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Abstract: Thermokarst lakes are important aquatic ecosystems in cold regions, experiencing several
changes due to global warming. However, the fundamental assembly mechanisms of microeukary-
otic communities in thermokarst lakes are unknown. In this study, we examined the assembly
processes and co-occurrence networks of microeukaryotic communities in sediment and water of
thermokarst lakes in the Yellow River Source Area. Sediment microeukaryotic communities had
a significantly lower α-diversity but higher β-diversity than water microeukaryotic communities.
pH, sediment organic carbon, and total phosphorus significantly affected taxonomic and phylo-
genetic diversity of sediment communities, while conductivity was a significant driver for water
communities. Both sediment and water microeukaryotic communities were strongly governed by
dispersal limitation. However, deterministic processes, especially homogenous selection, were more
relevant in structuring microeukaryotic communities in water than those in sediment. Changes in
total nitrogen and phosphorus in sediment could contribute to shift its microeukaryotic communities
from homogeneous selection to stochastic processes. Co-occurrence networks showed that water
microeukaryotic communities are more complex and interconnected but have lower modularity than
sediment microeukaryotic communities. The water microeukaryotic network had more modules
than the sediment microeukaryotic network. These modules were dominated by different taxonomic
groups and associated to different environmental variables.

Keywords: microeukaryotes; deterministic process; stochastic process; co-occurrence; Qinghai–Tibet
Plateau

1. Introduction

Thermokarst lakes are shallow thaw lakes formed after the thawing of ice-rich per-
mafrost and widely distributed in cold regions with high altitude or latitude [1,2]. In the
Arctic and sub-Arctic regions, as well as the Qinghai–Tibet Plateau (QTP), thermokarst lakes
are common landscape features [3–5]. Thermokarst lakes show huge differences in lake
size ranging from a few square meters to hundreds of square kilometers [6–8]. Moreover,
thermokarst lakes also have significantly different geomorphological, physicochemical,
and biological characteristics, even at a very small spatial scale [5,9–11]. Permafrost degra-
dation continuously drives the evolution of thermokarst lakes in terms of their formation,
expansion, shrinkage, and, finally, disappearance [12–14]. Accelerating climate change ex-
pedites the evolution processes of thermokarst lakes, leading to tremendous changes in lake
environments and ecosystem processes [8] and exerting pressure on the organisms living
in them. However, the fundamental mechanisms of community assembly in thermokarst
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lakes are still unknown and are important to understanding ecosystem stability and the
function of thermokarst lakes in a warming world.

Microeukaryotic communities are a versatile component in lake ecosystems and en-
compass enormous diversity [15–17]. Composed by algae, fungi, protozoa, and meta-
zoa through complex interactions [18,19], microeukaryotic communities play important
roles in structuring the food web of aquatic ecosystems, and their assembly mecha-
nisms and environmental responses have long been of research interest in microbial
ecology [20–22]. Microeukaryotic community structure vary across different temporal
and spatial scales [17,21,23,24]. Understanding the assembly rules controlling community
diversity and biogeography is central in microbial ecology [25,26]. Microbial community
is simultaneously influenced by stochastic and deterministic processes with differential
importance [25–27]. Deterministic processes emphasize the importance of niche-based
mechanisms, such as environmental filtering and biotic interactions [26]. On the contrary,
stochastic processes highlight neutral processes, such as unpredictable disturbances, eco-
logical drift, and probabilistic dispersal [28–30]. However, it is challenging to characterize
those processes in microbial community variations [29,31,32]. In addition, according to the
topological features of the interactions between taxa, co-occurrence networks reveal com-
munity assembly rules [33,34] by disentangling interactions in the microbiome, delineating
keystone taxa, and finding modular structures [35,36]. For thermokarst lakes, we lack an
understanding on microbial community assembly mechanisms.

In general, sediment and water are different in various aspects but also have intimate
interconnections [37,38]. In thermokarst lakes, the sediment–water interactions were inher-
ent from the lake formation and intensified by thermokarst processes, microbial activities,
and wind-induced mixing [39–41]. Our previous studies of thermokarst lakes showed
that sediment and water harbor distinct bacterial communities in terms of taxonomic
composition, beta diversity, and co-occurrence networks [11,42]. Thus, it is also interest-
ing to reveal the differences of community assembly rules between sediment and water
microeukaryotic communities.

As the “Third Pole” of the Earth, QTP is extremely sensitive to anthropogenic activities
and global climate change [43,44]. In the Yellow River Source Area (YRSA), it is predicted
that the mean annual temperature will increase 1.8–3.5 °C by 2080 [45]. The ongoing global
warming has already accelerated permafrost degradation, resulting in extensive changes of
thermokarst lakes [8,46]. In this study, we investigated microeukaryotes in 23 thermokarst
lakes in the YRSA on the QTP using 18S rRNA gene sequencing. We aimed to (1) assess the
relative contribution of stochastic and deterministic processes in shaping microeukaryotic
communities in sediment and water in the thermokarst lakes, and (2) disentangle the
co-occurrence patterns of these microeukaryotic communities. The results can provide
useful information for a better understanding and response prediction of thermokarst lakes
in a warming future.

2. Methods
2.1. Study Area, Field Sampling, and Chemical Analyses

This study was conducted in the Yellow River Source Area, located in the northeast of
the QTP (Figure S1). This area has a cold and semiarid climate with an annual precipitation
of 300–800 mm [47], an annual mean air temperature between −4 and 2 °C [47], and annual
evaporation of 800–1200 mm [48]. The average elevation is about 4500 m [4]. Permafrost
and thermokarst lakes are widely distributed in this area [4,49], with permafrost covering
up to 80% of the land [4].

In early July 2020, 23 thermokarst lakes were sampled in this area. Information on
the lakes and sampling process has been provided in our previous publication [11]. In
each lake, both water samples and sediment samples were collected with three replicates
(subsamples). Thus, a total of 23 water samples and 23 sediment samples were collected.
In each lake, three 1 L water subsamples were collected at a depth of 0.3 to 0.5 m and
filled in acid clean bottles. Water microbial samples were collected by filtering 200 mL
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water from each of the three 1 L subsamples, respectively. For each lake, three filters were
combined into one composite sample and frozen in liquid nitrogen immediately in the
field and stored at −80 °C in the lab until DNA extraction. The remaining water was
used for chemical analyses in the lab. The conductivity and pH of the lake water were
measured in situ using a multiparameter instrument (YSI ProPlus, Yellow Springs, OH,
USA). For water samples, dissolved organic carbon (DOC), total nitrogen (TN), and total
phosphorus (TP) were analyzed. DOC was analyzed on filtered (using pre-combusted
GF/F filters) lake water using a Shimadzu TOC Analyzer (Shimadzu, Columbia, MD,
USA). TN was measured by ion chromatography after persulfate oxidation (EPA 300.0). TP
was measured using the ascorbic acid colorimetric method after persulfate oxidation (EPA
365.3). In each lake, sediment samples were collected using a Ponar Grab sampler from
three points (subsamples). For each subsample, the top 5 cm of the sediment was collected
and homogenized. For each lake, sediment microbial sample was collected by mixing three
15 mL subsamples in a 45 mL sterile centrifuge tube and freezing it in liquid nitrogen in the
field. The remaining sediments were used for chemical analyses in the lab. For sediment
samples, pH, conductivity, sediment organic carbon (SOC), TN, and TP were analyzed.
SOC was measured by the potassium dichromate oxidation spectrophotometric method
(Chinese standard method HJ615-2011). Sediment TN was measured using the modified
Kjeldahl Method (Chinese standard method HJ717-2014). Sediment TP was measured
using the ascorbic acid colorimetric method after microwave extraction with nitric acid [50].
Chemical properties of sediment and water samples were summarized in our previous
study [11].

2.2. DNA Extraction, PCR, and Sequencing

DNA was extracted using the TIANGEN-DP336 DNA Isolation Kit (TIANGEN-Biotech,
Beijing, China) following the manufacturer’s instructions. DNA extracts were quantified us-
ing a Qubit 3.0 Fluorometer (Life Technologies, Darmstadt, Germany). A total of 50–100 ng
DNA was used to generate amplicons. The 18S rDNA hypervariable regions V4-V5 were
amplified using forward primers 817F-5′-TTAGCATGGAATAATRRAATAGGA-3′ and
reverse primer 1196R-5′-TCTGGACCTGGTGAAGTTTCC-3′. The PCR reaction was con-
ducted on a thermal cycler (ABI GeneAmp® 9700,Foster City, CA, USA) using the fol-
lowing program: 5 min initial denaturation at 94 ◦C, 30 s denaturation at 94 ◦C with
26 cycles, 30 s annealing at 56 ◦C, 20 s extension at 72 ◦C, and finally 5 min extension at
72 ◦C. DNA libraries were verified on 2% agarose gels (Biowest agarose, Madrid, Spain)
and quantified using a Qubit 3.0 Fluorometer (Life Technologies, Germany). DNA li-
braries were multiplexed and loaded on an Illumina MiSeq platform according to the
manufacturer’s instructions (Illumina, San Diego, CA, USA). Raw sequence data were
analyzed using QIIME 1.9.0 [51]. Sequences were quality filtered and clustered to generate
operational taxonomic units (OTUs) at a threshold of 97% similarity against the SILVA
132 database [52] using QIIME. Raw sequence data can be accessed at the China National
Center for Bioinformation (PRJCA005279).

2.3. Analyses

A null model analysis was used to estimate assembly processes of microeukaryotic
communities in sediment and water of the thermokarst lakes using the picante v1.8.2 pack-
age in R [53]. Turnover in phylogenetic composition between communities was quantified
using beta mean nearest taxon distance (βMNTD). The influence of deterministic processes
(heterogeneous selection and homogeneous selection) on community assembly was esti-
mated by evaluating the difference between the observed βMNTD and the mean of the null
distribution of βMNTD in units of standard deviation, which is the beta nearest taxon index
(βNTI). βNTI values <−2 or >+2 indicate less than or greater than expected phylogenetic
turnover, representing signals for heterogeneous selection and homogenous selection, re-
spectively [25]. On the other hand, if−2 < βNTI < 2, compositional differences are explained
by stochastic processes (dispersal limitations and homogenizing dispersal). To assess the
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relative influences of the processes not assigned to deterministic processes, a Raup–Crick
metric of taxonomic β-diversity (RCBray) was used to analyze pairwise comparisons of
the observed and expected taxonomic turnover (at OTU level) between communities. The
fraction of pairwise comparisons with−2 < βNTI < 2 and RCBray < −0.95 were attributed to
homogeneous dispersal, while those with −2 < βNTI < 2 and RCBray > 0.95 were attributed
to dispersal limitation. Pairwise comparisons falling within null distribution of both met-
rics of phylogenetic and taxonomic β-diversity (−2 < βNTI < 2 and −0.95 < RCBray < 0.95)
were assigned to “undominated”, representing the fraction that was not strongly governed
by any single process [25,26].

Co-occurrence networks of sediment and water microeukaryotic communities were
constructed by pairwise correlations (Spearman correlation) between OTUs. OTUs with
an average relative abundance > 0.01% and present in more than 6 samples were used.
p-values of Spearman correlation were corrected using the FDR method [54]. Only strong
(Spearman’s R > 0.6 or R <−0.6) and significant (p < 0.01) correlations were used in network
construction. Meanwhile, random networks (permutation = 999) with the same number of
nodes and edges as the community networks investigated in this study were generated
using the Erdos–Renyi model with the igraph 1.2.6 package [55]. Topological parameters
such as average degree (average number of neighbors for all nodes, explaining complex
pairwise connection), clustering coefficient (a measure of the local connectivity associating
to network robustness), average path length (the average shortest path lengths connecting
the node to all other nodes), and graph density as well as modular structure of the networks
were analyzed using the igraph package. Differences of topological parameters between
the sediment microeukaryotic network (SMN) and the water microeukaryotic network
(WMN) were assessed using t-test (different low case letters indicate a significant difference
of p < 0.05).

α-diversity indices, including Chao 1, observed OTUs, Shannon, and phylogenetic
diversity (PD whole tree) were calculated using QIIME 1.9.1 [51]. β-diversity in terms
of taxonomic and phylogenetic turnover was assessed using Bray–Curtis distance (based
on the relative abundance of OTUs) and βMNTD, respectively. To estimate the habitat
niche occupied by each species, we calculated the Levins niche width [56] using the “spaa”
package [57] in R. The formula is Bi = 1/ ∑n

1 p2
i . Bi represents the niche width of OTUi

across the communities, n is the total number of communities, and pi is the proportion
of OTUi in each community. Species with a higher niche width are distributed more
evenly along a wider habitat range than those with a lower niche width. Differences of
α-diversity and β-diversity between sediment and water samples were assessed using
a Wilcoxon rank-sum test. Principal coordinates analysis (PCoA) was performed to assess
differences of microeukaryotic communities between sediment and water samples based
on Bray–Curtis distance and βMNTD. Mantel tests were conducted to test the relationships
between environmental variables and microeukaryotic community properties, including
βNTI, βMNTD, Bray–Curtis distance, major network modules (modules with more than
30 nodes), and major taxonomic groups. All statistical analyses were carried out in R 4.0.5 [58].

3. Results
3.1. General Patterns of Microeukaryotic Communities in Sediment and Water

After quality filtering, a total of 2,032,004 high-quality sequences were obtained and
clustered into 3141 OTUs. However, only 6 OTUs were found in all samples (Figure S2).
Alpha diversity indexes (observed OTUs, Chao1, and phylogenetic diversity) were signif-
icantly lower in sediment samples than in water samples, except for the Shannon Index
(Figure 1a). However, taxonomic β-diversity (shown as the Bray–Curtis distance) and phy-
logenetic β-diversity (shown as βMNTD) were significantly higher in sediment samples
than in water samples (Figure 1b).
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Figure 1. Distinct patterns of microeukaryotic communities in sediment and water samples. (a) Alpha
diversity. (b) Beta-diversity. The differences of diversity indexes between sediment and water samples
were tested using Wilcoxon rank-sum test (*** p < 0.001). (c) Principal coordinates analysis (PCoA)
based on Bray–Curtis distance and βMNTD.

Microeukaryotic communities also showed a distinct composition between sediment
and water samples. Principal coordinates analysis (PCoA) based on Bray–Curtis distance
and βMNTD indicated that microeukaryotic community composition was significantly
different between sediment and water samples (Figure 1c). The phylogenetic diversity
of microeukaryotic OTUs covered 11 supergroups (Figure 2a). Opisthokonta, Crypto-
phyceae, and SAR (Stramenopiles–Alveolata–Rhizaria) were dominant (mean relative
abundance >5%) in both sediment and water samples (Figure 2a). In sediment samples,
Fungi and Ciliophora were the dominant lineages with a mean relative abundance of 58.9%
and 6.4%, respectively (Figure 2b). In water samples, however, Fungi, Cryptomonas sp., and
Choanoflagellida were the dominant lineages with a mean relative abundance of 31.5%,
8.6%, and 6.9%, respectively (Figure 2b).

To identify physicochemical properties that affect dissimilarities of microeukaryotic
communities and major lineages, we correlated these values to the differences in physico-
chemical properties between each pairwise set of samples (Tables 1 and 2). For sediment
samples, pH, SOC, and TP were strong and positive predictors for dissimilarities of mi-
croeukaryotic communities as well as many major lineages (Table 1). For water samples,
however, conductivity and DOC were strong predictors for community dissimilarities and
many major lineages (Table 2).
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Table 1. Mantel test between environmental variables and sediment microeukaryotic communities.
Significant correlations (p < 0.05) were shown in bold with * and ** represent p < 0.05 and p < 0.01,
respectively. NA represents not applicable.

pH Conductivity SOC TN TP

βNTI −0.041 0.075 0.115 0.175 ** 0.137 *
βMNTD 0.197 ** 0.084 0.145 * 0.116 0.146 *

Bray–Curtis Distance 0.250 ** −0.026 0.173 ** 0.052 0.248 **
Module1 0.130 * 0.040 0.255 ** 0.107 0.358 **
Module2 −0.016 0.067 −0.079 −0.035 0.071

Cryptomonas sp. −0.015 0.074 0.223 ** 0.131 * 0.236 **
Leucocryptos sp. 0.138 * −0.112 −0.051 0.006 0.068

Preaxostyla −0.069 0.208 ** −0.078 −0.028 −0.088
Fungi 0.190 ** −0.039 0.152 * 0.058 0.233 **

Choanoflagellida 0.043 0.039 −0.119 −0.091 0.004
Metazoa 0.198 ** 0.187 ** 0.056 0.069 0.127 *

Bicosoecida NA NA NA NA NA
Ciliophora 0.122 −0.03 0.188 ** 0.029 0.228 **
Cercozoa 0.172 ** 0.165 ** 0.037 0.098 0.281 **
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Table 2. Mantel test between environmental variables and water microeukaryotic communities.
Significant correlations (p < 0.05) were shown in bold with * and ** represent p < 0.05 and p < 0.01,
respectively. NA represents not applicable.

pH Conductivity DOC TN TP

βNTI −0.023 0.011 −0.116 0.023 0.023
βMNTD −0.041 0.134 * 0.067 −0.007 −0.004

Bray–Curtis Distance 0.071 0.144 * 0.183 ** −0.031 −0.034
Module1 0.118 0.063 0.129 * −0.104 −0.091
Module2 0.126 * 0.480 ** 0.342 ** 0.155 * 0.267 **
Module3 −0.153 * −0.043 0.021 −0.113 0.112
Module4 −0.001 0.321 ** 0.105 0.065 0.208 **
Module5 0.082 0.032 −0.044 0.048 −0.063
Module6 0.192 ** 0.011 −0.015 0.122 0.142 *
Module7 0.052 0.178 ** 0.142 * −0.042 −0.005

Cryptomonas sp. 0.008 0.156 * 0.133 * −0.034 0.004
Leucocryptos sp. −0.029 0.373 ** 0.170 * −0.057 −0.021

Preaxostyla NA NA NA NA NA
Fungi 0.089 0.085 0.079 0.019 0.125 *

Choanoflagellida 0.112 0.097 0.101 0.406 ** 0.203 **
Metazoa 0.032 0.115 0.038 0.006 0.023

Bicosoecida 0.092 0.458 ** 0.347 ** 0.040 0.332 **
Ciliophora −0.155 * 0.045 −0.011 −0.144 * 0.121
Cercozoa 0.004 −0.030 −0.032 0.071 −0.088

3.2. Assembly Processes

The quantification of phylogenetic turnover showed that stochastic processes (homog-
enizing dispersal and dispersal limitation) was dominant in both sediment (59.3%) and
water (60.9%) microeukaryotic communities (Figure 3). Dispersal limitation contributed
the most in the stochastic assembly. Deterministic assembly (homogeneous selection and
heterogeneous selection) was much higher in water (29.2%) microeukaryotic communities
than in sediment (7.1%) microeukaryotic communities (Figure 3).
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Figure 3. The contribution of deterministic (homogeneous and heterogeneous selection) and stochas-
tic (dispersal limitations and homogenizing dispersal) processes to the turnover in the assembly of
sediment and water microeukaryotic communities in thermokarst lakes. “Undominated” represents
the fraction that was not dominated by any single process.

The relationships between βNTI and major environmental variables were used to
estimate changes in the relative influences of deterministic and stochastic assembly pro-
cesses. Mantel tests showed that TN and TP were the best predictors of assembly processes
for sediment microeukaryotic communities (Table 1). Pairwise βNTI values for sediment
microeukaryotic communities were significantly and positively correlated with differences
in TN and TP (Table 1), suggesting that an increasing divergence of TN and TP could
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contribute to a shift from homogeneous selection to stochastic assembly and finally to het-
erogeneous selection in the assembly of sediment microeukaryotic communities. However,
none of the tested environmental variables had significant relationships with βNTI of water
microeukaryotic communities (Table 2).

3.3. Co-Occurrence Networks

We generated co-occurrence networks for sediment and water microeukaryotic com-
munities based on pairwise correlations. The sediment microeukaryotic network (SMN)
was composed by 284 OTUs with 458 associations (Figure 4 and Table 3). The water mi-
croeukaryotic network (WMN) was composed by 376 OTUs with 1395 associations (Figure 4
and Table 3). A set of network-level and node-level topological features were calculated
(Figure 5 and Table 3). The average degree, clustering coefficient, and graph density were
higher in WMN than SMN, suggesting that OTUs in WMN were more interconnected.
Moreover, the average path length and diameter were lower in WMN than in SMN, reveal-
ing closer relationships among water microeukaryotic communities. These results indicated
that OTUs in water microeukaryotic communities co-occurred more frequently than that
in sediment microeukaryotic communities. For the node-level topological features, the
average values of eccentricity and closeness centrality were significantly higher, while
degree, betweenness centrality, and clustering were significantly lower in SMN OTUs than
in WMN OTUs (Figure 5).

Table 3. Comparison of topological parameters of co-occurrence networks investigated in this study
(sediment microeukaryotic network and water microeukaryotic network) and their associated random
networks (permutation = 999, values shown mean ± SD). The differences between sediment and
water microeukaryotic network were assessed using t-test (different low case letters indicate the
significant difference of p < 0.05).

Topological Parameters
Sediment Water

This Study Random This Study Random

Number of Nodes 284 284 376 376
Number of Edges 458 458 1395 1395
Negative Edges 12 12 140 140
Average Degree 3.225 3.225 7.420 7.420
Graph Density 0.011 0.011 0.02 0.02

Average Path Length 9.627 a 4.821 ± 0.078 4.730 b 3.177 ± 0.007
Diameter 26 a 10.7 ± 0.879 15 b 5.8 ± 0.413

Clustering Coefficient 0.460 a 0.012 ± 0.005 0.528 b 0.020 ± 0.002
Centralization Degree 0.038 a 0.021 ± 0.003 0.063 b 0.024 ± 0.004

Centralization Betweenness 0.201 a 0.063 ± 0.014 0.069 b 0.020 ± 0.004
Centralization Closeness 0.004 a 0.013 ± 0.004 0.008 b 0.097 ± 0.020

Modularity 0.836 a 0.573 ± 0.01 0.639 b 0.334 ± 0.006

In addition, both SMN and WMN had a significant modular structure (Figure 4).
SMN had a significantly higher modularity but a smaller number of nodes than WMN,
suggesting that SMN was composed by more small modules than WMN (Figure 4). SMN
only had 2 major modules (module with more than 30 nodes), while WMN had 7 major
modules (Figure 4). These modules had different taxonomic compositions (Figure 6). A
Mantel test showed that these major modules responded differently to environmental
properties (Tables 1 and 2). For example, in SMN, module1 had strong correlations with
pH, SOC, and TP, while module2 did not correlate with these environmental variables
(Table 1). In WMN, module2 had strong correlations with all these environmental variables
while module5 did not correlate with any (Table 2).
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4. Discussion

This study showed that microeukaryotic communities were significantly different in
composition and structure between sediment and water in our studied thermokarst lakes
(Figure 1c). Sediment microeukaryotic communities had significantly lower α-diversity
but higher β-diversity than water microeukaryotic communities (Figure 1). This pattern
was consistent with our previous study of bacterial communities in the same lakes [11].
In lake ecosystems, distinct microorganisms inhabit in sediment and water [59–62]. Mi-
croeukaryotic communities were composed by various taxa and structured differently in
sediment and water (Figure 2). A significantly higher mean value of βMNTD for SMC
indicates that microeukaryotes in sediment are less closely phylogenetically clustered than
that in water [63]. Mantel test showed that pH, SOC, and TP were significantly associated
to dissimilarities of microeukaryotic communities for sediment samples (Table 1), while
conductivity was significant for water samples (Table 2). The environmental responses
of microeukaryotic communities were different to bacterial communities which are more
associated to nutrient factors [11].

Microeukaryotic community structure varies across different spatiotemporal scales and
habitats [17,21,23,24]. Sediment and water harbor significantly different microbial commu-
nities [42,64]. Results of this study suggest that both sediment and water microeukaryotic
communities are strongly governed by stochastic assembly processes, especially dispersal
limitation (Figure 3). Microbial dispersal is typically considered as a passive process [27]
where increasing community variations and turnover are coupled with environmental
filtering [65,66]. A strong signal of dispersal limitation and a very low signal of homoge-
nizing dispersal indicate that movements of microeukaryotes between thermokarst lakes
are highly restricted. A potential explanation for the high dispersal limitation is that
thermokarst lakes are unique habitats and lack of connections due to their endorheic nature,
resulting in strong simultaneous environment filtering. Moreover, thermokarst lakes are
frozen for prolonged periods within a year, rendering microorganisms frozen in place as
well [67,68]. Although many microorganisms have a cosmopolitan distribution, their slow
dispersal may allow for regional phylogenetic differences and endemic taxa to develop in
isolated habitats, resulting in low probabilities for microorganisms to disperse to suitable
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distant sites [69]. Therefore, dispersal processes may be restricted by limited movement,
short unfrozen time, and strong environmental filtering, leading to the high dispersal limi-
tation observed in thermokarst lakes, even at a small regional scale. This result is supported
by other studies showing the significant effect of dispersal limitation on the structuring of
microbial communities in lakes [70–72]. A similar pattern of strong dispersal limitation is
also found for bacterial communities in permafrost, whose thawing results in the formation
of thermokarst lakes [73]. In addition, microeukaryotic communities in water were more
governed by deterministic assembly processes, especially by homogenous selection, than
those in sediment (Figure 3). Long-term evolution of the thermokarst lakes results in
homogenized habitats and homogeneous selection was found to be a stronger driver of the
assembly of WMC than SMC. In addition, stronger governance by deterministic processes
also suggests that the microeukaryotic communities in water were more phylogenetically
clustered than that in sediment, supported by the lower Bray–Curtis distance and βMNTD
of WMC than SWC (Figure 1).

Microeukaryotes typically co-occur with strong interactions in lake ecosystems [22,74,75],
offering new insights into community assembly mechanisms by identifying potential in-
teractions among microorganisms [33,76]. In our study, microeukaryotic communities in
sediment and water constructed distinct co-occurrence networks in the studied thermokarst
lakes. The results showed that the sediment and water microeukaryotic networks pre-
sented significantly different topological properties (Figures 4 and 5, and Table 3). The
network-level properties of WMN, such as higher number of nodes and edges, average
degree, clustering coefficient, and graph density, as well as lower average path, indicate that
WMN was more complex and more interconnected than SMN. A similar pattern was also
found for bacterial community networks in these lakes [42]. Moreover, microeukaryotic
communities had a higher α-diversity and lower β-diversity in water than in sediment,
which is in accordance with the high complexity and interconnection of WMN. Higher
taxa richness provides more probabilities for establishing interrelationships between each
other [77]. Taxa also tend to co-occur at lower β-diversity because of high community
similarity [42]. In addition, microeukaryotes had a higher niche width in water than in sed-
iment (Figure S3), indicating that water microeukaryotes had stronger competition due to
similar environmental preferences than sediment taxa. Species that have high competition
or driven by the same environmental factors tend to have complex interactions with each
other [78,79], resulting in a complex co-occurrence network. However, compared to SMN,
WMN might have a lower stability under disturbance due to its strong connectivity and
high complexity [80–82], thus suggesting a higher vulnerability of WMN in the accelerated
warming world.

More ecological information on microeukaryotic communities, such as synergistic
and competitive interactions as well as niche differentiation [83,84] can be uncovered by
module structure of the networks [85,86]. SMN had a significantly higher modularity (the
tendency of the network to contain modules) than WMN (Table 3), suggesting high habitat
heterogeneity and niche diversity [62,87]. Moreover, WMN had a higher number of major
modules (modules with more than 30 nodes) than SMN (Figure 4), suggesting that more
taxa prefer similar environments and are functionally complementary [83,86]. Modules
were dominated by different taxonomic groups (Figure 6). For SMN, the Mantel test
showed that module1 was significantly associated with pH, SOC, and TP, while module2
was not significantly associated with any of the tested environmental variables (Table 1).
For WMN, different modules responded differently to the environmental variables with
module2 responding to all measured environmental variables and module5 responding to
none (Table 2). The relationships between microbial modules and environmental variables
provide further understanding of environmental influences on microbial assemblages [88,89].

5. Conclusions

Thermokarst lakes are pervasive and important aquatic ecosystems in cold regions
with high latitude and elevation, experiencing significant changes due to accelerated global
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warming. Assessing the assembly mechanisms and co-occurrence patterns of microeukary-
otic communities in sediment and water is critical for understanding the structure and
stability of thermokarst lake ecosystems in the warming world. Our study highlighted that
microeukaryotic communities in sediment and water have distinct alpha diversity patterns,
assembly mechanisms, co-occurrence patterns, and different responses to environmental
variables. Microeukaryotes in sediment were less phylogenetically and taxonomically
clustered than those in water. SOC, pH, and TP were significant drivers of phylogenetic
dissimilarities of microeukaryotic communities in sediment, while conductivity was signifi-
cant driver for water microeukaryotic communities. Dispersal limitation was dominant in
shaping microeukaryotic communities in both sediment and water. Moreover, deterministic
assembly processes had a higher contribution to community assembly in water than that
in sediment. Future changes in sediment TN and TP could shift assembly processes of
sediment microeukaryotic communities. Water microeukaryotes are characterized by a
highly complex and interconnected co-occurrence network with lower modularity than
that of sediment microeukaryotes. It is expected that future climate change and permafrost
degradation will impose different influences on sediment and water microeukaryotic
communities in thermokarst lakes.
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//www.mdpi.com/article/10.3390/microorganisms10020481/s1, Figure S1: Water and sediment
samples were collected from 23 lakes in early July 2020 in the Yellow River Source Area on the
Qinghai-Tibet Plateau. The map was cited from our previous research [11]; Figure S2: Flower plot
diagram showing core and accessory OTUs across (a) all sediment and water samples, (b) all sediment
samples, and (c) all water samples. The central circle shows the number of OTUs common to all
samples while the petals show the number of OTUs in addition to the core set; Figure S3: Niche
width of the taxa microeukaryotic communities of sediment and water. The difference was tested
using Wilcoxon rank-sum test.
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