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Background: Breast tumor heterogeneity is related to risk factors that lead to aggressive

tumor growth; however, such heterogeneity has not been thoroughly investigated.

Purpose: To evaluate the performance of texture features extracted from heterogeneity

subregions on subtraction MRI images for identifying human epidermal growth factor

receptor 2 (HER2) 2+ status of breast cancers.

Materials and Methods: Seventy-six patients with HER2 2+ breast cancer who

underwent dynamic contrast-enhanced magnetic resonance imaging were enrolled,

including 42 HER2 positive and 34 negative cases confirmed by fluorescence in situ

hybridization. The lesion area was delineated semi-automatically on the subtraction MRI

images at the second, fourth, and sixth phases (P-1, P-2, and P-3). A regionalization

method was used to segment the lesion area into three subregions (rapid, medium, and

slow) according to peak arrival time of the contrast agent. We extracted 488 texture

features from the whole lesion area and three subregions independently. Wrapper, least

absolute shrinkage and selection operator (LASSO), and stepwise methods were used to

identify the optimal feature subsets. Univariate analysis was performed as well as support

vector machine (SVM) with a leave-one-out-based cross-validation method. The area

under the receiver operating characteristic curve (AUC) was calculated to evaluate the

performance of the classifiers.

Results: In univariate analysis, the variance from medium subregion at P-2 was the

best-performing feature for distinguishing HER2 2+ status (AUC = 0.836); for the whole

lesion region, the variance at P-2 achieved the best performance (AUC = 0.798). There

was no significant difference between the two methods (P = 0.271). In the machine

learning with SVM, the best performance (AUC= 0.929) was achieved with LASSO from

rapid subregion at P-2; for the whole region, the highest AUC value was 0.847 obtained

at P-2 with LASSO. The difference was significant between the twomethods (P= 0.021).

Conclusion: The texture analysis of heterogeneity subregions based on intratumoral

regionalization method showed potential value for recognizing HER2 2+ status in

breast cancer.

Keywords: breast cancer, receiver operating characteristic, immunohistochemistry, magnetic resonance imaging,

gene expression
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INTRODUCTION

Breast cancer is the most common malignant tumor in women
worldwide. Molecular subtypes of breast cancer, which are
indicators of disease-free and overall survival, can be used to
guide targeted therapy (1, 2). A classification system based on
tumor genotype categorizes breast tumors into four molecular
subtypes: luminal A, luminal B, human epidermal growth factor
receptor 2 (HER2)-overexpressing, and basal-like (3–6). HER2
is a cell-surface receptor that is present in normal mammary
gland cells and controls growth, division, and repair of breast
cells (7, 8). HER2-positive tumors account for 20–25% of
human breast tumors (9). HER2-overexpressing cancers are
characterized by rapid growth and division of tumor cells,
promoting cell proliferation and angiogenesis (10, 11). HER2-
positive breast cancers are associated with a worse survival, a
poorer prognosis, and a higher risk of recurrence than HER2-
negative cases; however, they are more sensitive to neoadjuvant
trastuzumab-based therapy (12–14). Thus, it is critical to identify
the HER2 status of breast cancer to select the appropriate
treatment and evaluate the response to therapy. HER2 status
is generally detected using streptavidin-peroxidase staining for
immunohistochemistry (IHC) analysis. IHC staining for HER2
is scored from 0 to 3+: scores of 0 and 1+ are considered
HER2-negative, and a score of 3+ is considered HER2-positive.
Cases of HER2 2+ need to be analyzed by fluorescence in situ
hybridization (FISH) to confirm the expression status (15–17).
However, the determination of HER2 2+ status by FISH is
expensive, time consuming, and requires specialized equipment
and technical skills. Therefore, there is an urgent demand for the
development of a sensitive, quick, easy-to-use, and cost-effective
alternative method to identify HER2 2+ status.

Due to tumor growth, heterogeneity is caused by the new
immature, tortuous and hyper-permeable capillaries from the
existing blood vessels, and found in many breast carcinomas (18–
21). Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is currently considered the most sensitive imaging
modality for assessing microvessel distribution and blood
perfusion in breast cancer (22, 23). Studies have used the
heterogeneity of breast DCE-MRI images within the whole tumor
to build prediction models of tumor subtypes (24, 25). A recent
study investigated the association between Oncotype DX RS and
DCE-MRI texture features (26). A related study by Eric et al.
analyzed the DCE-MRI kinetic characteristics by quantifying the
percent volume of the tumor, which is associated with HER2
status (27).

These studies based on DCE-MRI data provide useful

information by quantifying heterogeneity in the entire tumor.

However, analysis of intratumoral regions may provide valuable
clues that could be missed in the analysis of whole tumors
(28, 29). Previous studies analyzing the texture features from
intratumoral regions on DCE-MRI mainly focused on predicting
the pathological response of breast cancer to neoadjuvant
chemotherapy (30–32). Few studies have used the texture features
from tumor subregions for predicting the molecular subtypes
of breast cancer (24). To the best of our knowledge, there are
no studies investigating the association between texture features

extracted using the intratumoral regionalization method and
HER2 2+ status of breast cancers.

MATERIALS AND METHODS

Patient Cohort
The study was approved by the Ethics Committee of Shengjing
Hospital of China Medical University (NO.2019PS175K). All
images were retrospectively selected after removing all patient
information; therefore, the requirement for informed consent
was waived. The study enrolled 465 patients with pathologically
confirmed breast cancer who underwent DCE-MRI between
November 2017 and August 2018. Patients were excluded if the
following conditions were met: (1) cases with HER2 scores of
0, 1+, and 3+ verified by IHC (n = 278); (2) cases with HER2
2+ not tested by FISH (n = 64); and (3) cases treated with
chemotherapy or radiation therapy before MRI examination (n
= 47). Finally, 76 patients with HER2 2+ status verified by FISH
were selected for subsequent analysis.

MR Image Acquisition
All DCE-MRI examinations were performed with a GE 3.0T
MRI scanner (Signa HDxt, GE Healthcare, USA), and each
patient was scanned in the prone position using a dedicated
eight-channel double-breast coil. The orientation of slice images
was transverse. For each MRI scan, a pre-contrast series of
VIBRANT-VX sequence T1-weighted 3D images (mask images)
was initially acquired. Eight post-contrast scans were performed
after intravenous injection of the contrast agent (0.5 mmol/mL,
Gadodiamide, Omniscan, GE Healthcare, USA; Magnevist,
Bayer-Schering Pharmaceuticals) at 4 mL/s (0.15 mmol/kg body
weight) and an equal volume of saline flush at the same injection
speed. The DCE-MRI scanning parameters were as follows:
repetition time = 7.42ms, echo time = 4.25ms, flip angle = 15,
slice thickness = 2.20mm, spacing between slices = 2.20mm,
inversion time = 20ms, image matrix = 1024 × 1024, temporal
acquisition= 80 s, and slice number= 78.

Research Framework
This study was performed in several stages as follows: first, the
lesion area of each case was extracted semi-automatically based
on the subtraction DCE-MRI images. Second, each lesion was
divided into three subregions by an intratumoral partitioning
method according to the time to peak (TTP) of the kinetic curve.
Third, texture features were extracted from both lesion areas and
subregions separately. Fourth, three feature selection methods
were used to generate optimal feature subsets. Fifth, a logistic
regression model was applied to classify tumors with different
HER2 2+ status. Finally, receiver operating characteristic (ROC)
analysis was performed to evaluate the performance of the
model. The processing of tumor segmentation, intratumoral
regionalization, feature extraction and selection was performed
using the Matlab programming platform (version R2018a,
Mathworks, Natick, MA). Figure 1 shows the flowchart of the
classification system.
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FIGURE 1 | Flowchart of the proposed method for discriminating HER2 2+ status.

Tumor Segmentation
For each patient, eight subtraction volume images were obtained
by subtracting pre-contrast images from post-contrast images.
All slice images (8 volume × 78 slice images/per volume =

624 slice images) were read by two experienced radiologists,

and the slice image with optimal representation of the largest
tumor area was selected with an evaluation consensus between
the two radiologists for subsequent lesion segmentation, as well
as those from the same slice at the other seven phases. Because
of the exploratory nature of the study, lesion segmentation was
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only performed on slices extracted at the second, fourth, and
sixth phases (termed P-1, P-2, and P-3, respectively). Arbitrarily
shaped regions of interest containing the lesion area were
independently drawn by two radiologists withmore than 10 years
of experience in reading breast MRI images who was blinded to
the pathological diagnosis. As reported in previous studies, the
lesion boundary was automatically delineated by a spatial fuzzy
C-means algorithm and was then refined using morphological
processing (33–35). The results of semi-automatic segmentation
were examined and corrected by another radiologist with 12 years
of experience in interpreting breast MRI.

Intratumoral Regionalization
To survey intratumoral heterogeneity, a previously reported
method was used to divide the lesion area into three subregions
according to the variation of pixel intensity at different imaging
phases (24). Briefly, the method used was as follows:

First, the relative enhancement was calculated by comparing
post-contrast images with pre-contrast images on a pixel-by-pixel
basis using the following equation.

E
(

x, y, t
)

=
SI

(

x, y, t
)

− SI
(

x, y, t
)

SI
(

x, y, t0
) × 100%, t = {1, 2, 3 . . . 8}

where E(x, y, t) represents the percentage of enhancement, SI(x,
y, t) represents the intensity of pixels (x, y) measured at time t,
and t0 is the precontrast time instant. The kinetic curve, E(x, y,
t), was defined for describing the change of relative enhancement
over time (36). TTP, the time at which peak enhancement was
achieved, was computed from the kinetic curve as follows.

TTP
(

x, y
)

= argmaxE
t

(

x, y, t
)

We then partitioned the pixels within the lesion area based on
their TTP values. More specifically, the lesion pixels at the first
four, fifth or sixth, and seventh or eighth phases for reaching
peak enhancement values were grouped into rapid, medium, and
slow subregions, respectively. Therefore, the whole lesion was
partitioned into three subregions representing various extensions
of TTP values.

Feature Extraction and Selection
Texture features were extracted from the lesion area and
subregions to determine the heterogeneity of breast tumors. A
total of 488 texture features were measured, including histogram-
based, gray-level co-occurrence matrix (GLCM)-based, gray-
level run-length matrix (GRLM)-based, and discrete wavelet
transform (DWT)-based features, as shown in Table 1.

Feature filter is a crucial step for building robust learning
models by removingmost irrelevant and redundant features from
the entire feature set. In particular, the feature selection is even
more important in the analysis of high-dimensional datasets
with the number of features largely exceeding the number of
observations (37). In this study, the feature selection procedure
was as follows:

1) Features with small variance values (i.e., a variance value <

0.01) were removed to eliminate meaningless features (38,
39).

2) Features with high similarity (i.e., a Pearson correlation
coefficient > 0.95 with other features) were removed to
reduce colinearity features (40).

Statistical Analysis
Differences in categorical variables were assessed using the x2

test or Fisher’s exact test when the expected value in any

TABLE 1 | Features measured with different texture analysis methods.

Methods Texture features Number

Histogram Mean, variance, skewness, kurtosis 4

GLCMa Autocorrelation (ACOR), contrast (CON), correlation (COR), cluster prominence(CP), cluster shade (CS), dissimilarity (DIS), energy

(ENE), entropy (ENT), homogeneity (HOM), maximum probability (MP), sum of squares (SOS), sum average (SA), sum variance (SV),

sum entropy (SE), difference variance (DV), difference entropy (DE), information measure of correlation (IMC), inverse difference

normalized (IDN), inverse difference moment normalized (IDMN)

380

GRLMb Run-length non-uniformity (RLN), gray level non-uniformity (GLN), long run emphasis (LRE), short run emphasis (SRE), fraction of

image in runs (FIR), low gray-level run emphasis (LGRE), high gray-level run emphasis (HGRE), short run low gray-level emphasis

(SRLGE), short run high gray-level emphasis (SRHGE), long run low gray-level emphasis (LRGE), long run high gray-level

emphasis(LRGE)

44

DWTc Harr parameters 20

Deubechies2 parameters 20

Symlet4 parameters 20

Total 488

GLCM, gray level co-occurrence matrix; GRLM, gray level run-length matrix; DWT, discrete wavelet transformation.
aGLCM parameters were calculated for four distances (1, 2, 3, and 4 pixels) and four angles (0, 45, 90, and 135◦). (d, 0), (0, d), (d, d), (–d, –d) represent 0, 45, 90, and 135◦, respectively,

where d is the distance. For example, CON (0, 1) represents the contrast feature calculated for a distance of 1 and a direction of 90◦.
bGELM parameters were calculated for four angles (0, 45, 90, and 135◦).
cDWT parameters were calculated for four layers and three directions (horizontal, vertical, diagonal) to produce low and high frequency components. For example, Haar HD_2 represents

the diagonal high frequency component of the second layer using the Haar wavelet.
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FIGURE 2 | Cases of breast cancers with different HER2 2+ status. The first row shows one case with positive HER2 2+ status; (a) subtraction MRI image at P-2; (b)

pathology result showing invasive carcinoma of no special type; (c) FISH result showing positive HER2 status. The second row shows the other case with negative

HER2 2+ status; (d) subtraction MRI image at P-2; (e) pathology result showing invasive carcinoma of no special type; (f) FISH result showing negative HER2 status.

cell of the table was < 5. A univariate logistic regression
classifier was used to assess the performance of individual
features for differentiating HER2 2+ status. A prevalent
supervised learning model, support vector machine (SVM),
was applied to classify expression status of HER2 2+. To
avoid overfitting of classifiers, a leave-one-out cross-validation
(LOOCV) method was used (41). In each loop of the LOOCV,
one sample was retained as the test case, and the other samples
were used as the training set. At each LOOCV loop, three
feature selection methods, wrapper, least absolute shrinkage and
selection operator (LASSO), and stepwise, were, respectively,
applied on the training set. The procedure was repeated for all
LOOCV folds, and a classification score was generated for each
test case. The importance of image features was evaluated by
counting the number of times they were selected over all of the
LOOCV loops.

To assess the performance of classifiers in distinguishing

HER2 2+ status, a ROC curve was drawn using the professional

statistics software MedCalc (version 14.10.20, http://www.
medcalc.org/), and the area under the ROC curve (AUC)
was calculated as an indicator of diagnostic performance. The
sensitivity, specificity and accuracy were also determined. The z-
test was used to evaluate the statistical significance of differences
between AUCs (42).

The intraobserver variability of features extracted by two
radiologists was evaluated using intraclass correlation coefficients
(ICCs, 0–0.4, poor agreement; 0.41–0.6, moderate agreement;
0.61–0.8, good agreement; 0.81–1, excellent agreement) (43, 44).

A P-value < 0.05 was considered statistically significant, and
statistical analyses were performed using SPSS software (version
19.0, Chicago, IL, USA).

RESULTS

Subjects
The selected 76 cases included 42 (55.3%) HER2 2+ positive and
34 (44.7%) negative patients. Figure 2 shows two representative
cases, one with positive HER2 status and one with negative HER2
status. The detailed characteristics of the 76 cases are presented
in Table 2. There was no significant association between HER2
2+ status and patient characteristics. A randomly selected case
(HER2 status, positive) is shown in Figure 3 to illustrate the
results of tumor segmentation and intratumoral regionalizaton
based on the method proposed above.

Univariate Analysis
For univariate regression analysis, the top eight individual
features with the best performance according to AUC values are
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TABLE 2 | Characteristics of 76 patients with HER2 2+ breast cancer.

Characteristics FISH Results P-Valuea

Positive

(n = 42) (%)

Negative

(n = 34) (%)

Ageb 0.846

≥ 40 years at diagnosis 34 (56.7) 26 (43.3)

< 40 years at diagnosis 8 (50.0) 8 (50.0)

Progesterone receptorb 0.531

Positive 34 (53.1) 30 (46.9)

Negative 8 (66.7) 4 (33.3)

Ki-672 0.594

≥14% 33 (57.9) 24 (42.1)

< 14% 9 (55.3) 10 (44.7)

Pathologyc 0.658

Ductal carcinoma in situ 1 (50.0) 1 (50.0)

invasive carcinoma of no

special type

40 (54.8) 33 (45.2)

Invasive microcapillary

carcinoma

1 (100) 0 (0)

aP-value is for positive-HER2 vs. negative-HER2 comparison.
bVariables are tested using the x2 test.
cVariables are tested using Fisher’s exact test.

Numbers in parentheses represent percentages.

listed in Table 3 for the whole lesion region and three subregions.
The results demonstrated that the ability of a single feature
from the whole lesion area was relatively lower than that from
subregions for distinguishing HER2 2+ status. The rapid regions
showed the best performance, and the best eight individual
features had AUC values ranging from 0.773 to 0.810. The best
single feature was variance from the medium subregion at P-2,
which achieved an AUC value of 0.836. There was no significant
difference comparing with that feature from the whole lesion
in the diagnostic performance (P = 0.271). The best individual
features from rapid and slow subregions were deubechies2 HV_4
at P-1 (AUC = 0.810) and variance at P-3 (AUC = 0.807),
respectively. For the best three individual features, the differences
between positive and negative HER2 status is shown in Figure 4

using boxplot graphs.

SVM Analysis
Further classification assessment was performed for identifying
HER2 2+ status using the SVM model. The final results are
shown in Table 4. In the rapid subregions, the classifier produced
an AUC value of 0.929, which was the best performance (88.16%
accuracy, 88.10% sensitivity, and 88.24% specificity) among the
three subregions. The performance was significantly higher (P
= 0.026) than that of the whole lesion area (AUC = 0.847).
The best performance was achieved at P-2, and 13 texture
features were selected by the LASSO method, as shown in
Table 5. The prediction models in medium and slow subregions
reached AUCs of 0.855 and 0.834, respectively, which was
higher than the values obtained with the model based on the
whole tumor. The comparisons of the ROCs among the best

classification models for whole lesion and three subregions are
shown in Figure 5. The comparisons among the three feature
selection methods achieving the best classification performances
are outlined in Table 6. Taken together, the results indicate that
the rapid subregions achieved a higher performance for HER2
2+ classification than other subregions.

Interobserver Variability Evaluation
The texture features derived from the two sets of ROIs delineated
independently by two radiologists showed excellent agreement
(ICCs, 0.867–0.932).

Discussion
In this work, an intratumoral partitioning method was used to
divide the lesion area into different subregions in which texture
features reflecting the tumor heterogeneity were computed for
predicting HER2 2+ status of breast cancers. A significant
correlation between texture features and HER2 2+ status was
found, and the features extracted from the rapid subregion
achieved the best performance. The present findings indicate
that the texture features extracted from intratumoral subregions
have potential value for distinguishing the HER2 2+ status of
breast cancer.

Intratumoral heterogeneity is an indicator of differences in
gene expression, angiogenesis, metabolism, and other biological
characteristics (45–47). Previous studies explored heterogeneity
based on DCE-MRI texture features from the whole lesion area
(25, 48). However, intratumoral heterogeneity in subregions has
not been investigated thoroughly in breast cancer. In this study,
an effective intratumoral partitioning method was applied to
divide the lesion area into three subregions for predicting HER2
2+ status. The prediction model with the highest performance
was established on the rapid subregions. One possible reason
for this result is that the rapid subregions may be more closely
related to angiogenesis, which was considered as the consequence
of HER2 2+ amplification.

In recent years, most studies used GLCM texture features
for predicting the molecular subtypes of breast tumors or
the pathological response to neoadjuvant chemotherapy (49,
50). In this study, additional features were explored, such as
histogram features, GRLM features, and DWT features, and the
experimental results of univariate analysis demonstrated that
those features were highly related to HER2 2+ expression status.
The individual texture feature, namely, variance from medium
subregions at P-2, was the best-performing individual feature
for differentiating HER2 2+ status. The variance feature is an
indicator for measuring the degree of dispersion. If the variance
value is high, the signal intensity of the image is dispersive
(51). Therefore, the variance feature could be considered as a
marker reflecting the abnormal architecture of a heterogeneous
tumor. Additionally, the feature deubechies2 HV_4 from rapid
subregions at P-1 showed significantly better (P = 0.0001)
performance in terms of the AUC value than that extracted
from the whole tumor. DWT parameters representing the
image signal in different frequencies and directions showed a
relatively high performance, which was not reported in previous
relevant studies.
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FIGURE 3 | Tumor segmentation and intratumoral regionalization results for a randomly selected case. The first row shows the results at P-1; (a) axial T1-weighted

fat-saturated subtraction MRI image; (b) tumor segmentation result obtained with the semi-automatic method; (c) intratumoral regionalization result where the red,

green, and blue colors represent rapid, medium, and slow subregions, respectively. The second row shows the results at P-2; (d) subtraction MRI image; (e) tumor

segmentation result; (f) intratumoral regionalization result. The third row shows the results at P-3; (g) subtraction MRI image; (h) tumor segmentation result; (i)

intratumoral regionalization result.

In multivariate analysis, three feature-dimension reduction
methods (PCA, LASSO, and stepwise) were used to select the
most useful features from the whole feature set. In the PCA,
the best performance was achieved on the rapid region at P-
3, and eight principal components with a total contribution
score > 95% were derived. The optimal performance derived
from the PCA method was statistically significantly different
from that of the whole lesion (P = 0.005). Compared with
PCA, the LASSO method with an interpretable model showed
the best performance among all methods tested in this study,
and 13 features were finally selected from the rapid region at

P-2. In the stepwise method, the maximum P-value derived
from the F-statistic test for adding a feature was set to 0.05,
and the minimum P-value for removing a feature was set
to 0.1 (52). The stepwise method applied to rapid and slow
regions showed a better performance (AUC values 0.746–0.917)
than that applied to medium regions (AUC values 0.543–
0.665).

We evaluated the intraobserver variability for texture features
extracted from the whole lesion region and three different
intratumoral sub-regions at the three imaging time points.
The results showed high consistency between two radiologists
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TABLE 3 | Univariate analysis for predicting HER2 2+ status.

Method Subregions Features AUC Interval P-valuea

Intratumoral

Regionalization

Rapid deubechies2HV_4(P-1) 0.810 0.722-0.912 0.0001

deubechies2HV_4(P-2) 0.787 0.686-0.888 0.0002

mean(P-1) 0.785 0.681-0.889 0.112

mean(P-2) 0.784 0.683-0.884 0.438

0◦LRE(P-2) 0.777 0.672-0.881 0.004

deubechies2HV_4(P-3) 0.775 0.672-0.879 0.012

0◦LRE(P-3) 0.774 0.667-0.881 0.008

variance(P-2) 0.773 0.666-0.881 0.531

Medium variance(P-2) 0.836 0.748-0.932 0.271

variance(P-3) 0.796 0.695-0.896 0.191

variance(P-1) 0.769 0.661-0.878 0.542

mean(P-2) 0.764 0.958-0.872 0.786

mean(P-1) 0.748 0.636-0.861 0.681

mean(P-3) 0.723 0.607-0.841 0.846

45◦RLN(P-1) 0.676 0.553-0.799 0.024

45◦RLN(P-3) 0.673 0.551-0.796 0.013

Slow variance(P-3) 0.807 0.708-0.901 0.112

variance(P-2) 0.802 0.697-0.903 0.973

variance(P-1) 0.782 0.678-0.885 0.823

mean(P-2) 0.747 0.638-0.856 0.289

mean(P-3) 0.731 0.615-0.844 0.893

harr HD_3(P-1) 0.711 0.596-0.826 0.143

mean(P-1) 0.703 0.583-0.824 0.071

symlet4 HH_3(P-1) 0.672 0.546-0.795 0.715

Whole lesion / variance(P-2) 0.798 0.699-0.898 /

variance(P-1) 0.789 0.688-0.895 /

mean(P-2) 0.771 0.666-0.873 /

variance(P-3) 0.762 0.654-0.872 /

mean(P-1) 0.758 0.648-0.869 /

mean(P-3) 0.727 0.614-0.844 /

45◦GLN(P-1) 0.713 0.597-0.829 /

deubechies2 L_2(P-3) 0.712 0.598-0.827 /

aP-values indicate performance comparisons between features from intratumoral subregions and the same types of features from the whole lesion area at the same phase.

FIGURE 4 | Boxplot graphs for the three individual features with the best performance. The three features were variance from the medium region at P-2 (A),

deubechies2 HV_4 from rapid region at P-1 (B), and variance from the slow region at P-3 (C), respectively.

Frontiers in Oncology | www.frontiersin.org 8 April 2020 | Volume 10 | Article 543

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lu and Yin Texture Analysis With Intratumoral Regionalization

TABLE 4 | Multivariate analysis for predicting HER2 2+ status.

Methods Subregions Whole lesion

Rapid Medium Slow

P-1 PCA AUC 0.847 0.793 0.721 0.697

P-valuea 0.008 0.034 0.686 /

LASSO AUC 0.905 0.854 0.832 0.835

P-value 0.062 0.613 0.906 /

stepwise AUC 0.901 0.543 0.751 0.797

P-value 0.053 0.001 0.426 /

P-2 PCA AUC 0.869 0.803 0.751 0.821

P-value 0.371 0.761 0.213 /

LASSO AUC 0.925 0.855 0.825 0.840

P-value 0.026 0.701 0.727 /

stepwise AUC 0.917 0.665 0.746 0.806

P-value 0.012 0.021 0.281 /

P-3 PCA AUC 0.876 0.736 0.758 0.714

P-value 0.005 0.723 0.397 /

LASSO AUC 0.861 0.791 0.826 0.739

P-value 0.024 0.221 0.113 /

stepwise AUC 0.842 0.543 0.809 0.723

P-value 0.047 0.011 0.143 /

aP-values indicate performance comparisons between features from subregions and the whole lesion area.

TABLE 5 | Thirteen texture features selected by the LASSO method from rapid

subregions at P-2.

Features FISH

Positive negative

mean 100.668 ± 27.003 70.911 ± 26.085

variance 23.910 ± 7.587 17.923 ± 6.298

ACOR (0,1) 3.201 ± 1.663 2.025 ± 0.918

IMC (-1,-1) −0.482 ± 0.096 −0.393 ± 0.148

haar HH_2 6.604 ± 2.522 7.908 ± 3.586

symlet4 HD_2 3.302 ± 1.753 4.691 ± 2.527

haar L_4 35.696 ± 16.721 23.261 ± 16.893

haar HH_3 4.933 ± 2.053 5.187 ± 2.799

haar HD_4 2.633 ± 1.638 2.504 ± 1.755

deubechies2 HH_4 4.126 ± 1.679 4.109 ± 3.113

deubechies2 HD_3 5.469 ± 2.369 6.093 ± 4.011

symlet4 HH_3 4.712 ± 2.355 5.144 ± 2.534

symlet4 L_4 5.875 ± 5.280 4.696 ± 3.475

Values represent the mean±standard deviation.

regarding the calculation of texture features based on the manual
method, with ICCs ranging from 0.867 to 0.932. Intraobserver
variability was mostly associated with slice selection and
delineation of the ROI, because the next step was calculating
texture features within the ROI using in-house software with
MATLAB 2018a. This means that the methods used for ROI
definition are important.

FIGURE 5 | Comparison of ROCs among the best-performance classification

models for the whole lesion and three subregions.

This work performed a preliminary analysis of intratumoral
features for identifying the HER2 2+ status of breast cancer.
However, the study had several limitations. First, the relatively
small sample size limited the statistical power of the study.
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TABLE 6 | Comparison among the three feature selection methods achieving the

best classification performances.

Method AUC Sensitivity (%) Specificity (%) Accuracy (%)

PCA 0.876 (rapid region

at P-3)

80.95 82.35 81.58

LASSO 0.925 (rapid region

at P-2)

73.81 94.12 82.92

Stepwise 0.917 (rapid region

at P-2)

76.19 93.26 84.21

Therefore, additional samples must be collected to confirm and
refine the present results in future work. Second, only a single
representative slice was applied to extract the tumor features
in this study. Texture analysis based on 3D volume images
might be one of the strategies to improve the classification
performance in identifying gene expression status of HER2
2+ (53). Relatively, analysis based on one single slice would
inevitably lose a lot of important information because of
heterogeneity in tumor volume. Hence, some previous studies
conducted the 3D segmentation for radiomic analysis (11, 54–
56). It must be pointed out that in order to achieve 3D
segmentation, the image data should be acquired using the
isotropic acquisition when the cases were initially scanned.
Actually, that is not easy to achieve with complete breast coverage
without significantly degrading the temporal resolution. For
anisotropic data, a more true representation of the lesion can
be obtained with multi-slice 2D segmentation than obtained
with a single slice analysis (57). Third, we only analyzed
the conventional methods for feature calculation. Some more
advanced features, which many ongoing studies have focused,
were not investigated in discriminating HER2 2+ status, such as
Scale Invariant Feature Transform (SIFT), Speeded-Up Robust
Features (SURF), Histogram of Oriented Gradient (HOG),
Local Binary Pattern (LBP), Local Self Similarity (LSS) (58–
60). Meanwhile, because each kind of feature has its own
limitations, a consensus was reached that no single feature
has a perfect performance in radiomic analysis. Considerable
attention has been received from researchers on how to
fuse those advanced features for improving the classification
performance (61). In addition, due to the variety of features,
feature selection methods for establishing predictive model has
received more and more attention in machine learning selection.
Therefore, in order to further improve the diagnosis efficiency
and robustness in the determination of HER2 2+ status, it
is necessary to validate more advanced approaches in feature

calculation, selection and fusion. Finally, only texture features
were investigated in DCE-MRI images, whereas other types of
quantitative parameters from different imaging modalities, such
as intra-voxel incoherent motion diffusion weighted imaging
(IVIMDWI), diffusion weighted imaging (DWI) and diffusion
tensor imaging (DTI), were not explored, which might be useful
for HER2 2+ status discrimination.

In conclusion, texture analysis based on an intratumoral
regionalization method for breast DCE-MRI could be used to
predict HER2 2+ status. Further studies with a larger sample size
and more quantitative features should be performed to improve
the accuracy of the results.
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