 1991) and in vivo
transgenic experiments (Lavigeur et al, 1989; Kemp et al, 1993).
Indeed, many cancer cells appear to be totally dependent on a loss
of p53 function for survival (Baker et al, 1990; Diller et al, 1990;
Johnson et al, 1991).

It is clear, however, that with a few possible exceptions such as
ultraviolet (UV)-induced skin cancer (Zeigler et al, 1994), p53
mutation is not an initiating event and only confers a selective
growth advantage once a critical stage in the clonal evolution of a
tumour has been reached (Fearon and Vogelstein, 1990; Kemp et
al, 1993). This correlates loosely with increasing clinical ÔstageÕ
and pathological ÔgradeÕ (Fujimoto et al, 1992; Barnes et al, 1993;
Navone et al, 1993), but the exact nature of the step that converts a
p53-insensitive to a p53-sensitive tumour clone remains unclear,
as indeed does the biochemical basis for selective growth suppres-
sion of such tumour cells by wild-type (wt) p53 (Wynford-
Thomas, 1996; Wynford-Thomas et al, 1996).

Tumours of the thyroid follicular cell provide a particularly
useful model for studying this question. Instead of the usual
continuous spectrum, in these tumours there is a remarkably clear-
cut demarcation between two clinico-pathological entities: i)
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differentiated cancers (the majority) which usually carry a very
favourable prognosis; and ii) undifferentiated (anaplastic) cancers
which are among the most malignant of all human cancers
(Carcangiu et al, 1985; Williams and Williams, 1989). Further-
more, the rate of transition between these phenotypes appears to be
very low, such that most differentiated cancers can metastasize and
(in the absence of therapy) generate a potentially fatal tumour
burden without ever undergoing anaplastic transformation. This
ÔdiscontinuityÕ in progression correlates with an equally striking
difference in frequency of p53 mutation, from virtually zero in
differentiated cancers (whether primary or metastatic) to well over
50% in anaplastic tumours (Ito et al, 1992; Fagin et al, 1993;
Wynford-Thomas, 1993). The magnitude of this contrast, coupled
with the stability of the differentiated stage, enabling homoge-
neous clinical samples, and even cell lines, with wt p53 phenotype
to be obtained, makes this a unique model to investigate the nature
of the selection pressure driving p53 mutation in human cancer.

The correlation between p53 mutation and the anaplastic pheno-
type could most readily be explained if loss of p53 function led
directly to the increased tumour aggressiveness and loss of differ-
entiation characteristic of this progression step. Evidence from our
laboratory, however, indicates that this simple scenario is not
correct. Using a cell line derived from a differentiated thyroid
cancer (K1), in which wt p53 appeared to be functional in terms of
the response to ÔacuteÕ stimuli from DNA-damaging agents such
as bleomycin (Wyllie et al, 1995), we previously reported that
stable expression of a dominant-negative mutant of p53 (143ala),
while abrogating the G1/S cell cycle check-point, had no other
obvious phenotypic effect (Blaydes et al, 1995; Wyllie et al, 1995).

This is a potentially important finding which deserves further
investigation, since it supports the hypothesis that progression
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from differentiated to anaplastic thyroid cancer requires events
additional to loss of p53 function. Furthermore, we reasoned that if
K1 cells were indeed indifferent to the presence or absence of wt
p53 function, they would represent an ideal, ÔneutralÕ, background
on which to derive matched functionally p53 + or Ð lines for use as
a tool to investigate p53-dependency of therapeutic agents.

Our earlier study (Wyllie et al, 1995) examined only a few
phenotypic features, however, and employed just a single p53
mutant which has subsequently been found to be an inefficient
dominant-negative in some contexts (Williams et al, 1995). We
have therefore now re-examined this model in more detail,
analysing multiple clones, multiple parameters of proliferation and
differentiation state, and using not only mutant p53 but also the
human papilloma virus protein HPV16 E6 as a means of abro-
gating p53 function.

MATERIALS AND METHODS

Cell culture

The K1 and FTC human thyroid cancer cell lines were kindly
provided by Prof. M Schlumberger (Villejuif, France) and Dr P
Goretski (Dusseldorf, Germany), respectively. Both lines and their
derivatives were grown as monolayers in a 2:1:1 (by volume)
mixture of DulbeccoÕs modified EagleÕs medium, HamÕs F12, and
MCDB104 (all from Life Technologies, Paisley, UK) (Bond et al,
1992), supplemented with 10% fetal calf serum (FCS; Imperial
Labs, London, UK).

DNA transfection

Cells were plated at 2 × 105 per 60-mm dish and transfected 2 days
later by the strontium phosphate coprecipitation method (Brash et
al, 1987). The plasmids used were pc53-SCX3 which expresses a
human mutant p53 (143ala) (Baker et al, 1990) and pSV2neo as a
negative control (Southern and Berg, 1982). Stable transfectants
were selected by growth in 400 µg mlÐ1 G418 (Life Technologies).

Retroviral gene transfer

A high-titre amphotropic retroviral vector (PA317-16E6) (Halbert
et al, 1991), expressing the E6 gene from human papilloma virus
type 16, was kindly provided by Dr D Galloway (Seattle, WA,
USA). As a negative control we used a neo-only vector of similar
titre, psi-CRIPneo (Wyllie et al, 1993).

For gene transfer, cells were plated at 2 × 105 per 60-mm dish
and infected with undiluted viral supernatant (containing 8 µg mlÐ1

polybrene, Aldrich, Gillingham, UK) from amphotropic producer
cell lines as described previously (Burns et al, 1989). Two days
later, cultures were passaged into G418 (400 µg mlÐ1) and colonies
subsequently selected.

Immunocytochemical analysis

For p53 detection, cells growing on thermanox coverslips (Life
Technologies) were fixed in methanol:acetone (1:1) (10 min at
Ð20°C) and immunostained with the mouse monoclonal antibody
PAb421 (Harlow et al, 1981) using a standard indirect immunoper-
oxidase procedure (Wynford-Thomas et al, 1990). For p21WAF1
detection, coverslips were fixed in 4% paraformaldehyde (10 min),
then pretreated with 100 mM glycine (10 min), 0.2% Triton
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X-100 (20 min) and 0.3% hydrogen peroxide (3 min) and non-
specific binding blocked with 2% horse serum (30 min). p21
protein was detected using mouse monoclonal antibody 6B6H4
(Pharmingen Inc, San Diego) followed by a mouse-specific
avidinÐbiotinÐperoxidase system (Novocastra, Newcastle-upon-
Tyne, UK).

ELISA

Cellular p53 protein content was determined by enzyme-linked
immunosorbent assay (ELISA) using a Ôpan-p53Õ kit (Oncogene
Science, New York, NY, USA) as described previously (Wyllie et
al, 1995).

DNA damage

Bleomycin (Lundbeck, Milton Keynes, UK) was prepared as a
7.5 mg mlÐ1 stock solution in de-ionized water, stored at Ð20°C
and used at a final concentration of 250 µg mlÐ1, which was previ-
ously determined as the minimal dose required to obtain maximum
growth arrest in these cells (Wyllie et al, 1995). The timing of
analysis of p21WAF1 expression following bleomycin treatment
was based on previous time-course studies (Bond et al, 1995).

Flow cytofluorimetry

This was performed as described previously (Wyllie et al, 1995).

Northern blot analysis

Total RNA was extracted from cells in log-phase growth by
a modified guanidium/phenol method (RNAzol B; AMS
Biotechnology, Witney, UK), separated on 1% agarose gels (10 µg
per lane) and blotted to Hybond N+ (Amersham, Aylesbury, UK).
As a positive control for thyroid-specific transcripts, RNA was
similarly extracted from thyroid tissue derived from a patient with
GraveÕs disease. The following DNA probes were used: for PAX-
8, a 0.3 kb HindIII/EcoR1 insert of the human cDNA clone,
H26P/S3 (Poleev et al, 1992); for TTF1, a 0.7 kb Sac1 insert of the
rat cDNA clone, TTF1-THA (Guazzi et al, 1990); for thyroglob-
ulin (TG), a 0.98 kb Pst1 insert of the human cDNA clone, phTg1
(Brocas et al, 1982); for thyroid peroxidase (TPO), a 3 kb EcoR1
insert of the human cDNA clone, pTPO (Libert et al, 1987); for the
thyrotropin receptor (TSHR), a 2.3 kb BamH1/Xbo1 insert of the
human clone pSVL (Libert et al, 1989) and for GAPDH (control),
a 1.2 kb Pst1/Xba1 insert of the human cDNA clone, pHcGAP
(ATCC, Rockville, MD, USA). Filters were washed at high strin-
gency (65°C; 0.1 × SSPE) for all probes except for TTF1, which
was washed at low stringency (65°C; 1 × SSPE), and were stripped
and rehybridized to the GAPDH probe as a ÔloadingÕ control.

Analysis of cell growth

Doubling time
Cells (3 × 104) were plated in 60-mm dishes in medium containing
10% FCS, cell number counted daily until the cultures reached
confluence and doubling time calculated during log-phase growth.

Proliferation assay
Cells undergoing DNA synthesis were identified by addition of the
thymidine analogue bromo-deoxyuridine (BrdU) (Dako, Glostrup,
© Cancer Research Campaign 1999
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Denmark) to the medium for 1 h at a final concentration of 10 µM.
After labelling, cells were fixed in 70% ethanol (30 min at 4°C),
then pretreated with 4 M HCl (10 min) and 0.1 M borax, pH 8.5 (5
min). Incorporated BrdU was detected by an immunoperoxidase
method incubating first for 60 min with a mouse anti-BrdU
primary antibody (Dako) in the presence of 25 U mlÐ1 DNase1
(Life Technologies), followed by peroxidase labelled rabbit anti-
mouse immunoglobulin (Dako) and finally diaminobenzidine
substrate. After counterstaining with haematoxylin, the proportion
of positive nuclei (LI) was determined, using a sample of > 1000
cells per data point.

Colony forming efficiency
A single cell suspension was obtained after trypsinization and 102

cells were added to duplicate 60-mm dishes. After 10 days in stan-
dard growth conditions Giemsa-stained colonies of 50 cells or
more were counted, and colony forming efficiency (CFE)
expressed as a % of cell number plated.

Analysis of cell death

Terminal deoxynucleotidyl transferase assay
Cells were seeded on coverslips and fixed with 4% paraformalde-
hyde (30 min). Endogenous peroxidase was blocked with 0.3%
hydrogen peroxide in methanol (30 min) and the cells permeabi-
lized with 0.1% Triton X-100 in 0.1% sodium citrate (15 min).
Cells were then incubated for 1 h at 37°C with 250 U mlÐ1 terminal
deoxynucleotidyl transferase (TdT; Promega, Southampton, UK)
and 1 nmole biotinÐ16ÐdUTP (Boehringer Mannheim, Lewes,
UK). Sites of biotinÐ16ÐdUTP localization were visualized using
the mouse specific avidinÐbiotinÐperoxidase system (Novocastra).
Cells were counterstained with haematoxylin and the proportion of
apoptotic (brown) cells assessed, in samples of > 1000 cells per
data point.

Conventional gel electrophoresis
DNA was extracted according to Wyllie et al (1989) from a combi-
nation of free-floating and loosely-attached cells, electrophoresed
in a 1.5% agarose gel for 1Ð2 h at 90 V and visualized by ethidium
bromide staining.
© Cancer Research Campaign 1999
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Figure 1 Immunocytochemical analysis using antibody PAb421 showing high ex
cells (K1scx6) derived by transfection of ala143 mutant p53 (B), compared to low e
counterstain; bar = 50 µm
Tumorigenicity

106 cells, suspended in 0.2 ml of growth medium were injected
subcutaneously into athymic (nude) mice (1 injection per animal)
and monitored for appearance of tumours for up to 8 months.

RESULTS

Derivation of sub-clones of the thyroid cancer line K1
expressing mp53

The K1 cell line (Wyllie et al, 1993; Challeton et al, 1997) was
derived by spontaneous immortalization from the most common
pathological sub-type of differentiated thyroid cancer Ð ÔpapillaryÕ
carcinoma (Williams and Williams, 1989). Conventional immuno-
cytochemical (ICC) analysis with PAb421 showed low levels of
nuclear p53 and sequencing of the entire coding region (exons
2Ð11) from reverse transcribed mRNA confirmed the presence of
only wt sequence (Wyllie et al, 1995).

To directly assess the effect of loss of wt p53 function on the
behaviour of K1 cells, sub-clones (designated K1scx) were derived
by stable transfection with plasmid pc53-SCX which express the
ala143 mutant of human p53. Control sister clones (K1neo) were
obtained using plasmid pSV2neo. Four K1scx clones (K1scx3, 6, 8
and 9) were initially chosen on the basis of their much higher
expression of total p53 protein as shown by immunocytochemistry
(Figure 1B), when compared to the four K1neo control clones (3, 4,
5 and 11) (Figure 1A). (Mutant p53 is known to be stabilized in
these cells.) This was confirmed by ELISA assay which showed
p53 protein content in clones scx3, 6 and 8 to be 175, 222 and 164
µg mgÐ1 total cellular protein, respectively, whereas in K1neo
clones it could not be reliably detected above the detection limit
(approximately 5 µg mgÐ1). For comparison, FTC133, a trans-
formed thyroid cell line known to contain a homozygous mutant
p53 gene (Wright et al, 1991), contained 80 µg p53 per mg total
protein.

Functional status of p53 in K1scx subclones

p53 function in K1scx clones was assessed by determining the
integrity of p53-dependent DNA damage responses.
British Journal of Cancer (1999) 79(7/8), 1111–1120

pression of p53 protein in nearly all cells of a representative sub-clone of K1
xpression in control sub-clone K1neo3 (A). Immunoperoxidase; haematoxylin
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Figure 2 Flow cytometric analysis demonstrating absence of normal G1 arrest in K1scx cells following DNA damage. Note loss of the G1 DNA peak 31 h after
bleomycin treatment in K1scx6 compared to control clone K1neo3
p53 has been identified as a critical component of a signalling
pathway leading to G1 arrest following exposure to ionizing radia-
tion (Kastan et al, 1991). The status of this checkpoint was there-
fore assessed in K1neo and K1scx clones by analysing the
proportions of cells in G1, S and G2/M cell cycle phases following
treatment with the radiomimetic agent, bleomycin (Hsu et al,
1989; Wyllie et al, 1995).

In K1neo clones, flow cytometry showed no significant reduc-
tion in the G1 fraction up to 31 h after bleomycin treatment, by
which time most of the cells that were initially in S phase had
progressed into, and remained in, the G2 fraction (Figure 2). This
is consistent with retention of both G1 and G2 cell cycle check-
points. In contrast, all four K1scx clones showed a major reduction
of the G1 fraction by 31 h after bleomycin treatment, with most of
the cells having moved into the G2 compartment (Figure 2), indi-
cating retention of the G2/M, but loss of the G1/S checkpoint.

One of the downstream transcriptional targets of p53 respon-
sible for this G1 arrest is the cyclin kinase inhibitor, p21WAF1 and
cells that have lost functional p53 fail to induce expression of
p21WAF1 in response to some forms of DNA damage (El-Deiry et
al, 1994). Intranuclear p21WAF1 protein content in K1neo and
K1scx clones was therefore assessed immunocytochemically
before and after bleomycin treatment.

Untreated K1neo clones showed marked cellÐcell heterogeneity
with an average 4.5 ± 0.9% of nuclei (mean ± SE for the four
clones tested) showing detectable immunostaining (Figure 3A).
Bleomycin treatment led to a clear increase in expression, in terms
both of the proportion of positive nuclei (which increased to
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21.9 ± 1.7%) and the intensity of immunostaining (Figure 3B and
Table 1). Untreated K1scx cells showed a very similar level of
immunostaining to K1neo cells (average of 4.4 ± 1.5% for the four
clones; Figure 3C). In contrast, however, in K1scx cells (all four
clones), no induction of expression could be detected in treated
cultures either in proportion positive (3.4 ± 0.4% for the four
clones) or intensity (Figure 3D and Table 1).

Derivation of K1 lines expressing HPVE6

Although the above data supported the effectiveness of our ala143
mutant as a dominant-negative, there remained some concern from
other studies (Forrester et al, 1995; Friedlander et al, 1996;
Ludwig et al, 1996) that some p53 targets may still be activatable
in K1scx cells, due either to their greater sensitivity to any residual
wt p53 function, and/or to retention of transcriptional activity by
the mutant for a sub-set of p53-dependent promoters.

We therefore also used an independent approach for abrogation
of wt p53 function in K1 cells, by expression of the HPV16E6
gene introduced by means of an amphotropic retroviral vector,
pLXSNE6 (Halbert er al, 1991). Five G418 resistant clones were
chosen at random together with four control lines expressing only
a retrovirally-transduced neo gene and p53 functional status was
assessed as above by measuring p21WAF1 induction in response
to bleomycin treatment.

The neo controls behaved, as expected, like their transfected
counterparts, the proportion of p21-positive nuclei rising from
5.0 ± 2.0% to 25.1 ± 5.1% following bleomycin treatment (data
© Cancer Research Campaign 1999



p53 + or – cancer cell lines 1115

A

C

B

D

E F

Figure 3 Abrogation by mutant p53 or HPV16E6, of p21WAF1 induction in K1 cells following exposure to bleomycin. Immunocytochemical analysis of p21
expression in control clone K1neo3 (A, B ) compared to K1scx6 (C, D) and K1E6-4 (E, F), in untreated cultures (A, C, E) and 4 h after the start of bleomycin
treatment (B, D, F). Haematoxylin counterstain; bar = 50 µm
not shown). However, a clear difference was observed between
K1.E6 clones and their K1scx counterparts, in that in untreated
cultures no p21-expressing cells could be detected in three out of
five K1.E6 clones and only a very low % in the other two clones
(the average for all five clones being < 0.1%; Figure 3E). This is
consistent with a more complete abrogation of p53 function by E6
than by the 143ala p53 mutant. As expected, E6 clones showed no
induction of p21 expression following bleomycin treatment
(Figure 3F and Table 1).
© Cancer Research Campaign 1999
Effect of inactivating wt p53 function on growth and
survival of K1 cells

The doubling time (mean ± SE) in standard medium during log
growth was 22.0 ± 1.8 h for the three K1neo clones and 24.3 ± 0.8 h
for the three K1scx clones analysed (Table 2). The proportion of
nuclei in S phase (LI) under the same conditions was 34.0 ± 0.75%
and 34.6 ± 1.0%, respectively (Table 2). All clones showed a
very high plating efficiency, CFE being 60.0 ± 16.2% for K1neo
British Journal of Cancer (1999) 79(7/8), 1111–1120
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Table 1 Loss of wt p53 function in K1 clones expressing mp53 or HPV16E6
as evidenced by failure to induce p21WAF1 protein expression following
exposure to bleomycin

% of cells with immunodetectable p21

Clone – bleomycin + bleomycin

Control
neo3 2.7 21.4
neo4 5.8 24.2
neo5 6.1 24.6
neo11 3.3 17.2

mp53
scx3 8.5 4.6
scx6 1.8 3.0
scx8 2.7 2.8
scx9 4.5 3.0

HPV E6
E6.1 0 0
E6.2 0 0
E6.3 0.2 0.2
E6.4 0 1.2
E6.5 0 0

Table 2 Growth parameters for K1neo and K1scx clones

Clone Doubling BrdU LI (%) CFE Tumour
time (%) latency

(hours) 10% FCS 0% FCS (weeks) a

neo3 21.7 32.6 10.3 48 5, 7, 20, 28
neo4 19.1 34.0 29.9 40 4, 4, 5, 5
neo5 25.2 36.0 20.7 92 5, 5, 6, 8
neo11 N.D. 33.3 31.9 N.D. ND

scx3 23.0 32.7 26.3 30 ND
scx6 24.1 34.7 26.8 75 4, 4, 5, 8
scx8 25.8 33.6 30.8 80 2, 3, 4, 4
scx9 N.D. 37.2 33.7 97 ND

ND, Not determined. aTime to form tumour with maximum diameter 0.5 cm.
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Figure 4 Effect of serum-starvation on growth and survival of control and
mp53-expressing K1 sub-clones. Cell number is shown for four K1neo clones
(solid lines) and four K1scx clones (broken lines) at 0, 2, 5, 7 and 9 days after
serum withdrawal
compared with 70.5 ± 14.3% for K1scx clones (Table 2). None of
these differences between K1neo and K1scx reached statistical
significance.

The effect of inactivation of wt p53 function on response to
withdrawal of serum growth factors was tested by plating cells in
medium supplemented with 10% serum for 48 h and then
refeeding with serum-free media. Assessment of DNA synthesis
was performed only after 2 days serum starvation since later
analysis proved unreliable due to high cell death rates. Most clones
showed only a small decrease in LI, apart from K1neo3 which
showed an approximately threefold decrease (Table 2). Overall,
there was no significant difference in LI between the four
K1neo and the four K1scx clones in serum-starved conditions
(23.2 ± 5.0% and 29.4 ± 1.75%, respectively) (Table 2).

Determination of cell number at 0, 2, 5, 7 and 9 days after serum
starvation showed an increase in most neo and scx clones up to day
5 and a decrease thereafter. There was considerable inter-clonal
variability in the rate of onset of this decrease in cell number with a
trend for the K1scx clones to lose cells more quickly than the
K1neo clones (Figure 4). However, this difference did not reach
statistical significance. The basis for this cell loss was investigated
in one K1neo clone (No. 3) and one scx clone (No. 6). The TdT
assay showed an increase in the number of positive cells from < 1%
at days 0 or 2, to 2.5Ð3.0% at day 5 and 6.5Ð14% by day 7 and 9 of
serum-starvation, consistent with apoptosis being the mode of cell
death. This was confirmed by gel electrophoretic analysis of DNA
extracted from floating and loosely attached cells obtained from a
pool of day 7 and 9 serum-starved cultures, which showed the
laddering pattern characteristic of apoptosis (data not shown).

Tumorigenicity
All clones formed visible tumours in athymic mice within 7
months. The median time taken to form 0.5 cm diameter tumours
was 4 weeks in K1scx compared to 5 weeks for K1neo. This
difference was entirely attributable to a long latency in two of the
animals injected with clone neo3 (Table 2) and, overall, did not
reach statistical significance.
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Effect of loss of functional p53 on differentiation in K1
cells

Morphology
Under standard growth conditions all K1neo clones grew as a
monolayer with well defined cellÐcell boundaries and although at
least some cells still continued to cycle at confluence (as indicated
by the 24-h BrdU LI; data not shown), this did not result in any
appreciable Ôpiling upÕ (see Figure 5A for a representative neo
clone). The expression of mutant p53 or HPVE6 did not result in
any consistent change in morphology (see Figure 5b for a repre-
sentative scx clone).

Expression of thyroid-specific differentiation
Previous studies have suggested that altering p53 functional status
can lead to an alteration in differentiation, as measured by the
expression of the thyroid-specific transcription factor, PAX8
© Cancer Research Campaign 1999
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A B

Figure 5 Abrogation of p53 function does not cause morphological change in K1 cells. Phase contrast photomicrogaphs of representative control clone
K1neo3 (A) and mp53-expressing clone K1scx6 (B); bar = 50 µm
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Figure 6 Abrogation of p53 function fails to cause loss of differentiation in
K1 clones, as determined by retention of PAX8 expression. Northern blot
analyses of PAX8 mRNA (upper panels; transcript size 3.1 kb) compared
to GAPDH (lower panels), with ratio of signals shown below each lane.
(A) Clones K1neo 3, 5 and 11 (lanes 3–5) show similar PAX8/GAPDH ratios
to mp53-expressing clones K1scx 3, 6 and 9 (lanes 6–8), as do the K1 parent
line (lane 2) and two similar thyroid cancer cell lines with retained wt p53
function (K2 and K5) (lanes 9, 10). In contrast PAX8 was undetectable in a
poorly-differentiated thyroid cancer line FTC133 (lane 12). (B) Corresponding
analysis for five K1E6 clones (lanes 2–6) and their four K1neo control clones
(lanes 7–10). For both blots, RNA from non-neoplastic thyroid tissue (Graves’
goitre) was included as a positive control (lane 1), and from normal diploid
fibroblasts as a negative control (lane 11)
(Battista et al, 1995; Fagin et al, 1996). To investigate this rela-
tionship in our cell line, the K1scx, K1E6 and K1neo clones were
compared and the ratio of PAX8 to control (GAPDH) mRNA
expression was calculated for each clone. No significant difference
in PAX8 mRNA expression between the four K1neo and the four
K1scx clones was observed (mean ratio of 1.0 ± 0.4 and 0.9 ± 0.3,
respectively; Figure 6A). A similar result was seen when the five
K1E6 clones were compared with their four control neo clones
(mean ratio of 1.6 ± 0.7 for E6 and 1.7 ± 0.8 for neo; Figure 6B).
For comparison, a poorly differentiated thyroid carcinoma cell line
(FTC133), showed no PAX8 expression (Figure 6A and B).

DISCUSSION

In this study we have used gene transfer in vitro to directly investi-
gate whether loss of wt p53 function is sufficient to drive progres-
sion of the transformed phenotype in thyroid cancer cells.
Expression of the 143ala mutant failed to cause any demonstrable
loss of differentiation in a cell line derived from differentiated
thyroid (papillary) cancer, nor did it confer any evidence for
increased proliferative capacity in vitro or in vivo.

There is now good evidence that expression of such mutants can
sometimes fail to eliminate function of the endogenous wt protein
and, indeed, the effectiveness of their dominant-negative activity
appears to be highly dependent on cell context, mutation site
(Forrester et al, 1995; Friedlander et al, 1996; Ludwig et al, 1996),
and promoter target. In our study, the 143ala mutant appeared to be
effective, at least as evidenced by abrogation of p21WAF1 induc-
tion and G1/S arrest in response to DNA damage. However, to
provide a complementary, and potentially more reliable, method of
p53 inactivation, we also employed HPVE6 expression, which
promotes ubiquitination and degradation of p53 protein (Scheffner
et al, 1990). Some indication of a more complete loss of p53 func-
tion was indeed seen, in that E6 not only blocked the DNA damage
response, but also eliminated the low, basal level of p21 expression
seen in untreated cells. As with mp53, however, no evidence for
progression of the transformed phenotype by E6 could be
observed.
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Other groups have attempted to reconstruct p53-dependent
tumour progression in other tumour models, notably with respect
to multi-stage colon carcinogenesis, in which p53 mutation
appears to play a role in progression of adenomas to carcinomas.
Using an approach similar to our own, Williams et al (1995) also
failed, however, to demonstrate any phenotypic effect of mp53
expression in an adenoma-derived cell line. Although, with some
of the mutants used, this could be explained by incomplete domi-
nant-negative activity, this could not account for the lack of effect
of the his273 mutant. Likewise, in myeloid malignancies, although
there is a clear-cut association between p53 mutation and the
progression of chronic myeloid leukaemia (CML) to Ôblast crisisÕ,
only minor effects could be demonstrated on introduction of the
ala143 mutant into CML-derived cells (Bi et al, 1994). Clearly, the
conclusion from all of these studies is that p53 mutation, while
necessary, is not sufficientfor tumour progression.

While this conclusion is entirely consistent with the role of p53
in control of cell proliferation (Wynford-Thomas, 1996), it was
perhaps less predictable in relation to the now substantial body of
data supporting a role for p53 in the control of tissue-specific
differentiation (Almog and Rotter, 1997).

In addition to correlative evidence based on changes in p53
protein content, or (more importantly) transactivational activity
accompanying differentiation (Aloni-Grinstein et al, 1993;
Halevy, 1993; Weinberg et al, 1995) there is good experimental
evidence that manipulation of p53 activity can modulate the differ-
entiation process. For example, inhibition of wt p53 by dominant-
negative mutants has been shown to block differentiation in B-cell
(Aloni-Grinstein et al, 1993, 1995; Halevy, 1993; Weinberg et al,
1995), myeloid (Soddu et al, 1996), and muscle (Soddu et al,
1996) cell models. Conversely, introduction of wt p53 can restore
the differentiation pathway to p53-null cells of B-cell (Shaulsky et
al, 1991), myeloid (Soddu et al, 1994), erythroid (Feinstein et al,
1992) or epithelial (Brenner et al, 1994) origin. Indeed, two groups
have reported similar data in relation to thyroid. Fagin et al (1996)
partially restored differentiation (TPO and PAX8 expression) to a
poorly differentiated thyroid cancer line by expression of wt p53,
and Moretti et al (1997) were successful in restoring TSH-depen-
dent expression of thyroid differentiation genes (Tg and TPO) to
the undifferentiated (anaplastic) cancer cell line ARO using a
temperature-sensitive p53 mutant (Val 135). However, it should be
noted that the first report was restricted to a single clone derived
from a line which was not representative of truly undifferentiated
thyroid cancer, and in the second study, the absolute levels of tran-
scription achieved were extremely limited (being detectable only
by reverse transcriptionÐpolymerase chain reaction).

While in some of the above examples, it is difficult to exclude
an indirect effect of p53 via its action on accompanying changes in
cell proliferation, there is evidence in at least some models (Soddu
et al, 1996) for a specific effect on differentiation, and indeed
some data to demonstrate a direct action of wt p53 on transcription
of differentiation genes (Aloni-Grinstein et al, 1993).

The above data therefore suggest that p53 function is necessary
for completion of the differentiation programme in many cell
types. While at first sight this contradicts the apparently normal
differentiation of most lineages in p53-null mice, as pointed out
previously (Eizenberg et al, 1996), it is entirely possible that
redundant controls exist in normal cells in vivo and that it is only
when these are lost following in vitro culture and/or transforma-
tion that the role of p53 is revealed.
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Even in cell line models, however, there is little evidence to
show that loss of p53 function can actually reversedifferentiation
(as opposed to blocking its execution) and that it can thereby
contribute directly to loss of tumour cell differentiation.
Interestingly, one of the most clear-cut studies in this respect
(Battista et al, 1995) was carried out using a rat thyroid epithelial
cell line (PCCL3), in which expression of a dominant-negative
p53 (143ala) was shown to cause loss of expression of thyroid-
specific differentiation genes (Tg, TPO, TSHR), along with the
thyroid-specific transcription factor PAX8. Furthermore, forced
expression of PAX8 in such cells was enough to restore
differentiation.

This finding contrasts strikingly with our failure to observe any
diminution of PAX8 expression in our human thyroid cell line
following expression of mp53 or E6. We can only speculate that
the difference in behaviour reflects differences in co-existing
genetic abnormalities or in the species of origin of the two cell
lines. With respect to the latter, it should be noted that, in common
with nearly all human (as opposed to rodent) thyroid cell lines, K1
lack expression of Tg and TPO. This appears to reflect a sponta-
neous and unavoidable loss of these differentiation markers in
monolayer cultures of thyrocytes. Nevertheless, they retain PAX8,
which lies upstream of Tg and TPO in the differentiation pathway
and represents one of the fundamental determinants of thyroid
differentiation. Since this is a key distinguishing feature between
differentiated and undifferentiated cancers (Fabbro et al, 1994), we
consider K1 to be a useful, although clearly not ideal, model for
this purpose.

The conclusions from this work are entirely consistent with our
findings in a different experimental model of thyroid tumour
development (Bond et al, 1996), in which we observed that
expression of SV40T (which abrogates p53 function) is sufficient
only to induce differentiated clones with limited proliferative
potential. De-differentiated sub-clones with extended lifespan
only arose after a variable period of continuous culture, again
pointing to a model in which anaplastic progression requires loss
of p53 function together with at least one additional genetic or
epi-genetic event.

Quite apart from its direct relevance for thyroid tumour biology,
the clones described here represent an ideal panel of matched, iso-
genic cell lines with which to investigate the role of wt p53 in
physiological and pathological cellular responses, an approach
whose value has recently been emphasized by Weinstein et al
(1997). A major limitation of most resources in this area, including
the NCI panel (OÕConnor et al, 1997) is that the majority of
randomly selected human cancer lines do not tolerate the presence
of wt p53, hence by definition it is impossible to obtain an isogenic
matched line with wt function.

The starting point therefore must be, as in this study, a tumour
cell type that usually retains wt function. Furthermore, it should
also be indifferent to loss of this activity in terms of its prolifera-
tive phenotype in normal culture conditions, so as to minimize the
possibility of differences being merely an indirect consequence of
loss of p53 function. Finally, multiple independent sister clones,
rather than pools, should be examined. This avoids the pitfall that
can arise if an unsuspected minor sub-population of cells in the
parent line have acquired an additional abnormality that by itself
confers no growth advantage but that synergizes with loss of p53
function, allowing it to become the dominant clone in a pool of
transfectants.
© Cancer Research Campaign 1999
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The panel of p53 +/Ð sister clones described here meets all these
criteria and should be a useful tool to investigate the p53-depen-
dence of a wide variety of cellular responses to external stimuli,
particularly the sensitivity to chemotherapeutic agents or other
novel therapies. Although other wt p53 human cell lines have been
used as the ÔparentÕ in such approaches, notably RKO colon,
MCF7 breast (Fan et al, 1995), and A2780 ovarian (McIlwrath et
al, 1994), to our knowledge this thyroid-derived panel represents
the most well-characterized yet available.
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