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The brainstem is the earliest vulnerable structure in many neurodegenerative diseases like

in Multiple System Atrophy (MSA) or Parkinson’s disease (PD). Up-to-now, MRI studies

have mainly focused on whole-brain data acquisition. Due to its spatial localization, size,

and tissue characteristics, brainstem poses particular challenges for MRI. We provide

a brief overview on recent advances in brainstem-related MRI markers in Parkinson’s

disease and Parkinsonism’s. Several MRI techniques investigating brainstem, mainly the

midbrain, showed to be able to discriminate PD patients from controls or to discriminate

PD patients from atypical parkinsonism patients: iron-sensitive MRI, nigrosome imaging,

neuromelanin-sensitive MRI, diffusion tensor imaging and advanced diffusion imaging.

A standardized multimodal brainstem-dedicated MRI approach at high resolution able

to quantify microstructural modification in brainstem nuclei would be a promising tool to

detect early changes in parkinsonian syndromes.

Keywords: iron, neuromelanin (NM), multiple system atrophy (MSA), NODDI, diffusion kurtosis imaging (DKI),

nigrosome

INTRODUCTION

In Parkinson’s disease (PD), the first central neuropathological events occur in the brainstem and
olfactory bulb. The dorsal motor nucleus of the vagal nerve in themedulla oblongata, which receives
inputs from the neurenteric system, is classically considered to be the first nucleus involved before
the ascending diffusion through other brainstem structures such as the serotoninergic raphe nuclei
and noradrenergic coeruleus nuclei of the pons (1). Neurodegeneration then reaches the midbrain,
and more particularly the dopaminergic substantia nigra pars compacta (SNc) and cholinergic
pedunculopontine nuclei (PPN). The SNc plays a pivotal role, with classic PD motor symptoms
occurring when 30% or more of its dopaminergic neurons have disappeared (2).

Before the appearance of these motor symptoms, the spread of alpha-synuclein across the
brainstem following the Braak stages is responsible for many non-motor symptoms, such as cardiac
autonomic dysfunction, rapid eye movement behavior disorder, apathy, asthenia, depression and
dysexecutive syndrome, arising from alteration of the different nuclei and white-matter bundles
of the brainstem (3, 4). The ensuing SNc degeneration caused by disruption of serotoninergic,
extranigral dopaminergic, cholinergic, and noradrenergic pathways leads to the limbic and
cognitive network dysfunction that has been amply described in numerous molecular imaging
studies (5, 6). Recent advances in structural MRI techniques, such as water molecular diffusion
based techniques and neuromelanin (NM) or iron-sensitive sequences, are resulting in the ever
more precise characterization of brainstem damage in PD and atypical parkinsonism, including
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amore precise comprehension of brainstem networks involved in
non-motor symptoms. When extrapyramidal motor symptoms
are present, the challenge is to differentiate true PD from
atypical parkinsonian syndromes, the most challenging of these
being progressive supranuclear paralysis (PSP), Parkinsonian or
cerebellar variant of multiple system atrophy (MSAp,MSAc), and
dementia with Lewy bodies (DLB). Red flags for these syndromes
in otherwise normal routine MRI sequences for PD often take
the form of anatomical structure atrophy, reflecting the massive
neuronal loss and gliosis that generally characterize the more
advanced stages (for a review of classic MRI signs for differential
diagnosis, see (7).

As these red flags are already familiar to clinicians, the present
review focuses on modern structural MRI techniques for PD
diagnosis and the differential diagnosis of atypical parkinsonism,
considering structures involved inmotor networks, but also those
involved in non-motor networks.

NIGROSOME IMAGING

Located in the midbrain, the susbtantia nigra (SN) is functionally
and structurally divided into two parts: the SNc and the pars
reticulata (SNr). The rostroventral GABAergic SNr projects
toward the thalamus, and the dopaminergic SNc toward
the striatum. Calbindin immunohistochemistry has allowed a
labeled nigral matrix and five unlabeled clusters or nigrosomes
to be identified within the SNc. These are compartments
of dopaminergic neurons where degeneration is particularly
marked in PD (8–10). Five nigrosomes measuring up to several
millimeters long have been described (11), the largest of which
(Nigrosome-1) is found in the dorsal region of the SNc.

The structure of Nigrosome-1 has been successfully delineated
on 7TMRI using high-resolution susceptibility weighted imaging
(SWI) (12, 13). On SWI, this nigrosome has a hypersignal
in the axial section, in either linear or comma form. It is
bordered anteriorly, laterally and medially by a low-intensity
signal, giving it a swallow tail appearance. The absence of this
sign is viewed as a reliable diagnostic criterion for PD (12, 14).
Nigrosome-1 visualization at 7T has high diagnostic accuracy:
sensitivity (100%), specificity (87–100%), positive predictive
value (91–100%), and negative predictive value (100%) (15).

This structure has also been observed on SWI at 3T with
reduced contrast (14, 16). The phase information, used here as
a weighting mask, improves the visualization of the nigrosome’s
(16–18). This improvement stems from the difference in
susceptibility between Nigrosome-1 and the surrounding nigral
matrix in healthy individuals. As nigrosomes have a low
iron concentration, they are visualized as a T2∗ hypersignal,
contrasting with the nigral matrix. Recently, a meta-analysis
reporting different nigrosome imaging techniques confirmed that
visual assessment of dorsolateral nigral hyperintensity provides
excellent diagnostic accuracy for PD vs. controls (19).

The two purported mechanisms behind the disappearance of
the swallow tail sign are an increase in iron and a decrease in
NM. A decrease in NM can cause a decrease in iron retention
capacity, and therefore an increase in the amount of free iron. In

both cases, the presence of iron induces paramagnetic properties
of the signal (20).

IRON-SENSITIVE IMAGING

During the last decade, many works, using different iron-
sensitive MRI methods, confirmed the importance of nigral iron
increase in PD patients compared to controls (21). Iron-sensitive
MRI has several applications, especially in neurodegenerative
disorders (22). Technically, iron content can be estimated in
specific regions by measuring T2 and T2∗ relaxation rates,
using either magnitude (R2∗) (23–25) or phase (quantitative
susceptibility mapping, QSM) imaging (26). QSM method
demonstrated to be the most sensitive quantitative technique for
detecting a significant increase of iron for PD (27). QSM is able
to detect nigral iron increase even in prodromal stage of PD
such as idiopathic rapid eye movement sleep behavior disorder
(28). It is important to note that iron-content in the substantia
nigra do not differ between PD and multiple system atrophy
(MSA) patients (i.e., patient with atypical parkinsonism), and
betweenMSA variants (29). Accordingly, studies have shown that
QSM more closely reflects levodopa dosage and disease severity
(30, 31).

Concerning the differential diagnosis between PD and atypical
parkinsonism’s, QSM techniques allow for more sensitive
measures in the nigral and extranigral regions. Mazzucchi et al.
(32) found that the greatest diagnostic accuracy for PSP was for
increased χ values in the RN, subthalamic nucleus (STN), and
medial part of the SN, whereas for MSA, it was a significantly
higher level of iron deposition in the putamen, reflecting the
different patterns of pathological involvement that characterize
these diseases (32).

NEUROMELANIN-SENSITIVE IMAGING

NM is a dark pigment composed of melanin, proteins, lipids
and metal ions (33, 34). NM-containing neurons are particularly
concentrated in the SNc and locus coeruleus (LC). This pigment
is found in both the nigral matrix and the nigrosomes. The
MR signal in NM-containing neurons is paramagnetic and
therefore allows easy MR imaging where it is sensitive to this
type of signal (35–37). T1-weighted NM-sensitive MRI (NM-
MRI) produces hyperintense signals in regions containing NM.
Indeed, the primary mechanism underlying contrast in NM-MRI
appears to be the T1 reduction associated with melanin–iron
complexes (38).

Studies have confirmed that patients with PD have a
significantly reduced NM signal in the SN and LC (20,
37, 37, 39–41). These signal changes have been found to
be correlated with the absorption values of the nigrostriatal
dopamine transporter (42). In this same study, volumetric
analysis of the NM-related signal also revealed a significant
degree of atrophy.Measurement of NM-sensitive images has high
diagnostic accuracy for PD. Several teams have recently evaluated
a multimodal methodological approach, combining diffusion
and NM-sensitive MRI. Pyatigorskaya et al. (43) concluded that
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FIGURE 1 | Modern MRI acquisitions to asses brainstem.

volume delineation by the NM signal, combined with fractional
anisotropy, has excellent diagnostic accuracy for PD. More
specifically, NM signal intensities can potentially be located in
the SNc (43). Another study found a lower NM signal in PD and
MSAp groups than in an PSP group, with lower intensities in the
LC in patients with PD. Sensitivity and specificity were 60 and
90% for PD vs. MSAp, 63–88% and 77–92% for PD vs. PSP, and
80 and 85% for MSAp vs. PSP (44).

DIFFUSION WEIGHTED IMAGING

Diffusion Tensor Imaging (DTI)
There are conflicting findings concerning the usefulness of
SN DTI metrics in PD diagnosis, according to recent meta-
analyses (45–47) and recent voxelwise analysis-based studies
concerning the whole SN (48–50). Fractional Anisotropy (FA)
in the posterior part seems to be the most discriminant feature
(51, 52). With the ADC for the whole SN, Zhong et al. (53) found
accuracy of 0.72, which is not sufficient in routine diagnosis.
Interestingly, DTI metrics have also been used in a longitudinal
approach, providing precious information on structural changes
in the SN over the years (53–56).

In a longitudinal study applying a voxelwise approach,
Pozorski et al. (50) found that patients with PD and controls
differed on all DTI metrics in different brainstem regions
(midbrain and pontine tegmentum, pontine crossing tract,
periaqueductal gray matter). Furthermore, Mean diffusivity
(MD) in the brainstem were negatively associated with disease
duration. Pyatigorskaya et al. (57) correlated DTI metrics in
the medulla oblongata with cardiac and respiratory variability
in patients with PD compared with controls, reflecting their
autonomic dysfunction (Stage 1) (57). Prange et al. (58)

correlated apathy and depression with DTI measures and
serotoninergic molecular imaging in the limbic system, and
with the mode of anisotropy (sensitive to the orientation of
crossing fibers) in the caudal midbrain, or more specifically the
serotoninergic raphe nuclei (Stage 2) (58). Rapid eye movement
behavior disorder has also been linked to DTI changes in the
pons, SN and LC (59–61). Freezing of gait has been correlated
with an FA decrease and MD increase in the PPN (62).

Diffusivity in the striatum, brainstem and cerebellum has been
extensively studied (7, 63), but with rather mediocre results for
the differential diagnosis of PD. FA or MD in the brainstem
can be included in a multimodal approach with relatively good
accuracy (49, 64). For example, the area under the curve (AUC)
was above 0.95 for the diagnosis of PD vs. MSA in Péran
et al. (49). Combining FA and MD in multiple ROIs including
brainstem structures, Du et al. (51) were able to discriminate
parkinsonian syndromes. With R2∗, the AUC rose to 0.98–0.99.
Pyatigorskaya et al. (43) recently found substantial differences in
FA between patients with PSP and patients with PD or controls
in the SN, LC, midbrain tegmentum, and pons. The highest AUC
for PD vs. PSP was in the LC (0.94). In the same vein, Talai et al.
(65) found AUCs of 0.95 and 0.97 based on DTI metrics in the
midbrain for PD vs. PSP. DTI abnormalities in the midbrain of
patients with PSP reflectmicrostructural changes that precede the
macrostructural changes revealed by midbrain atrophy (65).

Advanced Diffusion Approaches
Despite unique insights yielded by DTI metrics acquired in a
single shell, microstructural changes are considered non-specific.

Recently, bi-tensor model have been used on diffusion
imaging is to differentiate free water (FW) (cerebrospinal fluid
or extracellular vasogenic edema) from other compartments,
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and either eliminate it from DTI measures or directly map it.
Although it was initially developed with a single shell (66),
double-shell acquisition could offer greater accuracy and stability
(67). The most striking feature is the FW increase in the
posterior part of the SN in early PD (68), MSA and PSP (69),
as confirmed by (70). Findings of longitudinal FW changes over
4 years in the posterior SN of patients with early PD (71),
followed by an FW increase over 3 years in the anterior SN
of patients with advanced PD (72), emphasize the usefulness of
FW imaging for PD diagnosis and follow-up. This posterior-
anterior gradient of extracellular space expansion could reflect
the neuroinflammation and cell loss revealed by histopathology.
Increased FW in the posterior SN has been correlated with striatal
dopaminergic denervation and reflects both motor and cognitive
deficits (73). Planetta et al. (74) found an FW increase in the SN,
as well as in the STN, red nucleus, PPN, cerebellum and basal
ganglia, in patients with PSP and MSA, compared with patients
with PD and controls. FW in the PPN and STN was discriminant
for the diagnosis of MSA versus PSP (AUC= 0.97) (74).

Estimating kurtosis provides a better means of assessing
diffusion heterogeneity in tissues. Diffusion kurtosis imaging
(DKI) requires diffusion acquisition in two shells (often b= 1,000
and 2,000 s/mm2) (75). Elevated mean kurtosis in the SN has
been found to be more sensitive than FA reduction in patients
with PD versus controls (AUC > 0.95) and is correlated with
motor scores (76).

White-matter tissue has been simplified in a model with intra-
axonal, extra-axonal, and cerebrospinal fluid compartments.
Neurite orientation dispersion and density imaging (NODDI)
takes all three compartments into account. Three new metrics
can be extracted from NODDI: isotropic volume fraction (Viso),
reflecting extracellular space like FW; intracellular volume
fraction (Vic); and orientation dispersion index (ODI), reflecting
neurite integrity. An ODI increase in white matter reflects axonal
loss or disorganization, while ODI and Vic decreases in gray-
matter structures reflect dendritic thinning and density (77).
Kamagata et al. (78) found that Vic in the contralateral SNc is
useful for diagnosing patients with PD vs. controls (AUC= 0.91)
and correlates with disease severity (78). NODDI was recently
compared with FW for diagnosing PD, PSP and MSAp. For
PD and MSAp, Viso in the posterior SN was increased (FW
accumulation). In PSP, all three NODDI metrics were disturbed
in the whole SN, STN, RN and PPN. Interestingly, the authors
considered the NODDI metrics to be inferior to FW for PD
vs. MSAp/PSP diagnosis, and found that FW based on a single
shell was just as accurate and actually faster than multishell
FW (79).

Restriction spectrum imaging (RSI) (80, 81) is a new
diffusion model based on high angular resolution diffusion
imaging (HARDI), acquired in multiple directions at different
high b values. RSI highlights hindered and restricted diffusion
in extracellular and intracellular compartments. With the
development of several new metrics, RSI can now provide
information about neurite density and orientation. Hope et al.
(81) were the first to compare RSI with DTI in patients with PD.

They defined a cellularity index and a neurite density index. In
an ROI comprising the whole brainstem, they found significant
differences in the cellularity index between patients with PD
and controls (AUC = 0.69). RSI is a promising new, but time-
consuming, method for vulnerable patients. Further research
with more precise anatomical ROIs is needed.

DWI offers the possibility of visualizing white-matter tracts
with a multitude of tractography techniques. HARDI-based
tractography allows complex fiber tracts such as the nigrostriatal
pathways (NSPs) to be reconstructed (82, 83). An FA decrease
and an AD/RD increase have been found in the NSPs of
patients with PD using deterministic tractography (84). Based
on NODDI, Andica et al. (85) found that the contralateral distal
(relative to the striatum) Vic of NSPs was significantly decreased
in patients with PD compared with controls, reflecting the dying
back of dopaminergic neurons (85). From our point of view, the
deterministic tractography of NSPs described in these studies
does not render the exact structural connectivity between the
striatum, pallidum and SN revealed by a probabilistic approach
(82) or by susceptibility imaging (86). The tract-based approach
to PD diagnosis is promising but needs further clarification of
mesencephalon/diencephalon structural connectivity.

The dentatorubrothalamic tract (DRTT) connects the
cerebellum with the thalamus via the superior cerebellar
peduncle and tegmental midbrain. An FA decrease and an MD
increase have been found in the DRTT of patients with PSP,
compared with controls and patients with PD or MSAp (64, 87).
In patients with MSAc, an FA decrease and an MD increase
in the pontine crossing tract and middle cerebellar peduncles
have been found before the appearance of the hot cross bun sign
(88, 89). Using diffusion kurtosis imaging, Ito et al. (90, 91)
described a ratio of midbrain tegmentum diffusion to pontine
crossing tract diffusion to distinguish between patients with PSP,
MSA or PD and controls (90, 91). Interestingly, Juttukonda et al.
(92) also found an FA decrease in the pontine crossing tract in
patients with essential tremor vs. PD (92).

CONCLUSION

An important consideration is that MRI quantitative markers
with good performances for diagnosis are not necessarily the best
suited to monitor disease progression. More efforts need to be
done in order to increase reliably and sensitivity of progression
MRI markers of PD (93). A standardized multimodal brainstem-
dedicated MRI approach at high spatial resolution (Figure 1)
able to quantify microstructural modification in brainstem nuclei
would be a promising tool to detect early changes in PD and
parkinsonism and to follow disease progression.
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