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ABSTRACT
Single-cell RNA-sequencing (scRNA-seq) has emerged in recent years as a breakthrough technology to 
understand RNA metabolism at cellular resolution. In addition to allowing new cell types and states to 
be identified, scRNA-seq can permit cell-type specific differential gene expression changes, pre-mRNA 
processing events, gene regulatory networks and single-cell developmental trajectories to be uncov-
ered. More recently, a new wave of multi-omic adaptations and complementary spatial transcriptomics 
workflows have been developed that facilitate the collection of even more holistic information from 
individual cells. These developments have unprecedented potential to provide penetrating new insights 
into the basic neural cell dynamics and molecular mechanisms relevant to the nervous system in both 
health and disease. In this review we discuss this maturation of single-cell RNA-sequencing over the past 
decade, and review the different adaptations of the technology that can now be applied both at 
different scales and for different purposes. We conclude by highlighting how these methods have 
already led to many exciting discoveries across neuroscience that have furthered our cellular under-
standing of the neurological disease.
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1. Introduction

The central nervous system (CNS) is a remarkably complex 
tissue composed of billions of highly differentiated and inter-
connected cells of various lineages. This includes a plethora of 
neuronal cells that form intricate neural networks directing 
physical activities and high-level cognitive functions (e.g. 
decision-making, memory, social behaviour). The numerous 
neuroglia then perform a wide array of trophic functions to 
support this complex environment. Among others, microglia 
are the resident macrophages of the CNS that provide it with 
a form of active immune defence, oligodendrocytes provide 
supporting myelin sheaths around neuronal axons that facil-
itate rapid propagation of electrical signals, and astrocytes 
provide biochemical support to surrounding cells and control 
the extracellular environment at synapses to help regulate the 
transmission of electrical signals between neurons.

This cellular diversity and intricate connectivity mean that 
a complex interplay occurs between many cell types during 
neurodevelopment, normal CNS function and the manifesta-
tion of the various diseases of the CNS. Accordingly, in order 
to further our understanding of the CNS in health and disease 
the field requires enhanced knowledge of this complex system 
at the cellular level. However, this interplay has been challen-
ging to address using our long-standing technical abilities to 
monitor cell morphology, neuroanatomy, electrophysiology, 
synapse biology and neural connectivity that have provided so 
much of our current knowledge of the CNS.

Excitingly then, the development of single-cell RNA- 
sequencing (scRNA-seq) and several closely related technolo-
gies now offer an unprecedented opportunity to interrogate 
the intricate cellular dynamics of the CNS at cell-type-specific 
resolution through the study of RNA metabolism. Indeed, the 
RNA transcriptome of an individual cell can readily identify 
a cell’s background whilst concomitantly providing 
a remarkably accurate snapshot of how the cell is both func-
tioning and responding to external cues at the time of profil-
ing. Moreover, it has the ability to tease apart the cellular 
heterogeneity in seemingly homogenous cell populations that 
may offer explanations to the emergence of certain complex 
phenotypes. With this in mind, in this review, we discuss the 
technological principles underlying this emerging field, then 
present the early and exciting applications of scRNA-seq that 
have emerged across the neurosciences.

2. From single cells to scRNA-seq datasets

ScRNA-seq remains a relatively new technology to many, yet 
it has its origins in the pioneering work of both Norman 
Iscove and James Eberwine in the early 1990s. In their seminal 
experiments, the RNA from single cells was reverse tran-
scribed and exponentially amplified with PCR [1,2], or line-
arly amplified with in vitro transcription (IVT) [3]. The 
resulting amplification of the individual cellular transcrip-
tomes could subsequently be used as a template for PCR or 
southern blots against genes-of-interest. The advent of 
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microarray technology and next-generation sequencing 
(NGS) subsequently catapulted the field to the transcriptome- 
wide analyses that are becoming increasingly frequent today, 
with NGS now the preferred of these options. Excitingly for 
the field, scRNA-seq has experienced a revolution in recent 
years following the introduction of numerous technical mod-
ifications which have made the protocol easier, faster, more 
reliable, and capable of profiling ever-increasing numbers of 
cells (Table 1). Indeed, the limiting factor for single-cell RNA- 
seq studies typically remains the cost of the sequencing itself.

In principle, all current scRNA-seq methods involve the 
dissociation of a sample into single cells, then processing of 
the individual cells such that all the RNA derived from a given 
cell is demarcated with an identical barcode. Accordingly, the 
barcode can subsequently be used to denote the cellular origin 
of each sequenced transcript during downstream bioinfor-
matics analyses. It was this introduction of the cell barcoding 
concept in the Single-cell Tagged Reverse-Transcription 
sequencing (STRT-seq) protocol [4] that initiated the method 
development revolution in 2011, as it moved the field from 
sequencing one cell at a time [5] to being able to differentiate 
each cell’s individual transcriptome from the next within the 
same dataset. As a generalization, the different protocol var-
iants that have since emerged then differ from one another in 
i) their method of barcoding the RNA from individual cells 
(Fig. 1A), ii) their method to amplify low abundance cellular 
RNA (Fig. 1B), iii) the region of the mRNA transcript that is 
enriched and sequenced (Fig. 1C), iv) the method used to 
capture and process the individual cells (Fig. 1D), and v) the 
choice of starting material (Fig. 1E). Selected combinations of 
these parameters have then facilitated an exponential scaling 
of scRNA-seq in recent years, including in the neurosciences 
(Fig. 2A). Each of these is discussed in greater detail over the 
following sections.

2.1. Cellular and molecular barcoding

Demarcating a cell’s transcriptome with a unique cell barcode 
common to all the transcripts of that cell was initially 
achieved by physically isolating single cells into individual 
wells, lysing the cells, proceeding with individual RNA-seq 
library preparations that incorporated well-specific barcodes, 
and finally exponential amplification by PCR [4,6] (Fig. 1A, 
upper panel). However, this well-by-well strategy is costly and 
prevents early multiplexing of libraries. Accordingly, the Cell 
Expression by Linear amplification and sequencing (CEL-Seq) 
protocol [7] introduced barcode sequences into the reverse 
transcription primers such that cells isolated across a plate 
could be pooled and processed as a single multiplexed sample 
from an earlier stage (Fig. 1A, lower panel). This allowed 96- 
well plates to be processed through library preparation at 
a reduced cost, whilst additional plate-specific indexes intro-
duced during PCR amplification allowed multiple experi-
ments to be combined on a single sequencing machine flow- 
cell. This combination of reverse transcription-based indexing 
of cells and PCR-based sample indexing has since established 
itself in most high-throughput scRNA-seq protocols, although 
well-based indexing is still used in low-throughput studies 

where full transcript coverage is required (see section 2.2 
and 2.3).

In addition to denoting a RNA’s cellular origins with a cell- 
specific barcode, the absolute quantification of the RNA tran-
scripts in each cellular transcriptome is a requisite for many 
scRNA-seq studies. Whilst metrics used in traditional RNA- 
seq (e.g. FPKM, RPKM) were used early on, they are poorly 
suited to scRNA-seq due to the amplification and coverage 
biases that exist in different single-cell workflows. 
Introduction of unique molecular identifiers (UMIs) into the 
cDNA prior to library amplification provided a means to 
perform molecule counting by collapsing identical sequencing 
reads that are a consequence of amplification [8]. Initially 
used as an internal validation control of scRNA-seq quantifi-
cation estimates [9], this has since been shown to improve the 
reproducibility of quantification across individual cells, parti-
cularly for low-abundant transcripts [10]. Accordingly, the 
use of UMIs and molecule counting has become a common 
feature of most scRNA-seq protocols.

2.2. Amplification of cellular transcriptomes

The low abundance RNA in individual cells currently neces-
sitates an amplification step prior to NGS (Fig. 1B). Following 
the early studies of Iscove and Eberwine, both linear amplifi-
cation with IVT and exponential amplification with PCR have 
been incorporated into more recent protocol adaptations. IVT 
has the advantage that linear amplification better preserves 
relative abundances of mRNA transcripts whilst avoiding 
exponential amplification of any errors or the biases that 
exist in other methods towards certain high-abundance tran-
scripts. In such techniques, it is the reverse transcription 
primer that additionally introduces the T7 polymerase pro-
moter required for IVT amplification [7]. However, successive 
rounds of amplification each lead to progressive transcript 
shortening that manifests as a 3ʹ end enrichment [11]. The 
pooling of barcoded cells in the Massively Parallel single-cell 
RNA-Sequencing (MARS-seq) [12] and CEL-seq [7] protocols 
has increased starting input and mitigates this bias through 
reduced rounds of amplification, but the labour-intensive 
nature means their uptake has been limited.

PCR provides a readily implemented alternative for most 
labs. It can be achieved following a template-switching reverse 
transcription reaction to incorporate a sequence-specified 
PCR handle at the 5ʹ end of cDNA derived from oligo-dT 
primed mRNA transcripts (Fig. 1A, lower panel). First intro-
duced in Clontech’s Switching Mechanism at 5ʹ End of RNA 
Template (SMART) protocol for amplification of low- 
abundant RNA, this provides the necessary primer sequences 
at both ends to allow full-length cDNA amplification (Fig. 
1B). The method has since been heavily optimized for NGS in 
the SMART-seq [13], SMART-seq2 [14] and SMART-seq3 
[15] workflows, and we herein refer to all three adaptations 
simply as ‘SMART-seq’ unless specified otherwise. Various 
protocols subsequently differ in their use of the full-length 
cDNA. Well- or chamber-based scRNA-seq workflows, such 
as SMART-seq and Fluidigm C1, fragment the cDNA before 
adding the previously described well-specific indexes during 
PCR. Accordingly, each cDNA fragment is cell indexed and 
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full length scRNA-seq can be achieved. Higher throughput 
scRNA-seq adaptions alternatively incorporate non-cell spe-
cific adapters, typically by tagmentation, that are used with 
termini-specific primer sequences to amplify either the 3ʹ or 5ʹ 
regions of mRNA transcripts. Notably, these amplified regions 
additionally contain the cellular barcodes that have instead 
been introduced during reverse transcription. As described in 
the previous section, the early introduction of cell barcodes 
during reverse transcription enables early multiplexing prior 
to any amplification that can facilitate increases in scale. 
However, despite the flexibility, PCR-based methods have 
the disadvantage that the required template-switching has 
low efficiency and is influenced by mRNA sequence and the 
presence of a 5ʹ-m7G cap [16]. Meanwhile, both highly 

expressed transcripts and shorter cDNAs are biased during 
the exponential amplification step. Recent reports have shown 
template-switching efficiency can be improved through var-
ious subtle changes to the reaction conditions [15,17], whilst 
the Quartz-seq2 method replaces template-switching with 
a terminal transferase reaction that introduces a poly-A tail 
to the cDNA [18]. This is then utilized in second-strand 
synthesis to introduce a PCR handle for full-length cDNA 
amplification. Both developments increase cDNA library 
complexity, so it is expected they could be integrated into 
existing methods in the near future.

Isothermic rolling circle amplification of circularized 
cDNA with phi29 polymerase provides an additional alterna-
tive that is able to preserve full-length transcript coverage and 

B.

C.
A.

D.

E.

Ba
rco

ding Amplification
C

overageIn
pu

t

Single-Cell
 RNA-seq

Scaling

Well-based late barcoding

Indexed RT primer based early barcoding

Well-based late

96/384-well plate, Integrated Fluidic Circuits
(e.g. Fluidigm C1 System)

cDNA template

RNA transcripts

T7

In Vitro Transcription

Rolling Circle 
Amplification

Template switching 
PCR

UMI Cell PCR

PCR

TTTT

RNA 

cDNA 
RT

Barcoded RT primer

Barcoded transcripts

TSO

3’5’

5’

3’

Full length

N
or

m
al

iz
ed

 tr
an

sc
rip

t c
ov

er
ag

e

Position along transcripts 

96/384-well plate

Low throughput
well-based

High Throughput
Microwell

High Throughpu
Droplet In situ Barcoding

TTTT
UMI Cell PCR

Barcoding 
oligos

VS

VS

Cells Nuclei

Tissue Cell culture
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relative abundances from single cells (Fig. 1B) [19]. 
Integration into scRNA-seq protocols has been limited to 
date, although it has recently provided opportunities for full 
length transcript sequencing with emerging nanopore tech-
nology [20]. It will be interesting to see whether this amplifi-
cation method can be integrated into existing protocols in 
future years, or alternatively, whether direct RNA sequencing 
with nanopore technology can eliminate such amplification 
steps altogether.

2.3. Transcript coverage

As noted in the previous section, different PCR-based work-
flows result in enrichment of different parts of an mRNA 
transcript. Specifically, and following full-length cDNA pro-
duction, either the full mRNA transcripts can be processed 
and sequenced, or the 5ʹ/3ʹ regions of an mRNA can be 
enriched (Fig. 1C). Full-length coverage is presently only 
possible in a relatively low-throughput manner due to the 
challenges in providing all fragments from the same transcrip-
tome with the same cellular barcode, and the increased 
sequencing requirements to cover a cell’s full exome that 
may become cost-prohibitive as cell numbers increase. In 
contrast, capturing a smaller part of the exome enables an 
increased level of cell multiplexing within the current confines 
of sequencing capabilities to facilitate higher throughput stu-
dies. However, whilst increased scale remains tempting to 
many, the choice of the protocol should carefully consider 
the question in mind.

After UMIs are factored in, methods enriching transcript 
ends should in theory provide just a single cDNA per RNA 
molecule rather than the many scattered cDNAs across 
a transcript seen in full-length workflows. Mis-priming during 
reverse transcription on internal poly-A sequences means this 
is not always the case, although these can be computationally 
identified and filtered out [21]. The enrichment of termini in 
conjunction with appropriately designed UMIs can thus pro-
vide robust quantification of gene abundance that is compara-
tively immune to gene length biases evident in full-length 
methods. Accordingly, these workflows are well suited for 
summarizing differential gene expression changes across 
cells. This can be leveraged for granular dissection of cell 
heterogeneity [22–24], paradigm dependent changes in gene 
expression profiles of specific cell populations [25], or reverse- 
engineering underlying gene regulatory networks with sys-
tems biology workflows [26,27]. Termini-specific features 
can also be monitored across individual cells. For example, 
5ʹ enrichments have been leveraged for immune profiling of 
B or T cells [28], whilst 3ʹ enrichments have been used to 
identify cell-specific alternative poly-adenylation patterns 
[29]. Due to biases mentioned in this and previous sections, 
such analyses tend to only accurately report upon the most 
highly expressed genes. However, novel computational meth-
ods that share data across cell populations can provide 
enhanced opportunities to make accurate calls on lower 
expressed transcripts [30,31].

Whilst the lower throughput full-length cDNA workflows 
also permit the above, they have also impressively enabled 
single-cell analysis of isoform usage and pre-mRNA splicing 

decisions in certain studies [9,32,33]. It should be noted that 
the ability to accurately detect such changes is complicated by 
typical low depths of the sequencing of individual cells, tech-
nical noise introduced by amplification steps, variable mRNA 
capture efficiencies, and technical limitations imposed by 
different sequencing technologies. Indeed, whilst tools for 
detecting alternative pre-mRNA processing in bulk RNA-seq 
generated with short-read sequencing have shown promise on 
simulated single-cell datasets [34], studies utilizing experi-
mental short-read datasets have required sophisticated algo-
rithms that factor in the associated technical noise and learn 
to read distributions to detect [32,35] and quantify [33] pre- 
mRNA processing changes. Long-read sequencing offered by 
Oxford Nanopore Technologies (ONT) and PacBio provides 
an attractive alternative solution to these challenges, and has 
already identified new isoforms that are absent from the latest 
annotation databases [36]. Accordingly, there could be much 
potential for applying long-read sequencing to study pre- 
mRNA processing in the scRNA-seq field. However, current 
ONT-based studies have reported error rates that preclude 
accurate transcript quantification using UMIs [20], whilst the 
more accurate but lower throughput PacBio platform has 
required increasing depths of sequencing to ensure analysis 
extends beyond a limited number of genes [36,37]. In future, 
it will therefore be exciting to see whether integrating error- 
corrected nanopore sequencing into scalable scRNA-seq 
workflows presents alternative opportunities for accurately 
studying isoform-level expression patterns at cell resolution 
[38,39].

2.4. Scaling up

Despite identifying methods to barcode and separate indivi-
dual cell transcriptomes from one another in multiplexed 
sequencing reactions, manual isolation of single cells into 
individual wells restricted initial studies to the profiling of 
relatively few cells (~102, Fig. 1D upper panel). This could be 
modestly increased with automated FACS-based sorting of 
cells [12] and integrated microfluidic circuits [6] to ~102– 
103 cells per the study, but a major challenge to the field 
was to scale up and profile increasing numbers of cells whilst 
maintaining quality and integrity. Three elegant solutions 
have since been identified to overcome this problem, each 
utilizing different high-throughput capture methods that 
retain the ability to barcode cells prior to multiplexed library 
preparations (Fig. 1D, lower panel).

The most simplistic in principle has been to increase the 
number of wells being used to capture and barcode cells. To 
achieve this, Bose et al. initially used polydimethylsiloxane 
(PDMS)-based printing of >10,000 pico-wells (50 μm in dia-
meter) on a solid surface to facilitate the gravitational capture 
of ~100 individual cells in every 1000 wells after being intro-
duced across the surface in a single-cell suspension of limited 
dilution (Fig. 1D, lower left panel) [40]. Co-capture of 
a uniquely barcoded mRNA capture bead in the well by the 
same gravitational method then subsequently introduced oli-
gos required for cell barcoding and library preparation. 
Specifically, each individual bead is coated with oligos con-
taining a unique bead-specific barcode, oligo(dT), and 
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sequences required for library amplification. On-chip lysis, 
reverse transcription and amplification could then be carried 
out before indexed cell transcriptomes can be multiplexed and 
processed for sequencing. Subsequent variants of this scaling 
principle have now reduced the need for custom chip proces-
sing equipment, and improved cell separation by using semi- 
permeable membranes that help reduce well-to-well contam-
inations [7,41,42]. Meanwhile, the cost-effective workflow has 
been used to collect and profile >104 cell transcriptomes in 
some studies.

The second solution involved the development of micro-
fluidic technology to co-capture single cells in individual 
aqueous droplets in oil together with aforementioned 
uniquely barcoded mRNA capture beads (Fig. 1D, lower mid-
dle panel) [22,43]. Incorporation of lysis buffer during droplet 
formation subsequently leads to the release of the cellular 
RNA and its capture on the beads in order to demarcate 
transcripts with a cell barcode. Two main flavours of the 
workflow then exist: reverse transcription within droplets 
followed by droplet bursting, bead pooling and multiplexed 
library preparation [43,44], or droplet bursting and bead 
pooling immediately after RNA capture ahead of a single 
multiplexed reverse transcription reaction and library proces-
sing [22,45]. The first has the advantage that deformable 
beads are used that permit high droplet occupancies (~80%), 
whilst the second remains more frugal on reagent costs. 
Commercial platforms based on both methods now allow 8 
samples to be processed in parallel, with ~5-8 × 104 transcrip-
tomes captured from each sample in ~15 minutes [44,45]. So- 
called droplet-based sequencing has thus become a popular 
method across the life-sciences due to its scalability and 
availability of multiple commercial platforms facilitating the 
approach [43–45]. Indeed, >1 × 106 neural cells have been 
profiled in one such dataset generated by 10x Genomics Ltd 
for the unrestricted use of the research community [31].

Despite their simple-to-implement workflows, both afore-
mentioned strategies have the disadvantage of needing specific 
lab equipment (e.g. FACS, custom fabricated chips, droplet 
generator, barcoded mRNA capture beads). This makes these 
techniques expensive, technically challenging and inaccessible 
for many groups. A third strategy addresses these obstacles by 
using the cells themselves as reaction chambers for in situ mRNA 
barcoding. Specifically, the sci-RNA-seq [46] and SPLiT-seq [24] 
protocols begin by introducing barcoded reverse transcription 
primers and reverse transcription reagents into semi-fixed and 
permeabilized cells in a standard plate-based format (Fig. 1D, 
lower right panel). Notably, pools of cells are provided to each 
well such that many cells will have the same initial barcode. 
Subsequent rounds of cell pooling followed by redistribution 
across reaction plates and further barcode additions by either 
in situ ligation or PCR amplifications then ensures each indivi-
dual cell follows a different path through the protocol to build 
a unique barcode relative to its initial neighbours. Increasing the 
number of barcoding steps increases barcode diversity and scal-
ing potential whilst reducing the probability of two cells return-
ing the same barcode. This has so far been restricted to four steps 
in SPLiT-seq where >1.5 × 105 cells from the mouse brain and 
spinal cord were profiled in a single experiment using no custo-
mized equipment [24].

Whilst these represent the main strategies for scaling 
scRNA-seq at present, the recent combination of the last 
two concepts has excitingly opened up new opportunities for 
ultra-high throughput scaling in future using the ‘single-cell 
combinatorial fluidic indexing’ (scifi) RNA-seq workflow [47]. 
Here, pre-indexing of mildly fixed cells with an in situ reverse 
transcription reaction subsequently allows multiple cells to be 
loaded into individual oil droplets using already mature 
microfluidic technology. This mitigates the requirement for 
precise loading densities of cells onto the microfluidic devices 
to restrict co-capture of multiple cells in a droplet with an 
mRNA capture-bead. More importantly, it enables a 15-fold 
increase in the throughput of droplet-based scRNA-seq and 
provides a simple strategy for multiplexing hundreds of sam-
ples in a single experiment.

2.5. Choice of starting material

Where feasible, scRNA-seq has been carried out on viable, 
whole cells isolated from cultures or tissue (Fig. 1E). Such 
preparations can be made using enzymatic separation of com-
plex samples [48–50], manual straining of samples through 
micro-metre meshes [51], or combinations of both [52–54]. 
However, the requirement for whole cells can be limiting to 
research requiring clinical samples, archived tissues, tissues 
sensitive to enzymatic dissociation, or tissues with an archi-
tectural complexity that is non-trivial to dissociate into intact 
single-cell suspension. Neural tissue presents a particularly 
difficult challenge because of its cellular complexity. 
Developing brains have lower connectivity as the neural net-
work is not yet developed, and this can allow dissociation of 
embryonic samples into single-cell suspensions [48–54]. 
However, neural cells in adult brains form long axons and 
numerous connections to other cells such that high integrity 
dissociation into intact cells is nigh on impossible. Indeed, 
certain motor and sensory neurons in the human CNS send 
out projections >1 m in length that are impossible to fully 
dissociate from their surrounding cells and environment.

To address this challenge, single-nuclei RNA-seq (snRNA- 
seq) has emerged as a viable alternative option. Of crucial 
importance here, single nuclei can be collected in high quan-
tity and quality from such samples with comparatively gentler 
methods than the often-harsh enzymatic digestions used in 
scRNA-seq. This includes from archived frozen tissue, 
although it is important to appreciate that processing such 
frozen samples can result in variable thawing speeds and RNA 
quality between the cells or nuclei in the periphery and those 
in the centre. Controlled thawing of samples should therefore 
be carefully optimized to avoid poor dataset metrics, and it is 
thus noteworthy that current snRNA-seq studies from the 
adult human brain have prepared nuclei from cryostat sec-
tioned tissue where thawing speeds across samples are 
expected to be more even than from a thicker tissue block 
[55]. A number of snRNA-seq protocol variants have now 
been reported that follow the developments made in scRNA- 
seq. Indeed, well-based variants [56–58] have since been fol-
lowed by droplet-based [23,57,59] and in situ based workflows 
[24] to permit increased scalability. Crucially, several studies 
have now directly compared scRNA-seq and snRNA-seq from 
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identical samples. In addition to confirming expected findings 
such as increased intronic and reduced mitochondrial RNA 
alignments in snRNA-seq, these studies have consistently 
reported good agreement between gene-expression signatures 
of isolated cells and isolated nuclei [23,57,60–62]. As will be 
seen in the following sections, this has subsequently enabled 
snRNA-seq to report granular characterizations of the myriad 
different cell types in challenging-to-study tissues such as the 
human CNS [23,24,57].

Excitingly, the development of snRNA-seq presents an 
unprecedented opportunity to access human tissue banks in 
a fundamentally new way in order to enhance our cellular 
understanding of disease directly in the context of the human 
condition. This is extremely important for the study of neu-
rological disease given the species differences that exist 
between humans and other model systems. For example, 
human neuroglia have a ~10-fold increase in processes, a ~25- 
fold increase in volume, and support ~20-fold more synapses 
than rodent neuroglia. Meanwhile, the frontotemporal lobar 
degeneration (FTLD)-vulnerable large spindle neurons of the 
anterior cingulate cortex are primate-specific [63]. Similarly, 
the amyotrophic lateral sclerosis (ALS)-vulnerable gigantopyr-
amidal layer V Betz cells are not detected in rodents, whilst 
they project further, have larger somas and have dramatically 
thicker axons than rodent corticospinal motor neuron coun-
terparts [64]. Accordingly, certain human neuropathologies 
will never be fully reproduced in rodents. The potential for 
snRNA-seq to further dissect the cellular dynamics of human- 
diseased tissue is thus of huge importance if we are to truly 
understand the human condition.

2.6. Single-cell multi-omics

A common complement in traditional transcriptomics study 
has been assessing the relationship to other measurements 
from the sample such as epigenomic or proteomic signatures. 
Such multi-modal information can provide more holistic 
views of a given sample. It therefore comes as no surprise 
that the technological developments in the field have allowed 
several groups to start implementing single-cell multi-omic 
workflows. A full discussion on all single-cell multi-omic 
methods is beyond the scope of this review, and instead, we 
redirect the reader to an excellent recent review on the topic 
[65]. We instead highlight two concepts of multi-omic studies 
with examples; parallel processing of modalities and com-
bined processing of modalities.

Genome and Transcriptome (G&T)-seq employs parallel 
processing of modalities, and is designed for integrative ana-
lysis of genomes and transcriptomes from the same single cell 
[66]. This is achieved by an early biotin-based separation of 
cell transcriptomes from the cellular DNA following the 
reverse transcription step of a modified SMART-seq protocol. 
Parallel processing of the DNA and the RNA libraries are then 
carried out through different workflows and separated 
sequencing. The method can be used to identify causative 
genetic variations that relate to variable cell-to-cell expression. 
An advantage of parallel processing in this setting is that 
overlapping genomic and transcriptomic reads at exons are 
separated at an early stage, thus allowing accurate calling of 

copy number from the genomic DNA without a non-trivial in 
silico filtering of mRNA reads.

The alternative is to keep the modalities together and use 
a common strategy to capture both. This can be more con-
venient, reduce the opportunity for contamination, and limit 
opportunities for material loss. For example, Cellular Indexing 
of Transcriptomes and Epitopes (CITE)-seq allows character-
ization of the cell surface proteome and transcriptome of the 
same single cell [67]. To achieve this, protein-specific barcode 
oligonucleotides are conjugated to antibodies that target 
desired cell surface proteins. The tagged antibodies are next 
incubated with cell suspensions prior to scRNA-seq, with the 
tagged antibodies carried into the cell isolation chamber (e.g. 
an oil droplet) if the protein-of-interest is detected. Since the 
conjugated oligonucleotides additionally contain a poly-A tail 
such that they mimic an mRNA, protein detection can sub-
sequently be reported in the resulting datasets due to the 
capture of the barcode oligonucleotide on the mRNA capture 
beads alongside other cellular transcripts. This method has 
shown excellent agreement with FACS-based study and is 
convenient to implement. Like with the choice of scRNA- 
seq workflow then, the parallel or combined processing of 
modalities in multi-omic studies must thus be carefully con-
sidered for the desired application.

2.7 . Bioinformatic challenges

Independent of the technique chosen or biological question 
investigated, all scRNA-seq experiments will generate large 
sequencing datasets requiring bioinformatics analysis. 
Analysis workflows typically include the same two initial 
steps: quality control and pre-processing of the raw data (i.e. 
demultiplexing, genome alignment, normalization, data cor-
rection, feature selection, dimensionality reduction). Several 
tools developed in other fields are applicable for each step but 
the integration of many independently developed tools into 
a scRNA-seq compatible workflow can be nontrivial for those 
entering the field. Accordingly, several excellent and easy-to- 
implement scRNA-seq workflows have been developed that 
now allow their ready integration. Among others this includes 
Drop-seq tools [22], DropSeqPipe [68], Cell Ranger [44] and 
Seurat [69]. Either individually or in combination, such work-
flows can take the user from raw data to individual cell 
transcriptomes that have been clustered according to their 
expression of marker genes. Moreover, recent refinements to 
some of these well-documented packages can overcome addi-
tional challenges such as aligning data from different repli-
cates and technologies, profiling increased cell numbers, 
accounting for the level of ‘noise’ derived from different 
scRNA-seq protocols, the biological heterogeneity of cells 
and batch effects.

Downstream analyses of pre-processed scRNA-seq datasets 
may then be cell- or gene-level. Cell-level analysis may include 
more granular cell clustering [23,24] and trajectory inference 
methods [70,71], while gene-level analysis can include differ-
ential gene expression [72] and gene regulatory network infer-
ence methods [26]. Here researchers need to carefully choose 
the most appropriate tool for their dataset and biological 
question. In this regard, we refer the reader to recent reviews 
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that expand on best practices of data pre-processing and 
downstream analysis [73,74].

3. Lessons learnt from single-cell transcriptomics in 
the mammalian CNS

The mammalian CNS is an extremely complex network of 
highly differentiated cell types that develop through highly 
specialized steps (e.g. migration, neuritogenesis, axon gui-
dance) and have unique and specific functions, which are, in 
some way, compromised in disease. The use of scRNA-seq or 
snRNA-seq on CNS tissue has provided new opportunities to 
identify new cell types, disease-specific cell states, identify cell- 
type-specific molecular changes, study disease progression 
and dissect molecular mechanisms with high-resolution. In 
the following sections we briefly discuss how scRNA-seq has 
dramatically expanded our knowledge of cell diversity in the 
mammalian CNS, then review what it has taught us about 
various neurodevelopmental and neurodegenerative disorders. 
To see how scRNA-seq has informed us about mechanisms of 
CNS cell specification during neurodevelopment, we refer the 
reader to a complementary recent review [75].

3.1. Cell diversity of the nervous system

As with scRNA-seq studies across the life sciences, application 
of scRNA-seq to the mammalian CNS has heralded 
a comprehensive characterization of both new and existing 
cell populations. In mice this has included the profiling of 
whole embryonic brains and spinal cords, and the more 
focussed study of many major brain regions in both mice 
and humans. Other studies have enriched specific cardinal 
cell populations to obtain more granular separations within 
these. Among others, dopamine neurons [76], microglia [77] 
and retinal cells [22,78] have all been enriched for population- 
specific studies due to their important biological and disease- 
relevant roles. A full discussion of each brain region’s cell-type 
diversity is beyond the scope of this review, and we instead 
provide a roadmap to those interested in specific brain 
regions or developmental time-points (Fig. 2, Table 2). 
Taken together though, these studies have overwhelmingly 
emphasized the incredible diversity of cell populations found 
across the mammalian CNS. It remains unclear precisely how 
many new cell types remain to be discovered, but their char-
acterization now provides an unprecedented platform to both 
understand human health and neurological disease. Looking 
forward, it will now be a formidable challenge to understand 
which cell populations are common across studies, and to 
assemble a comprehensive reference map of the human 
brain as part of the international human cell atlas [79].

3.2. Neurodevelopmental disorders

Beyond characterizing cell-type diversity of the CNS in 
healthy conditions, scRNA-seq has enabled new insights into 
various disorders and diseases of the nervous system. In the 
case of neurodevelopmental disorders, several recent reports 
have emerged tackling specific conditions. We accordingly 
consider what scRNA-seq has taught us so far about Autism 

Spectrum Disorders (ASDs), Rett syndrome, Zika Virus infec-
tion and generalized seizure activity.

3.2.1. Autism Spectrum Disorder
ASD is an umbrella term for closely related neurodevelop-
mental conditions that impact how a person perceives and 
socializes with others, causing problems in social interaction, 
repetitive behaviours and communication. Whilst much pro-
gress has recently been made characterizing the convergent 
transcriptomic mechanisms and signatures which are charac-
teristic of ASDs at the bulk RNA-seq level [80,81], these 
studies have been limited in their ability to determine the 
precise cell types affected with high resolution. In an attempt 
to address this, snRNA-seq of the healthy adult neocortex has 
recently been used to identify those cell-types that are 
enriched in the differential gene expression and alternative 
splicing programmes that are consistently detected by bulk 
RNA-seq of ASD tissue [55,82]. Specifically, snRNA-seq iden-
tified endothelial cells, microglia and astrocytes to be most 
highly enriched for a set of 27 genes related to immune system 
response that are consistently differentially expressed across 
four cortical (frontal and temporal) regions in bulk RNA-seq. 
Activation of these glial cell populations is consistent with the 
previously documented involvement of both astrocytes and 
microglia in the neuroinflammation present in ASD pathol-
ogy [83–85]. Further to this, snRNA-seq dataset implicated 
projection neurons and interneurons as being enriched for 
ASD-relevant alternative splicing signatures identified in bulk 
RNA-seq in healthy adult cortex, with the genes involved 
predominantly linked to synaptic function. However, whilst 
the study goes some way to identify cortical cell types impli-
cated in ASD, the comparison to adult human cortex may not 
accurately account for developmental-stage specific gene 
expression programmes.

A recent scRNA-seq atlas of human neocortex at a period 
implicated in the onset of various neurodevelopmental disorders 
[86] (gestation weeks 17–18) has provided a pertinent alternative 
for this gene enrichment-style approach. Indeed, this atlas has 
been used to evaluate cell-type-specific expression of genes 
related to neurodevelopmental disorders at this critical juncture, 
such as genes genetically associated with ASD [87]. This revealed 
that the majority of high-confidence ASD-risk genes are 
enriched in developing excitatory glutamatergic neurons within 
deep and upper cortical layers, although the precise distribution 
of the individual genes varies: some display pan-neuronal 
expression (e.g. MYT1L, AKAP9), others cell subtype-specific 
expression (e.g. GRIN2B), whilst some are specific to progenitor 
populations (e.g. ILF2). Meanwhile, certain ASD-risk genes also 
display distinctly non-neuronal expression (e.g. TRIO and 
SETD5 in oligodendrocyte precursor cells, SLC6A1 in pericytes) 
to imply a still poorly understood contribution of neuroglia and 
the blood-brain barrier to ASD aetiology [86]. Beyond ASD, 
expression risk genes implicated in both epilepsy and intellectual 
disability (ID) were found to be generally enriched in sub-types 
of glutamatergic neurons, whilst certain high-risk ID genes are 
highly expressed in radial glia, a distribution not observed for 
epilepsy or ASD-risk gene sets. Thus, whilst partial overlap exists 
in the genes implicated in each of these disorders, the individual 
cell-type-specific expression patterns of each gene set are unique.
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Whilst using healthy brain tissue can aid in the identifica-
tion of cell-types likely affected in ASD, it is limited in 
providing direct information regarding the disease state. 
Assessment of ASD post-mortem pre-frontal (PFC) and 

anterior cingulate cortex via droplet-based snRNA-seq have 
therefore provided a complementary context-specific insight 
into the key cell types affected, and their organization within 
the cortex [55]. Specifically, to dissect primary effects of ASD 
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from potential secondary gene signatures associated with sei-
zure activity, a common co-morbidity with ASD, the cohort 
consisted of 15 ASD post-mortem cases between 4 and 
22 years of age, with age-matched controls, and a further 
assessment of the PFC from patients with epilepsy. 
Interrogation of the composition of the ASD tissue revealed 
an increase in the proportion of both protoplasmic astrocytes 

and layer IV excitatory neurons in one of the two cortical 
regions assessed. Additionally, specific cell types in the ASD 
tissues displayed differential gene expression profiles relative 
to controls. This particularly included the downregulation of 
neuronal genes in cortical excitatory neurons of layer II/III 
and layer IV, including genes linked to synaptic function (e.g. 
STX1A, SYN2, NRXN1) and neurodevelopment-associated 

Table 2. Murine and human CNS cell clusters inferred with scRNA-seq or snRNA-seq. Studies listed are those portrayed in Fig. 2.

Species Region/Cell type
Cell 

clusters Reference

Mouse Olfactory bulb 38 [134]

Mouse Medial ganglionic eminence 12 [48]

Mouse Ganglionic eminence 14 [135]

Mouse Caudal ganglionic eminence, primary visual cortex 15 [136]

Mouse Subpallium, dorsal and ventral medial ganglionic eminence, caudal ganglionic eminence 48 [52]

Mouse Hippocampus, thalamus, posterior cortex, cerebellum, substantia nigra and ventral tegmental area, Entopenduncular and 
subthalamic nuclei, Globus pallidus and nucleus basalis, striatum, frontal cortex

565 [51]

Mouse Arcuate hypothalamus, median eminence 50 [137]

Mouse Spinal cord, whole brain 113 [24]

Mouse Ventral midbrain (embryonic), sorted adult dopaminergic neurons 31 [53]

Mouse Cerebral cortex 44 [49]

Mouse Cerebellum 19 [54]

Mouse Cerebellum 48 [50]

Mouse Somatosensory cortex and hippocampal CA1 region 47 [138]

Mouse Primary visual cortex 49 [139]

Mouse Primary visual cortex 30 [100]

Mouse Primary visual cortex 8 [92]

Mouse Hippocampus, prefrontal cortex (adult) 21 [23]

Mouse Retina 46 [99]

Mouse Retina 39 [22]

Mouse Cortex and hippocampus 47 [138]

Mouse Habenula complex 20 [101]

Mouse Striatum 43 [140]

Mouse Hippocampus, dentate gyrus, spinal cord 29 [58]

Mouse Dentate Gyrus 22 [141]

Human prefrontal cortex, motor cortex, parietal cortex, somatosensory cortex, primary visual cortex, hippocampus (foetal) 42 [142]

Human Ventral midbrain (embryos) 25 [53]

Human Neocortex, neural precursor cells 4 [6]

Human Neocortex 7 [95]

Human Ventricular zone, subventricular zone (embryos) 16 [96]

Human Ventricular zone, subventricular zone, subplate, cortical plate (embryos) 16 [86]

Human Neocortex 7 [143]

Human Prefrontal cortex (embryos) 35 [144]

Human Hippocampus (embryos) 47 [145]

Human Neocortex, medial ganglionic eminence 11 [146]

Human Hippocampus, prefrontal cortex 15 [23]

Human Amygdala 15 [147]

Human Prefrontal cortex 26 [148]

Human Frontal cortex, temporal cortex, visual cortex 17 [133]

Human Visual cortex, frontal cortex, cerebellum 35 [57]

Human Retina 126 [149]

Human Occipital cortex 9 [92]

Human Prefrontal cortex, anterior cingulate cortex 17 [55]

Human White matter 6 [150]

Mouse Dopamine cells of ventral midbrain 7 [76]

Mouse Microglia across ageing 9 [151]

Mouse Microglia of cortex, cerebellum, hippocampus, striatum, olfactory bulb, and choroid plexus 15 [152]

Mouse Whole brain and border region macrophages 15 [153]

Mouse Retinal bipolar cells 26 [78]

Mouse Oligodendrocytes of Somatosensory cortex, striatum, dentate gyrus, hippocampus CA1, Corpus callosum, amygdala, 
hypothalamus, zona incerta, SN-VTA, dorsal horn

13 [154]
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transcription factors (e.g. TCF25, SOX5, RBFOX3), and to 
a lesser extent, in VIP-expressing inhibitory interneurons 
(RAB3A, TCF25, AHI1). The most affected gene ontology 
(GO) terms were related to chemical synaptic transmission, 
axon guidance, neuronal migration and GABA signalling. 
Concurrently, microglia displayed the highest proportion of 
positive differentially expressed genes (DEGs) and were 
enriched for genes linked to microglial activation and tran-
scription factors affecting development. Again fitting with the 
documented neuroinflammation present in post-mortem ASD 
brains [83,84], protoplasmic astrocytes displayed upregulation 
of transcription factors affecting development (e.g. TCF25, 
LMO3, SOX5) and cell mobility (e.g. FIGN, DLC1, CADM2) 
alongside their increased abundance.

Interestingly, specific subsets of DEGs within layer II/III 
neurons and microglia could be correlated to the severity of 
the presenting ASD phenotype. Further to this, cell-type- 
specific DEGs were over-represented by those considered to 
confer high-confidence ASD risk, such as those listed by the 
SFARI database as genetically associated ASD risk genes [87]. 
The overlap in cell-type-specific changes was low between the 
ASD and epilepsy group. The greatest affected DEGs in the 
epilepsy cases presented in layer V/VI corticofugal projection 
neurons and parvalbumin interneurons. This led to the con-
clusion that the majority of the cell-type-specific DEGs 
observed in ASD were primary to the disease, and not 
a result of linked epilepsy.

3.2.2. Rett syndrome
Rett syndrome is a X-linked neurodevelopmental disorder 
that primarily affects females and is characterized by autistic- 
like features. It results from a mutation of MECP2 located on 
the X-chromosome. MECP2 encodes for a neuron-enriched 
protein which binds to methylated cytosines and which may 
subsequently act as a transcriptional repressor of methylated 
genes. Other implicated functions include mRNA splicing, 
transcriptional activation and chromatin remodelling [88–91]. 
Due to random X-chromosome inactivation in females, carry-
ing a single defective MECP2 allele can lead to mosaicity in 
the brain, whereby there is coexistence of cells expressing 
either wildtype or mutant MECP2 protein within affected 
heterozygous individuals. Cell-type specific gene expression 
has recently been determined of post-mortem occipital cortex 
from human Rett syndrome patients via snRNA-seq, as well 
as from the visual cortex of Mecp2+/- mice that phenocopy 
features of Rett syndrome [92]. By correlating single- 
nucleotide polymorphisms (SNPs) expressed in cis to 
MECP2 that are distinct for either the wild-type or mutant 
allele, faithful assignment of the transcriptome of each mosaic 
cell was achieved. Accordingly, this overcomes the inability to 
directly sequence the relevant presenting MECP2 gene muta-
tions with the 3ʹ-biased snRNA-seq approach used. This ana-
lytical technique, termed ‘SNP-seq’, allowed for the 
interrogation of both cell-autonomous and non-cell autono-
mous transcriptomic signatures which contribute to Rett syn-
drome pathophysiology within individual cases. This was able 
to recapitulate previous findings of cell-autonomous effects of 
MECP2 loss [93,94], with an observed upregulation of highly 
methylated long genes in excitatory neurons confined to those 

cells expressing the mutant MeCP2 protein in both the patient 
and mouse cortex samples. Through comparison to solely 
wild-type mice, non-cell autonomous signatures within wild- 
type excitatory neurons in Mecp2+/- mice were also discerned. 
This revealed enrichment for DEGs involved in neuronal 
activity-dependent gene expression (e.g. Brinp, Nptx2). 
Interestingly, an overlap of a set of cell-autonomous DEGs 
was observed in mutant excitatory neurons in both the 
Mecp2+/- mouse model and the human post-mortem cases 
(58 upregulated, 84 downregulated). The evolutionarily con-
served and upregulated DEGs displayed enrichment for gene- 
body methylation, potentially identifying these genes as the 
elusive direct targets for MeCP2-mediated repression. This 
gene set was enriched for terms related to neuronal gene 
expression and for genes which have been shown to be 
mutated in ID and ASD, including transcriptional regulators 
AUTS2 and RBFOX1.

Looking forward, whilst the approach was applied solely to 
Mecp2 deficient adult mice, this approach could now be 
extended to assess the cell-specific aspects of Rett syndrome 
progression throughout gestational neurodevelopment. 
Meanwhile, the SNP-seq approach could also allow for the 
study of further X–inactivation-linked NDDs, including 
Fragile-X syndrome, CDKL5 deficiency disorder or X-linked 
intellectual disabilities.

3.2.3. Zika virus
Zika virus (ZIKV) impacts neurodevelopment to cause foetal 
abnormality and microcephaly following maternal infection. 
This particular susceptibility of the developing brain raises the 
important question of whether key molecular features of 
neuronal progenitor cells make the developing brain uniquely 
susceptible to ZIKV compared to adult tissue. To address this, 
a scRNA-seq dataset from human cortex at gestational weeks 
16–18 was used to elucidate the cell-type-specific expression 
patterns of receptors implicated in the entry of certain viruses 
known to cause neurodevelopmental phenotypes [95]. Whilst 
several candidates that could potentially facilitate viral entry 
to cells were expressed across the developing cortex, the gene 
encoding the AXL receptor stood out as displaying enriched 
expression within radial glia; a progenitor population consid-
ered to act as neural stem cells. Notably, this included expres-
sion within recently identified outer radial glial populations 
[96], whilst AXL was additionally present in the radial glia- 
like and outer radial glia-like populations of human iPSC 
derived cerebral organoids [95]. However, immunohisto-
chemistry crucially confirmed AXL was excluded from mature 
neuronal populations at later stages of development and in the 
cerebral organoids. Lending further support for ZIKV entry 
via neuronal progenitor cells and not mature neurons, high 
expression of AXL also presented in progenitor cells of the 
developing retina. Accordingly, this aligns with the high con-
currence of microcephaly and ocular abnormalities, whilst the 
unique expression of AXL within radial glial populations 
offers an explanation to the severe neurodevelopmental pre-
natal phenotype upon ZIKV infection.

Whilst this scRNA-seq study provided a tantalizing entry 
mechanism for this devastating virus, it should be noted that 
a later study found AXL was not required for ZIKV infection 
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of cerebral organoids. Indeed, AXL knockout did not amelio-
rate the loss in organoid mass upon infection [97]. Whilst this 
might throw into question whether AXL is indeed required 
for the destructive effects of ZIKV infection, a growing body 
of data continues to implicate AXL in the assistance of ZIKV 
viral entry and modulation of the downstream immune 
response in infected cells. However, the cell types which are 
now most implicated are astrocytes and microglia [98], not 
radial glia. It is then noteworthy that these other cells were 
also found to highly express AXL in the scRNA-seq study 
[95]. Meanwhile, it continues to raise hope that inhibiting 
AXL function may represent a potential target for future 
antiviral therapies.

3.2.4. Seizures
Advances in scRNA-seq workflows raise the possibility of 
assessing acute gene expression changes incurred in response 
to external stimuli at a single-cell resolution. The expression 
of immediate-early genes (IEGs) is rapidly and transiently 
induced upon various external stimuli, and is often used as 
a sensitive marker for activation of neural cell populations. 
However, aberrant induction of IEGs may also occur during 
tissue preparations stages of scRNA-seq workflows, which 
could interfere with the monitoring of treatment-specific 
gene induction. A recent adaptation to conventional tissue 
dissociation methods, incorporating the use of the general 
transcription inhibitor actinomycin D and lower preparation 
temperatures, was found to minimize artificially induced IEG 
expression [25]. This approach, termed ‘Act-seq,’ allowed for 
more accurate assessment of baseline single-cell transcrip-
tomes and sensitive detection of treatment-specific gene 
expression changes. The sensitivity that Act-seq confers 
allowed for the assessment of activation of a range of IEGs 
upon chemically induced seizures in the mouse medial amyg-
dala (MeA). Seizure-specific IEG induction programmes 
across different cell types were identified for neurons, astro-
cytes, microglia, oligodendrocyte precursor cells, endothelial 
cells and mural cells, all of which would have been otherwise 
masked by aberrant baseline IEG induction. Crucially, only 
a subset of each cell type displayed IEG induction upon 
activation. Indeed, whilst a curated list of 139 IEG genes 
were monitored, cell-type-specific induction of each indivi-
dual gene was identified. For example, microglia, endothelial 
cells and mural cells displayed the highest induction of Dusp1, 
Nr4a1 and Fos, whilst Cyr1 was highly induced solely in mural 
cells (i.e. pericytes and vascular smooth muscle cells). Further 
testing of the Act-seq adaptation allowed for subtle neuronal- 
subpopulation specific IEG induction to be identified upon 
application of a milder immobilization stress. Distinct subpo-
pulations of MeA neurons activated with this milder treat-
ment, including two Cck-expressing subpopulations 
displaying the highest induction of IEGs.

The Act-seq approach is increasingly incorporated into 
studies where precise measurements of acute gene expression 
in response to physiological stimuli are required [99–101]. 
The findings also have implications for all studies where 
scRNA-seq is to be performed on freshly dissociated brain 
samples, as IEG induction in response to conventional dis-
sociation was, to some extent, found to interfere with intra- 

cell-type clustering methods [25]. Whilst the initial applica-
tion of Act-seq has focused on the cell-specific effects of both 
acute stress and chemically induced seizures on activity- 
dependent expression, potentially mimicking the effects of 
epilepsy, this approach could be utilized in future in other 
neurodevelopmental disorders which have activity-dependent 
aspects of disease contribution. For instance, many high-risk 
genes previously implicated in ASDs have roles within activ-
ity-dependent signalling pathways that relate to synaptic func-
tion [102]. Applying Act-seq to assess activity-dependent 
changes to transcriptomic signatures upon neuronal excita-
tion in animal models of ASDs, including response to envir-
onmental stimuli, may aid in the identification of gene 
expression induction which may be perturbed in these cases, 
and the specific cell lines which mediate such acute responses.

3.3. Neurodegeneration

As with neurodevelopmental disorders, several studies have 
similarly used scRNA-seq to investigate the cellular and mole-
cular mechanisms of different neurodegenerative diseases. 
However, rather than being isolated reports on individual 
conditions, certain themes have emerged across a number of 
studies covering diverse diseases and model systems. 
Accordingly, in the following section, we discuss the use of 
scRNA-seq to discover new disease-associated cell states, 
uncover molecular signatures and mechanisms of disease, 
and to chronicle the emergence of transcriptomic phenotypes 
across a number of neurodegenerative disorders.

3.3.1 . Disease-associated cell states
An elegant example of where scRNA-seq’s power to discern 
new cell responses has enhanced disease understanding is in 
the identification of new disease-associated cell states. The 
first prominent example of this in the brain was the report 
of a new microglia state observed in a mouse model of 
Alzheimer’s disease (AD): the disease-associated microglia 
(DAM) [103]. This type of microglia was identified by com-
paring the single-cell profiles of enriched immune cells from 
the brains of wild-type mice and a mouse model carrying five 
human familial AD mutations (5xFAD). Using unsupervised 
clustering analysis to classify the cells, the authors identified 
a microglia state exclusive to the 5xFAD brains. These cells 
classified very close to wild-type microglia based on the 
expression of known markers (e.g. Cst3, Hexb), but displayed 
significant differences in gene expression of typical microglia 
homoeostatic genes (e.g. P2ry12/P2ry13, Cx3cr1, Tmem1), 
known AD risk factors (e.g. ApoE, Lpl, CD9, Ctsd, Tyrobp, 
Trem2), and other genes involved in lipid metabolism and 
phagocytosis (e.g. Lpl, Cst7). Closer analysis revealed two 
distinct populations, with one representing an intermediary 
step and the other constituting a more advanced state. Due to 
their close similarities to homoeostatic microglia, this finding 
would have been very challenging to make using immunos-
taining alone. Meanwhile, the gene expression differences that 
distinguish the closely related populations were masked in 
bulk RNA-seq due to the low ratio of DAM to homoeostatic 
microglia (~7%).
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Recent GWAS has found numerous risk loci around 
genes highly, and sometimes uniquely, expressed in micro-
glia. This has therefore triggered much interest in how they 
are involved in the early stages of AD aetiology and whether 
they could be viable therapeutic targets [104]. Supporting 
relevance of DAM to the human condition then, immunos-
taining with the newly identified DAM marker, LPL, 
revealed that a related human microglia population could 
be detected in human AD brains but not in control tissue. 
LPL-stained DAM were found to colocalise around a core 
pathological trait of AD, extracellular amyloid beta (Aß)- 
plaques, in both the 5xFAD mice and human AD tissue. 
Further, they appeared around the time of onset of plaque 
formation and contained Aß particles in the mice [103]. This 
raises the hypothesis that triggering DAM may be a neuro- 
protective response that helps clear protease-resistant aggre-
gated proteins. Interestingly then, DAM were also evident in 
the SOD1 (G93A) mouse model of another neurodegenera-
tive disease associated with perturbed protein clearance, ALS. 
Urging further investigation though are human-centred 
snRNA-seq studies that have characterized the transcrip-
tomes of human AD-enriched microglia populations 
[105,106]. Whilst these confirmed overlap between the 
mouse and human populations, such as an upregulation of 
the APOE gene [105], they also revealed changes to 
other AD-linked genes not seen in the animal models (e.g. 
the complement component gene, C1QB, and the pattern 
recognition receptor, CD14), and no change to those tied 
to DAM progression in mice (e.g. TREM2). Meanwhile, AD- 
associated human profiles partially overlap with the tran-
scriptome-profiles of aged microglia seen in non-AD cases 
[107]. Thus, whilst human and mice AD-associated micro-
glia states clearly share overlapping features, they still appear 
distinct from one another and may also be present in aged 
individuals.

In addition to DAM, disease-associated astrocytes (DAA) 
have recently been identified in the same 5xFAD mouse model 
of AD [108]. These DAA express a unique set of genes com-
pared to five other detected astrocyte subclusters. This includes 
genes involved in endocytosis, complement cascade and ageing 
(e.g. Serpina3n, Ctsb). The new cell type was confirmed exclu-
sively in the AD mice astrocytes by IHC with DAA markers 
(Gfap, Serpina3n, Vim), were localized adjacent to the Aß- 
plaques, and expressed higher levels of a serine protease inhi-
bitor linked to compromised amyloid degradation, Serpina3n. 
By profiling the 5xFAD mice in a time-resolved manner, it was 
revealed that DAA could be detected by four months of age. 
This is a time-point pre-symptomatic for cognitive decline and 
suggests they could be an early attempt by the brain to contain 
the accumulation of misfolded proteins. DAA-like cells were 
again also evident in aged human brains, and these were found 
in higher frequencies in individuals with AD. It therefore 
remains unclear whether their emergence is a universal phe-
nomenon or whether it is amyloid associated. However, as with 
DAM, there is now much interest in both clarifying and con-
trolling the neuroprotective or neuro-deleterious properties of 
these DAA at pre-symptomatic time-points to determine 
whether they could be manipulated for therapeutic benefit in 
the future.

Beyond AD, disease-exclusive oligodendrocyte lineage cells 
have been reported in the spinal cord of mice induced with 
experimental autoimmune encephalomyelitis (EAE), a mouse 
model of multiple sclerosis (MS) [109]. Specifically, three 
additional oligodendrocyte precursor cells clusters were iden-
tified in the EAE mice compared to their healthy littermates. 
One of these contained a mix of oligodendrocyte precursor 
cell state transitions that overlapped both healthy and EAE- 
exclusive cells, whilst the other two were disease exclusive and 
characterized by expression of specific genes (e.g. transcrip-
tion factors Myrf, Hes1 and Hes5). The gene expression pro-
files confirm that oligodendrocyte precursor cells undergo 
proliferation and differentiation in EAE, but also suggest 
a transition to previously unidentified transcriptional states. 
Five EAE exclusive oligodendrocyte lineage states were also 
observed: a cluster of differentiation-committed oligodendro-
cyte lineage precursors, newly formed oligodendrocyte lineage 
cells, and three mature oligodendrocyte lineage populations. 
Notably, these had interesting gene expression signatures 
suggestive of unique roles in the disease that are discussed 
in the following section. Complementing this murine study, 
oligodendrocyte heterogeneity has recently been dissected in 
the adult human brain with snRNA-seq [110]. At least six 
mature oligodendrocyte populations were characterized based 
on their unique gene expression profiles that correlated well 
with the adult mouse counterparts. Similar to the EAE mouse 
model, specific human oligodendrocyte subtypes showed 
either increased or decreased representation in the diseased 
white matter of MS patients. Notably, one specific oligoden-
drocyte subtype that is lost in MS is predicted to be the 
normal, fully mature and stable oligodendrocyte population 
in healthy individuals, whilst the transcriptional signatures of 
the populations overrepresented in MS appear to have com-
promised ability to provide metabolic support to neurons. 
This opens up the intriguing possibility that restoring oligo-
dendrocyte heterogeneity in MS could have therapeutic 
potential.

3.3.2. Molecular signatures and mechanisms
Further to new cell-state identifications, the gene expression 
profiles of specific cell populations have been used to inter-
rogate molecular signatures and mechanisms of disease at 
cell-type resolution, and to help identify putative therapeutic 
targets. For example, follow-up genetic analysis revealed that 
the aforementioned AD-associated DAM in mice are gener-
ated through a two-step mechanism of activation of homoeo-
static microglia, and that the transition to each step is 
regulated by different genes [103]. Specifically, by searching 
for potential key regulators from the list of DEGs, the Trem2 
gene, a major risk factor for AD, was found to be increased in 
the DAM. By using scRNA-seq to subsequently compare 
DAM abundance in the brains of 5xFAD mice bred on both 
Trem2+/+ and Trem2-/- backgrounds, it was found that the 
Trem2-/- mice were completely depleted of DAM and instead 
accumulated a large number of cells in the intermediate state. 
This elegantly demonstrated that the homoeostatic microglia 
progressed through an initial activation via an unknown, 
Trem2-independent mechanism to an intermediate state 
(stage 1). This intermediate stage can then be further activated 
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to DAM by a secondary activation signal that is Trem2 
dependent (stage 2) and leads to a potentially neuroprotective 
programme of gene expression that activates phagocytosis and 
lysosomal degradation pathways. Whilst the molecular trigger 
of the stage 1 transition remains unknown, the understanding 
ascertained could imply that appearance of DAM occurs too 
late or in insufficient numbers to combat AD when particular 
genetic backgrounds are present (e.g. rare variants of TREM2) 
or during normal ageing. However, given that excessive pha-
gocytosis by microglia can be deleterious to stressed-yet-viable 
neurons [111], it is also plausible that DAM may alternatively 
contribute to the disease process. Further experiments to 
deplete key DAM genes will thus be necessary to confirm 
whether the DAM are in fact good or bad players in 
this AD model.

In contrast to the DAM, the molecular triggers of DAA 
have not yet been determined. However, the use of both 
nearest-neighbour graphs and transition markers to interro-
gate origins of different astrocyte sub-populations in the 
5xFAD mice has revealed that homoeostatic Gfap-low astro-
cytes similarly progress through an identifiable transitionary 
step before becoming DAA in what is a dynamic activation 
process [108]. The progression is also evident in aged mouse 
brains (>13–14 months), indicating that such changes also 
occur in normal ageing brains. These observations suggest 
their activation could in fact be a normal and early gliosis 
attempt by the brain to contain the accumulation of misfolded 
proteins. However, their eventual progression to fully estab-
lished DAA may be associated with a new destructive phase 
that in fact progresses the disease. Indeed, the DAA express an 
inflammatory signature alongside genes that inhibit amyloid 
degradation (i.e. Serpina3n). Characterizing the molecular 
triggers of each stage of activation will thus be important if 
we are to harness their neuroprotective properties whilst 
restricting their neurodeleterious properties in the future.

Specifically, in the human condition, two studies have 
established a cell atlas of differential gene expression changes 
that occur in AD in both the prefrontal cortex [105] and 
entorhinal cortex [112]. At a broad level, this revealed all 
major cell types are affected at the transcriptional level 
in AD, and that neurons tended to display downregulation 
of genes whilst neuroglia transitioned to activated states with 
many genes upregulated [105]. Most changes were then cell- 
type specific. Among others it was found that endothelial cells 
upregulate genes involved in cytokine secretion and immune 
responses (e.g. HLA-E, MEF2C, NFKBIA), microglia down-
regulate homoeostatic genes (e.g. CX3CR1, P2RY12, P2RY13, 
DEG4), genes implicated in cell–cell adhesion (e.g. CD86, 
CD83), lipid responses (e.g. LPAR6), and G-protein-coupled 
receptor pathways (e.g. GPR183, LPAR6) [112], whilst 
LINGO1, a negative regulator of neuronal survival, axonal 
integrity, and oligodendrocyte differentiation, is upregulated 
in excitatory neurons and oligodendrocytes [105,112]. 
Meanwhile, snRNA-seq unsurprisingly revealed cell-type- 
specific DEG signatures with disease relevance which would 
have been masked in bulk RNA-seq studies. For example, it 
revealed that different cell types of the same brain region 
respond differently to the disease. Specifically, the aforemen-
tioned APOE gene was found upregulated in AD-microglia 

and downregulated in AD-astrocytes [105]. Together the gene 
expression changes clarified that almost every cell type had 
penetrant disease-associated transcriptional changes that 
could segregate AD cells from control counterparts [112]. 
Notably, comparing diverse AD cases that were either absent 
of pathology or had established pathology revealed that most 
major transcriptional changes across cell-types occurred early 
in disease progression [105]. However, a more granular look 
at specific subtypes of various cell populations revealed state 
changes associated with pathological status. For example, 
excitatory neuron subpopulation 4, inhibitory neuron subpo-
pulation 0, astrocyte subpopulation 1, and oligodendrocyte 
subpopulation 0 were isolated from individuals with a high 
amyloid burden and advanced stage of the disease, whilst 
excitatory neuron subpopulation 6, inhibitory neuron subpo-
pulation 2, astrocyte subpopulation 0, and oligodendrocyte 
subpopulation 1 were found in AD cases currently absent of 
pathology. These subpopulation-specific states appear to 
underlie the AD-specific transcriptional differences observed 
at the broad cell-type level. For example, excitatory neuron 
subpopulation 4 alone could explain the increased LINGO1, 
RASGEF1B, and SLC26A3 expression associated with the 
broader excitatory neuron classification.

Whilst cell-type sub-clustering consistently showed that 
neuroglia separate into healthy and disease clusters more 
clearly than neurons, thus implying that disease-associated 
transcriptional changes are perhaps more robust in these cell 
types, snRNA-seq also revealed more generalized and coordi-
nated differential gene expression responses across multiple 
cell types in AD in both studies. One such general coordi-
nated differential gene expression cluster changing in all cell 
types involves the response to topologically incorrect proteins 
and cell stress. Specifically, there is an increase in the expres-
sion of genes encoding molecular chaperones (e.g. 
HSP90AA1, BIN1, DNAJA1) that might be a reaction to pro-
tein misfolding [105,112]. It is likely this might be 
a consequence of the extracellular accumulation of Aß deposi-
tion that is both initiated and found in the vicinity of multiple 
cell types. Further, support cells such as oligodendrocytes, 
astrocytes, oligodendrocyte precursor cells, and endothelial 
cells upregulate genes that counteract cell death and which 
may be part of a neuroprotective drive. In contrast, there is 
a downregulation of genes involved in behaviour, cognition 
and synapse organization across neurons, astrocytes, oligo-
dendrocytes and oligodendrocyte precursor cells that is con-
sistent with numerous other studies.

Applying the similar methodology to that used in afore-
mentioned ASD studies [55,82,84,86] these snRNA-seq data-
sets of human AD tissue have also facilitated important 
interrogation of cell-subtype specific expression patterns of 
~1000 AD-associated GWAS genes [112]. This unexpectedly 
revealed that many AD-associated genes display specific 
expression in microglia to further emphasize the central role 
of these cells in AD (e.g. NPP5D, HLA−DRB5, PLCG2, RIN3, 
TBXAS1). Others revealed previously unknown expression 
patterns across different cell types (e.g. KCNN3 in astrocytes, 
MYT1 in oligodendrocytes). However, the granular assign-
ment of individual transcriptomes to different cell sub- 
classes also allowed more complex expression specificity 

RNA BIOLOGY 1077



patterns to be uncovered. Among others, the previously con-
sidered oligodendrocyte-specific gene, ADAMTS18, was found 
upregulated in AD-associated astrocytes, oligodendrocytes, 
and oligodendrocyte precursor cells, yet downregulated in 
neurons. Meanwhile, APOE was found to be downregulated 
in specific oligodendrocyte [112] and astrocyte [105,112] sub-
clusters, yet upregulated in a single microglia subcluster. 
Whilst the link between APOE alleles and AD microglia is 
well established, its association with oligodendrocytes is novel. 
It will now be important to determine whether the loss of 
endogenous APOE expression in oligodendrocytes plays a role 
in the poorly understood myelination changes observed 
in AD [113].

Like AD, scRNA-seq has already been useful to ascribe 
previously unrecognized functions for oligodendrocytes in 
MS. Studies using bulk RNA-seq pointed at peripheral 
immune system cells and brain microglia to be the most 
susceptible cell types in MS, but the MS susceptibility genes 
are also found in EAE exclusive oligodendrocyte precursor 
cells, oligodendrocyte lineage cells and mature oligodendro-
cytes. Accordingly, scRNA-seq revealed that DEGs in the 
oligodendrocyte precursor cells and oligodendrocyte lineage 
cells of EAE mouse models were related to immunoprotec-
tion, interferon response pathway, antigen processing and 
presentation via major histocompatibility complex class 
I (MHC-I) and II (MHC-II). These were all previously 
thought restricted to microglia and macrophages in MS, and 
instead suggested that those cells might in fact be targeted 
during the disease despite not expressing myelin proteins 
[109]. Human MS oligodendrocytes were similarly confirmed 
to express adaptive immunity proteins. Thus, the validated 
changes implied certain populations of oligodendrocyte pre-
cursor cells and oligodendrocyte lineage cells have the capa-
city to mount an immune response. Co-culture experiments 
subsequently demonstrated the increased expression of MHC- 
II genes can be triggered in these cells by EAE-specific 
T-lymphocytes, whilst exogenous activation of the response 
confirmed that oligodendrocyte lineage cells acquire the abil-
ity to both phagocytose myelin and trigger naive 
T lymphocytes (both memory and effector). The findings 
have important ramifications for disease understanding, as 
oligodendrocytes were previously considered a passive victim 
of an autoimmune dysfunction initiated in the peripheral 
immune system. Instead, the data suggest that oligodendro-
cyte lineage cells could play an active role as immunomodu-
lators of the disease, and raises hope that influencing this 
property may have therapeutic potential in the future.

3.3.3. Disease progression
A caveat of comparing cell transcriptomes from samples at 
single disease/developmental stages is that it implies 
a previous knowledge of the disease progression. Yet cells in 
different disease states express a unique transcriptome and 
undergo transcriptional reprogramming as they move from 
one stage to another. One logical option to study disease 
progression is therefore to directly compare scRNA- 
sequencing datasets from samples at different time points of 
the disease in order to chronicle such changes. For example, 
interrogation has been carried out of both hippocampal and 

cortical microglia at multiple time points of the inducible CK- 
p25 mouse model that phenocopies neurodegeneration. This 
revealed different stage-specific states of neurodegeneration- 
associated microglia, rather than a completely new microglia 
type [77]. Indeed, healthy microglia transitioned to late- 
response microglia through two transient states, each of 
them containing cells in different phases of the cell cycle 
(G1/S and G2/M). Together these implied that microglia 
show an early increase in proliferation in response to the 
induced neurodegeneration. Meanwhile, there was 
a heterogenous overexpression of immune-related genes and 
enrichment of binding motifs of the interferon-regulatory 
factor family in the sequence of the DEGs of the late- 
response. This demonstrated that these microglia were 
mounting a pronounced immune response during the later 
stages of neurodegeneration, and also that two molecularly 
distinct reactive microglia phenotypes could be distinguished. 
One of these had high levels of antiviral and interferon genes 
and the other with high levels of MHC class II genes. Further 
analysis of the transcriptional dynamics revealed the emer-
gence of temporally distinct subsets of these immune 
response-related genes as the microglia progressed; certain 
chemokines (e.g. Ccl3, Ccl4 and Cxcl16) and inflammatory 
cytokines (e.g. Mif) were upregulated at early stages following 
neurodegeneration whilst other immune-related genes (e.g. 
H2-D1, Axl, Apoe) were upregulated late.

This study demonstrates the benefits of a time-resolved 
study when feasible. However, this is both challenging in 
human cases where time-resolved samples from the same indi-
viduals are non-trivial to obtain, whilst it can also increase 
experimental costs due to the need for increased sample profil-
ing. It is therefore important to appreciate that neurodegenera-
tion is an asynchronous process within a tissue: at a given time, 
each cell captured in a scRNA-seq dataset can provide 
a snapshot into the transcriptional reprogramming process 
along its intended trajectory. Accordingly, a so-called ‘pseudo-
time’ analysis of scRNA-seq datasets can allow an alternative 
type of study of disease progression within a single sample in 
an unbiased manner. To achieve this, cells are generally repre-
sented as points in a diffusion map and trajectories are built 
between individual cells or cell clusters in a way that minimizes 
gene expression changes between neighbouring cells along the 
reprogramming route. Using all points, the most probable path 
between two points is then calculated to define the trajectory or 
pseudotime. Several trajectory inference analysis or pseudotime 
ordering algorithms have subsequently been developed to 
define gene expression changes in disease progression from 
scRNA-seq datasets, each with their own advantages and dis-
advantages [114]. These typically use gene abundance to iden-
tify the nearest neighbours, although the ratio of unspliced and 
spliced mRNAs can even be used to estimate the time deriva-
tive of gene expression and predict future states of individual 
cells [115].

Using this pseudotime concept, a modified version of the 
Wanderlust algorithm [71] was used to make the aforemen-
tioned discovery that AD-associated DAM not only constitute 
a single new cell type but actually two subtypes of microglia; 
an intermediary population and a more advanced Trem2- 
dependent form [103]. Each brain then contains microglia at 
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different progression stages of the two-step progression. 
However, Wanderlust is only able to identify linear trajec-
tories and requires a manual definition of the starting (homo-
eostatic microglia) and the end point (DAM) of the 
pseudotime to order the other cells in the points between 
them. Accordingly, the use of this particular algorithm 
required a prior knowledge of the disease progression and 
relied on previously identified marker genes for a guided 
analysis. Other algorithms such as Monocle [70] organize 
single cells in a time-line corresponding to a biological pro-
cess. Monocle achieves this by first classifying cells into clus-
ters corresponding to cell types or cell state by either using 
known marker genes or with unsupervised clustering. Using 
this semi-supervised pseudotime analysis, it has instead been 
reported that microglia from the prefrontal cortex of a related 
App knock-in mouse model of AD in fact differentiate into 
multiple mutually exclusive states as pathology emerges 
instead of following the linear trajectory implied by 
Wanderlust (i.e. activated response microglia, interferon 
response microglia and transiting response microglia) [116]. 
These microglia states can all be found in the same brain, and 
the activated response microglia importantly show overlap-
ping gene expression signatures to the DAM previously iden-
tified by Keren-Shaul and colleagues [103]. Based on these 
findings, the study posits that there are no ‘new’ microglia 
states in sick brains, but rather a quantitative redistribution of 
the ratio of each microglial type in disease. This is thus akin to 
the quantitative redistribution of oligodendrocytes observed 
in MS [110]. Notably, the most enriched AD microglia state 
from this App knock-in mouse model was also enriched in 
healthy aged brains [116]. This therefore suggests that the 
term, DAM, may be an overstatement. It will be important 
to see if this is also the case for DAA in future studies.

In addition to complex multicellular tissues, pseudotime 
analysis can also be applied to cultured cells to chronicle the 
emergence of molecular disturbances. This is particularly use-
ful for patient-derived iPSCs that have emerged as a viable 
option to study neurodegenerative disease progression. 
Similar to a tissue, even within an enriched monoculture, 
pseudotime analysis of individual cells can reveal differences 
relevant to disease progression that would remain undetected 
in studies of whole cell populations [117]. As an example of 
this, scRNA-seq data from hiPSC-derived dopamine neurons 
from healthy and Parkinson’s disease (PD) patients with 
mutations to the GBA gene have been used to study the 
progression of molecular phenotypes using the Ouija algo-
rithm, a semi-supervised method that uses expression 
switches of a small set of predefined marker genes to infer 
the pseudotime trajectory [118,119]. Specifically, the assessed 
trajectory was defined using 60 genes that had previously been 
found to be differentially expressed in both bulk RNA-seq and 
scRNA-seq datasets comparing control lines to lines of PD 
GBA-N370S cases. Pseudotime analysis classified these genes 
as either early-disease genes (e.g. TSPAN7, ATP1A3, RTN1 
and PRKCB) or late-disease genes (e.g. ERO1A, FKBP9 and 
PDIA6) for switching their expression in either early or late 
stages of the disease pseudotime, respectively. Moreover, the 
analysis identified the epigenetic modifier, HDAC4, as 
a potential target for Parkinson’s disease (PD) treatment. 

Indeed, the aforementioned early-disease genes are targets of 
HDAC4 and are downregulated in the early stages of the 
pseudotime trajectory, although the expression of HDAC4 
itself was not changed. It was subsequently confirmed that 
HDAC4 showed increased localization in the nucleus that was 
consistent with the downregulation of its targets. Notably, 
pharmacological treatment of the PD hiPSC lines with three 
different FDA-approved compounds that inhibit HDAC4 
localization showed correction of all four HDAC4-controlled 
genes, and ameliorated increases in other genes associated 
with late-stage ER stress of GBA-mutated lines. Moreover, 
two treatments also improved previously observed perturba-
tions to autophagic and lysosomal pathways in the PD iPSCs, 
and reduced associated increases in an extracellular alpha- 
synuclein release. Thus, scRNA-seq data in combination 
with in vitro experiments has excitingly raised the possibility 
of FDA-approved HDAC4 inhibitors being therapeutic for PD 
treatment.

As a final pseudotime development, the SCN3E [120] and 
Monocle 2 [70,121] algorithms, unlike Wanderlust or Ouija, 
allow prediction of more complex ‘branched’ trajectories, 
rather than just linear progressions. Their subsequent applica-
tion with data from MS post-mortem tissue has allowed 
oligodendrocytes to be subdivided into different cell states as 
they progress from oligodendrocyte precursor cells to two 
mutually exclusive final states via a tree-like trajectory. 
Contrary to mice models then, this implies that there is 
indeed no new disease-associated cell population in human 
MS, rather an imbalance between cell states. Specifically, there 
are fewer nuclei in the oligodendrocyte precursor cell state, 
reductions of one of the end point subclusters and an inter-
mediate cell state on its pathway, and an enrichment of 
the second end point subcluster [110]. Importantly, identified 
cell-state markers were used for immunohistochemistry on 
post-mortem MS tissue to confirm the scRNA-seq results 
and map the spatial characteristics of these cells in the 
brain. The genes associated in the pseudotime trajectory sug-
gest that the intermediate subclusters in both pathways repre-
sent actively myelinating oligodendrocytes. Moreover, 
transcriptome analysis for each end point subcluster revealed 
that several myelin protein genes were upregulated in mature 
oligodendrocytes in MS. These findings suggest a re- 
evaluation of current strategies to treat MS is required. 
Currently, efforts are made to increase differentiation from 
oligodendrocyte precursor cells to mature oligodendrocytes. 
However, this likely isn’t enough as the right proportion of 
both mature oligodendrocyte populations may also need to be 
reached.

4. Future perspectives of scRNA-seq in neuroscience

It is clear that impressive progress has been made over the last 
decade using scRNA-seq to enhance our understanding of the 
cellular interplay of the brain in both health and disease. 
However, with the scRNA-seq methods entering a seemingly 
mature phase, there remain certain limitations of the 
approach and promising applications which remain beneficial 
to address. Since a core requirement of scRNA-seq is the 
preparation of single cells in suspension, a major caveat is 
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that scRNA-seq suffers from an immediate loss of spatial 
resolution upon sample processing. Accordingly, whilst 
scRNA-seq datasets inform what happens in the cells and 
the molecular relationship between them, we do not know 
whether cells are close together or far apart in the original 
samples, nor whether they are proximal to pathologies or 
associated with specific tissue architecture. Spatial context 
has been regained in the past by retrospectively carrying out 
in situ labelling of cell-type markers identified from scRNA- 
seq datasets. For example, in its simplest and lowest- 
throughput form, this has confirmed the proximity of DAM 
around amyloid plaques in AD transgenic models [103]. 
However, integration of many in situ marker probes with 
machine learning methods has the potential to spatially recon-
struct whole scRNA-seq datasets [122–124].

An emerging high-throughput alternative is the integration 
of the complementary technology to scRNA-seq, spatial tran-
scriptomics [125]. Here, RNA is released from tissues sections 
and captured by the spatially ordered and barcoded probes 
that lie beneath. On-bead reverse transcription is then fol-
lowed by pooling, cDNA library synthesis and sequencing. 
The subsequent barcode reads accordingly allow individual 
mRNAs to be matched back to their spatial location in the 
original section. The method has now been applied to numer-
ous tissues [124,126,127] including the CNS [128,129], whilst 
reducing probe-to-probe distance has steadily improved spa-
tial resolution from study-to-study [130]. However, cells 
rarely align perfectly to the ordered probes such that single- 
cell resolution is incomplete at an individual probe level. At 
10 μm probe resolution, ~65% of probes align to a single 
mouse hippocampal cell [131]. At 2 μm probe resolution, 
~50% of probes align single mouse olfactory bulb cells [130]. 
Leveraging paired haematoxylin and eosin (H&E) stained 
images of samples to identify nuclei overlapping multiple 
probes can allow the sharing of information from a probe’s 
nearest neighbour to improve the single-cell assignment. This 
leads to ~ 60% of coordinates being assigned to a single-cell 
type when using a 2 μm probe resolution [130]. Whether 
granular dissection of closely related cell populations can be 
achieved like with scRNA-seq remains unclear though, thus 
making it unlikely to eliminate the need for scRNA-seq in the 
future. Instead, computational methods have recently 
emerged to facilitate the integration of scRNA-seq and spatial 
transcriptomics datasets. Particularly noteworthy here, the 
Slide-seq variant of spatial transcriptomics assembles cost- 
effective homemade slides using mRNA-capture beads similar 
to those used in scRNA-seq [131]. Following the on-slide 
sequencing of bead indexes to determine barcode coordinates, 
spatial transcriptomics are next performed like in other work-
flows. Notably, in an elegant proof-of-principle, the computa-
tional integration of Slide-seq and scRNA-seq datasets from 
sequential sections of mouse brain tissue has impressively 
allowed an accurate 3D-spatial contextualization of scRNA- 
seq profiles, and the subsequent assembly of a cell-resolution 
tissue map. Accordingly, this study, alongside related reports 
from alternative [124] tissues, make it clear that spatial tran-
scriptomics will become an important complement to the 
scRNA-seq field in the future as we extend into cell- 
resolution 3D maps of CNS tissue in both health and disease.

Last, studies of neurological conditions have the ultimate 
goal of understanding underlying mechanisms such that they 
can then be leveraged to treat patients via preventing, stalling 
or even reversing the condition. It is hoped that future 
scRNA-seq studies will thus uncover both condition- and 
genotype-specific molecular mechanisms that can be used to 
develop effective and well-rationalized therapies. In this con-
text, time-resolved studies, pseudotime analysis and the 
reconstruction of cell-type-specific gene regulatory networks 
will be extremely important areas of future scRNA-seq 
research in the neurosciences. Indeed, our current under-
standing of the pre-symptomatic cellular phases of neurologi-
cal conditions remains severely limited, whilst the monitoring 
of potential therapies is often restricted to an analysis of 
a single-cell type or the heterogeneous tissue as a whole. 
Chronicling the earliest molecular dysfunctions across cell 
populations has potential to reveal the most tractable oppor-
tunities for developing effective therapies targeting condition 
initiation, whilst monitoring beneficial and detrimental 
responses of treatments across all cell populations over time 
could facilitate refinements to secure the best clinical out-
comes. Meanwhile, the reconstruction of cell-type-specific 
gene regulatory networks has the potential to identify regula-
tory proteins driving cell state transitions and key differential 
expression changes in the CNS in both health and disease 
[26,27,86,112]. Although time-resolved study is challenging 
with samples from human patients, it is readily applicable in 
research studies or pharmacological trials which use animal 
models [103] or patient-derived stem-cell models [118]. The 
aforementioned time-resolved characterization of DAM [103] 
and DAA [108] transition states and identification of TREM2 
as a key gene for DAM establishment elegantly evidence this, 
and have subsequently rationalized on-going development of 
therapies for manipulation of these cell states for clinical 
benefit.

5. Summary

The maturation of scRNA-seq as technology has clearly been 
a welcome addition to the toolkit for studying RNA metabolism 
across the life sciences. Indeed, the technology allows complex 
cellular systems to be broken down into their individual cellular 
components for high-resolution study of cell populations. This 
has been transformative in the immensely complex CNS. Indeed, 
scRNA-seq has already been leveraged to expand our cellular 
characterization of the CNS (Table 2, Fig. 2), and to elucidate the 
cell-type-specific responses and molecular mechanisms that 
occur in various neurodevelopmental and neurodegenerative 
conditions, such as ASD, AD and MS. In future it will be 
important to develop scalable workflows for whole transcrip-
tome sequencing such that all cellular transcripts and isoforms 
can be assessed at cell resolution, and to continue integration 
with other single cell ‘omic’ technologies and complementary 
spatial transcriptomics workflows to provide increasingly holis-
tic understanding. Together this will facilitate evermore ambi-
tious studies aimed at clarifying the underlying mechanisms of 
neurodevelopment and neurodegeneration, and help develop 
well rationalized therapeutics for the myriad neurological con-
ditions in the future.
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