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Bioinformatics prediction and experimental 
verification identify MAD2L1 and CCNB2 
as diagnostic biomarkers of rhabdomyosarcoma
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Abstract 

Background:  Rhabdomyosarcoma (RMS) is a malignant soft-tissue tumour. In recent years, the tumour microen-
vironment (TME) has been reported to be associated with the development of tumours. However, the relationship 
between the occurrence and development of RMS and TME is unclear. The purpose of this study is to identify poten-
tial tumor microenvironment-related biomarkers in rhabdomyosarcoma and analyze their molecular mechanisms, 
diagnostic and prognostic significance.

Methods:  We first applied bioinformatics method to analyse the tumour samples of 125 patients with rhabdomyo-
sarcoma (RMS) from the Gene Expression Omnibus database (GEO). Differential genes (DEGs) that significantly corre-
late with TME and the clinical staging of tumors were extracted. Immunohistochemistry (IHC) was applied to validate 
the expression of mitotic arrest deficient 2 like 1 (MAD2L1) and cyclin B2 (CCNB2) in RMS tissue. Then, we used cell 
function and molecular biology techniques to study the influence of MAD2L1 and CCNB2 expression levels on the 
progression of RMS.

Results:  Bioinformatics results show that the RMS TME key genes were screened, and a TME-related tumour clinical 
staging model was constructed. The top 10 hub genes were screened through the establishment of a protein–protein 
interaction (PPI) network, and then Gene Expression Profiling Interactive Analysis (GEPIA) was conducted to measure 
the overall survival (OS) of the 10 hub genes in the sarcoma cases in The Cancer Genome Atlas (TCGA). Six DEGs of 
statistical significance were acquired. The relationship between these six differential genes and the clinical stage of 
RMS was analysed. Further analysis revealed that the OS of RMS patients with high expression of MAD2L1 and CCNB2 
was worse and the expression of MAD2L1 and CCNB2 was related to the clinical stage of RMS patients. Gene set 
enrichment analysis (GSEA) revealed that the genes in MAD2L1 and CCNB2 groups with high expression were mainly 
related to the mechanism of tumour metastasis and recurrence. In the low-expression MAD2L1 and CCNB2 groups, 
the genes were enriched in the metabolic and immune pathways. Immunohistochemical results also confirmed that 
the expression levels of MAD2L1 (30/33, 87.5%) and CCNB2 (33/33, 100%) were remarkably higher in RMS group than 
in normal control group (0/11, 0%). Moreover, the expression of CCNB2 was related to tumour size. Downregulation 
of MAD2L1 and CCNB2 suppressed the growth, invasion, migration, and cell cycling of RMS cells and promoted their 
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Background
Rhabdomyosarcoma (RMS) is a malignant soft-tissue 
tumour that in children, accounting for approximately 
6.5% of childhood tumours [1–3]. RMS can be cat-
egorised into three main histological types, namely, 
embryonal RMS (ERMS), alveolar RMS (ARMS), pleo-
morphic RMS (PRMS) [4, 5]. RMS is highly malignant 
with unclear pathogenesis; its prognosis is poor and 
closely related to clinical stage, tumour size, and patho-
logical type [2, 6]. Current clinical treatment approaches 
for RMS include chemotherapy, radiotherapy and sur-
gery, but their therapeutic effect is limited [3]. Therefore, 
the pathogenesis of RMS and new treatment strategies 
need to be explored urgently.

The tumour microenvironment (TME) has been 
reported to be associated with tumour development, 
metastasis, and prognosis [7–9]. It is the internal envi-
ronment of the tumour, and its components include an 
extracellular matrix as well as endothelial, immune and 
mesenchymal cells [10]. Immune, mesenchymal, and 
endothelial cells secrete different cytokines that directly 
act on tumour cells. Complex and dynamic interac-
tions occur between tumour cells and the TME during 
tumour development. The cellular regulatory networks 
and inhibitory molecular networks in the TME affect 
the occurrence and development of tumours through 
metabolic reprogramming and tumour infiltration of 
immune cells [11, 12]. A study detected the expression 
of immune cells in 50 patients with soft tissue sarcoma. 
CD3+ (tumour-infiltrating lymphocyte), CD4+ (helper 
T lymphocyte), CD8+ (cytotoxic T lymphocyte) and 
FOXP3+ (Treg lymphocytes) can be detected in 98% of 
biopsy tissues, and macrophages can be detected in 90% 
of patients. Low levels of CD3+ and CD4+ lymphocytes 
are associated with a good prognosis [13]. Meanwhile, 
immunosuppressed individuals present with a higher 
risk to develop soft tissue malignancies, and tumor infil-
tration of immune cells affects disease outcome [14, 15]. 
Some studies have shown the matrix degradation in the 
TME is the basis for tumour occurrence and aggressive-
ness, secretion of growth factors, induction of cell migra-
tion, and promotion of angiogenesis [16]. The activities of 
MMP-1, MMP-2, and MMP-9 are upregulated in alveolar 
RMS (ARMS) compared with embryonal RMS (ERMS), 
and these enzymes may be one of the factors causing 

aggressive alveolar subtypes [17]. MMP-1 degrades bone 
extracellular matrix to promote osteosarcoma metastasis 
[18]. Thus, the immune cell infiltration and extracellular 
matrix degradation in the TME may be highly important 
for the growth, metastasis, and prognosis of RMS. There-
fore, the dynamic regulation of stromal and immune 
components in the TME cannot be ignored, which can 
serve as a new therapeutic strategy for RMS.

Apart from the TME, microarray analysis has received 
increasing attention in medical oncology [19]. This 
technique not only assesses the difference between the 
genetic and epigenetic changes induced by tumours but 
also determines biomarkers for disease diagnosis and 
treatment [19]. ESTIMATE and CIBERSORT calcula-
tion methods are important means to measure the ratio 
of immune infiltrating cells and the ratio of stromal 
and immune components in various tumors [20–23], 
although its utility on RMS have not been fully revealed. 
In the presented article, we proposed a strategy that com-
bined bioinformatics prediction and experiment to eval-
uate potential indicators of TME status changes in RMS, 
which could represent a new and attractive anti-cancer 
strategy.

Materials and methods
Collection of data and tissue samples
We downloaded the RMS array sequencing data set from 
the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
and selected the gene expression profile of GSE92689. 
After deleting samples with incomplete information, 125 
tumour samples from patients with RMS were obtained 
for subsequent analysis. In total, 33 paraffin-embedded 
RMS samples and 11 control striated muscle tissue speci-
mens were selected from the First Affiliated Hospital of 
Shihezi University School and the First Affiliated Hos-
pital of Xinjiang Medical University, China. Inclusion 
criteria for RMS patient samples: (1) clinically and patho-
logically diagnosed as RMS (2) primary (3) untreated. 
Exclusion criteria for RMS patients: (1) There are serious 
systemic diseases such as malignant tumors other than 
RMS before admission. (2) Participate in any drug trial 
before admission. (3) Lack of clinicopathological data. 
All subjects provided written informed consent. This 
research was performed in compliance with the ethical 

apoptosis. The CIBERSORT immune cell fraction analysis indicated that the expression levels of MAD2L1 and CCNB2 
affected the immune status in the TME.

Conclusions:  The expression levels of MAD2L1 and CCNB2 are potential indicators of TME status changes in RMS, 
which may help guide the prognosis of patients with RMS and the clinical staging of tumours.

Keywords:  Rhabdomyosarcoma, MAD2L1, CCNB2, Bioinformatics, The tumor microenvironment
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guidelines of the Helsinki Declaration, and was approved 
by the hospital ethics committee.

ESTIMATE analysis
The “ESTIMATE” and “limma” software packages in 
R (v4.0.3) were employed to measure the stromal and 
immune scores of RMS patients. The scores were pre-
sented in 3 types: stromal, immune, and ESTIMATE 
scores. The scores were utilized to measure the ratio of 
stromal or immune components in the TME. The lesser 
the scores, the lower the ratios of the two components. 
Finally, each sample was divided into low (< median) or 
high (> median) scoring group.

Stromal, immune and ESTIMATE scores with clinical stages
R language was employed to analyse the relationship 
between clinical staging data and stromal, immune and 
ESTIMATE scores. Kruskal–Wallis rank sum or Wil-
coxon rank sum test was performed to compare the dif-
ferences between two groups. A p-value of < 0.05 was 
deemed statistically significant.

Generation of DEGs between the high and low scoring 
groups
The “limma Bioconductor” software package in R (v4.0.3) 
was employed to generate DEGs by comparing high- and 
low-scoring samples. The “pheatmap” software package 
in R (v4.0.3) was utilized to construct a DEG heatmap. 
Venn diagrams were created to compare upregulated and 
downregulated crossover genes associated with immune/
matrix scores. The threshold conditions were as follows: 
|log2 fold change (log2FC) | > 1.0, and false discovery rate 
(FDR) < 0.05.

Functional enrichment analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway and Gene Ontology (GO) analyses were con-
ducted on 593 DEGs via the “clusterProfiler,” “enrichplot,” 
and “ggplot2” software packages in R (v4.0.3). Statistical 
significance was considered at p-value < 0.05.

Protein–protein interaction (PPI) network analysis
A PPI network was constructed by the STRING database 
(https://​string-​db.​org/). Then, Cytoscape (v3.7.2) was 
used for reconstruction. The CytoHubba Cytoscape plug-
in was used to identify the core genes on the basis of PPI 
network, and the confidence of the interactive relation-
ship between nodes in the network was larger than 0.95.

Relationship between the top 10 hub genes in PPI network 
and overall survival (OS)
The top 10 hub genes chosen from the PPI network 
were validated by Gene Expression Profiling Interactive 

Analysis (GEPIA, http://​gepia.​cancer-​pku.​cn/), which 
showed good performance for estimating 5-year OS. 
The expression levels of the hub genes were compared 
between sarcoma patients and control samples, and the 
OS Kaplan–Meier survival curve was established. Sur-
vival analysis was carried out using the survival pack-
age in R, and statistical significance was considered at 
p < 0.05.

Gene expression level with clinical staging
Data on the clinicopathological features of RMS patients 
were retrieved from GSE92689. R language was employed 
to analyse the relationship between clinical staging data 
and gene expression. Kruskal–Wallis rank sum or Wil-
coxon rank sum test was performed to compare the dif-
ferences between two groups. P-values of < 0.05 were 
deemed statistical significance.

Gene set enrichment analysis (GSEA)
A collection of C2 KEGG gene sets (v7.2) was retrieved 
from the Molecular Signatures database as the target set 
used by GSEA, and GSEA (v4.0.3) was conducted to elu-
cidate the molecular mechanism of low-expression and 
high-expression populations. Upregulation and downreg-
ulation ways were obtained. Statistical significance was 
considered at FDR < 0.05.

Immune cell profile
The immune cell composition in tumour tissue was esti-
mated using CIBERSORT (https://​ciber​sort.​stanf​ord.​
edu/​about.​php) to assess the difference in the infiltra-
tion of 22 immune cells between high- and low-expres-
sion groups. Statistical significance was considered at 
p-value < 0.05.

Culture and transfection of RMS cells
RMS cell lines (PLA802, RH30 and RD) were supplied by 
Biotechnology Co., Ltd. (Fu Xiang, Shanghai, China). The 
normal skeletal muscle cell line (HSKMC) was stored in 
our laboratory. All cells were cultured in DMEM (Gibco, 
USA) supplemented with 10% FBS (Gibco, USA) and 1% 
penicillin–streptomycin (Solarbio, China), and main-
tained at 37  °C with 5% CO2. Lipofectamine 2000 (Life 
Technologies, USA) was transiently transfected with 
RMS cells for 24  h in compliance with the manufactur-
er’s instructions. The siRNA sequences included si-h-
MAD2L1, 5ʹ-GGG​UCC​AAA​GUU​GAG​UGA​GUC​UUG​
A-3ʹ and si-h-CCNB2, 5ʹ-CAA​GAA​TGT​GGT​GAA​AGT​
A-3ʹ.

Immunohistochemistry (IHC) and IHC assessment
The main antibodies used for IHC were as follows: 
rabbit anti-CCNB2 (Ab185622, 1:100; Abcam) and 
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rabbit anti-MAD2L1 (Ab97777, 1:1200; Abcam). Paraf-
fin-embedded RMS tissue sections were taken, and IHC 
staining was performed. The sections were deparaffi-
nized, rehydrated with xylene, and washed with graded 
alcohol and PBS. After heating for 15 min in citric acid 
buffer (pH 6.0), antigen retrieval was conducted. TBS/
H2O2 was used to block endogenous peroxidase. After 
incubation with anti-human CCNB2 and MAD2L1 pri-
mary antibodies, the sections were exposed to goat anti-
rabbit antibodies at 37 °C for 30 min.

IHC staining was assessed by two independent pathol-
ogists with no knowledge of patient characteristics. The 
staining results of MAD2L1 or CCNB2 were evaluated by 
staining intensity and degree. The scoring system was as 
follows: 0 (no staining), 1 (shallow yellow), 2 (brownish 
yellow), and 3 (dark brown). The proportions of positive 
staining cells were scored as follows: 0 (0%), 1 (< 25%), 2 
(25–75%), and 3 (> 75%). The final scores of < 4 and ≥ 4 
was deemed as low and high expression, respectively [24, 
25].

Western blot analysis
The main antibodies used for Western blot were as fol-
lows: rabbit anti-CCNB2 (Ab185622, 1:1000; Abcam), 
rabbit anti-MAD2L1 (Ab97777, 1:1000; Abcam) and 
mouse anti-β-actin (IE9A3, 1:800; China). The secondary 
antibody was peroxidase-conjugated goat anti-mouse/
rabbit IgG (ZB-2305/2301, 1:10,000; ZSGB). Approxi-
mately 48  h after transfection, RMS cell lysis was per-
formed, and the total protein was isolated in RIPA buffer 
(Solarbio). After electrophoresis, the protein molecules 
on the gel were electrically transferred to PVDF mem-
branes (Solarbio), immersed in blocking solution (5% 
non-fat milk/0.1% Tween-20) for 2 h, and then exposed 
to anti-CCNB2 and anti-MAD2L1 at 4 °C overnight. On 
the next day, the membrane was exposed the correspond-
ing secondary antibodies at room temperature (RT) for 
2 h.

Immunofluorescence (IF) procedure
The main antibodies used for IF were as follows: rab-
bit anti-CCNB2 (Ab185622, 1:80; Abcam) and rabbit 
anti-MAD2L1 (Ab97777, 1:100; Abcam). The second-
ary antibody was peroxidase-conjugated goat anti-rabbit 
IgG (ZB-0311, 1:1000; ZSGB). The slides were fixed with 
4% paraformaldehyde in the culture plate for 15  min, 
immersed three times in PBS, and permeated with 0.5% 
Triton X-100 (prepared in PBS) at RT for 20 min. Serum 
blocking was performed for 30 min at RT, and the block-
ing solution was absorbed with an absorbent paper. A 
sufficient volume of diluted primary antibody was added 

into each slide. After transferring into a humid box, the 
slide was incubated overnight at 4  °C. On the next day, 
the slide was exposed to fluorescent secondary antibodies 
for 1 h. DAPI was added dropwise to the coverslips, and 
then incubated for 5 min in the dark. The specimens were 
stained with nuclei, and then examined using a fluores-
cence microscope (Olympus BX51, Japan).

CCK8 assays
Cell Counting Kit-8 (CCK8; Dojindo, Japan) analysis 
was conducted to measure cell toxicity and prolifera-
tion. Tumour cells (1 × 104  cells/well) were grown in a 
96-well plate. After transfection or addition of inhibitors 
at approximately 0, 24, 48 and 72 h, the absorbance of the 
solution was recorded at 450 nm.

5‑Ethynyl‑2′‑deoxyuridine (EdU) staining
The transfected tumour cells (1 × 105  cells/well) were 
grown in a 12-well plate. The cells were labeled with the 
EdU kit (KGA337, KeyGen BioTECH, China) and photo-
graphed under a fluorescence microscope.

Acridine orange staining
Acridine Orange (AO) and Evans Blue (EB) at 1  mg 
each were dissolved in 10 mL of pH 7.2 PBS to prepare a 
100  µg/mL stock solution. The transfected tumour cells 
(1 × 106  cells/well) were grown in a 6-well plate. The 
same amount was mixed before use and then set aside. 
A 100 µL aliquot of the pre-observed cell suspension that 
has been cultured and incubated with samples was added 
with 4 µL of AO/EB dye and mixed well. A glass slide was 
placed with a drop of the above mixture and then cov-
ered. The staining results were visualized using a fluores-
cence microscope.

TUNEL staining
TUNEL apoptosis detection kit was purchased from 
Shanghai Biyuntian Biotechnology. The transfected 
tumour cells (1 × 105 cells/well) were grown in a 12-well 
plate. The transfected cells were fixed in 4% paraform-
aldehyde (Solarbio) for approximately 30  min, and then 
washed with PBS three times. Each well was added with 
TUNEL detection solution (50 µL) and then incubated at 
37 °C for 1 h. Images were subsequently collected.

Flow cytometry of apoptosis
The transfected cells were collected in a six-well plate and 
washed three times with PBS. Then, Annexin V-FITC 
(5  µL) and PI staining solution (10  µL) were added to 
each test tube, and the cells were analysed using a flow 
cytometer (Partec, Germany).
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Cell cycle analysis
At 24  h after siRNA interference, the cells were col-
lected, washed with PBS, and then fixed with 75% alco-
hol in a refrigerator at 4 °C overnight. The cells lines were 
incubated with RNaseA for 30  min before detection. 
After staining with PI, the cells were analysed by flow 
cytometry.

Transwell assay
Matrigel gel was diluted with serum-free cell culture 
medium at a ratio of 1:8 at 4  °C. Then, 100  µL of this 
mixture was applied evenly on the surface of the polycar-
bonate membrane of the upper chamber and placed at 
37  °C for 0.5–1 h. Cells in the log phase were harvested 
and washed with PBS. The density of cells was adjusted 
to 1 × 105  cells/well. Then, the upper and lower cham-
bers were added with 100 µL of the cell suspension and 
600 µL of 10% FBS, respectively. After being placed in the 
incubator for 24–48 h, the cells were subjected to fixing, 
staining and counting.

Statistics
SPSS v20.0 was employed for statistical analysis. Statisti-
cal significance was considered at p < 0.05. Relationships 
of stromal, immune and ESTIMATE scores with tumor 
staging were analyzed using the Kruskal–Wallis rank sum 
test. Differentiated expression of genes in the normal and 
tumor sample were analyzed using the Wilcoxon rank 
sum test. Multivariate analyses for OS were performed 
using the Cox proportional hazards model. The correla-
tion of MAD2L1 and CCNB2 expression with clinico-
pathological staging characteristics were analyzed using 
the ANOVA test. A Chi-square test was used to analyze 
the associations between protein expressions and patient 
characteristics. Independent sample t-test was used to 
compare the differences between the two groups of dif-
ferent cells. The correlation of immune cell proportion 

with the MAD2L1 and CCNB2 expression were analyzed 
using the Pearson’s correlation coefficient. All graphics 
were drawn using the GraphPad Prism v8.0.

Results
Stromal scores are related to clinical staging in RMS 
patients
The RNA-Seq and clinical data of 125 RMS patients 
were retrieved from the GEO database, and the tumour 
samples were analysed using the ESTIMATE algo-
rithm. The ranges of stromal, immune and ESTIMATE 
scores were − 893.87–1079.43, − 1350.06–1034.71 and 
− 3037.15–2202.51, respectively. All 125 samples were 
classified as high and low scoring groups based on their 
median scores. A high immune or stromal score indi-
cates immunity in the TME or a large number of stromal 
components, respectively. The ESTIMATE score was the 
sum of stromal and immune scores, which represented 
the combination of these two components in the TME. 
As shown in Fig. 1a, the RMS cases at Stage III subgroup 
had the highest average stromal score, followed by Stage 
II and IV, while the Stage I samples had the lowest stro-
mal score, indicating that stromal scores are meaningful 
in the correlation of subgroup classification (p = 0.007). 
However, the immune scores and ESTIMATE were not 
significantly correlated with clinical staging (Fig.  1b, c). 
These results indicated that the stromal component in 
the TME was appropriate for reflecting the clinical stage 
of RMS patients.

Overall functional DEGs shared by stromal 
and immune scores are associated with the enrichment 
of stromal‑related genes
The levels of gene expression in low and high scoring 
groups were compared using |log2FC| > 1.0 and FDR < 0.05 
as the screening criteria to ascertain the accurate changes 
of the gene profiles of stromal and immune components 
in the TME. In total, 802 DEGs were obtained from the 

Fig. 1  Relationships of stromal and immune scores with the clinicopathological staging features of RMS patients. a–c Distributions of stromal, 
immune and ESTIMATE scores in different stages. P-value = 0.219, 0.007, and 0.163, respectively, via Kruskal–Wallis rank sum test
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immune score, of which 376 genes were upregulated, while 
the remaining 426 genes were downregulated (Fig.  2a). 
Meanwhile, 682 DEGs were associated with the stromal 
score, including 340 upregulated genes and 342 downregu-
lated genes (Fig. 2b). Because the crosstalk between stromal 
cells and immune cells in the TME affects the occurrence 
and development of tumors [26–28]. Therefore, we ana-
lyzed both immune and stromal DEGs finding the shared 
DEGs. The Venn diagram takes the intersection of genes 
related to the stromal and immune scores. The analysis 
showed that 291 upregulated genes and 302 downregulated 
genes were overlapped in the stromal and immune scores 
(Fig. 2c, d). Thus, these DEGs (593 genes in total) can play 
an essential role in regulating the TME. Afterwards, func-
tional enrichment analysis was performed on these 593 
important DEGs. GO enrichment analysis showed that 
the top three enriched biological process (BP) terms were 
“mitotic nuclear division”, “nuclear division” and “organelle 
fission”. The top three enriched cellular component (CC) 
terms were “collagen-containing,” “extracellular matrix,” 
and “chromosomal region.” The first three enriched molec-
ular function (MF) terms were “amide binding”, “extracel-
lular matrix structural constituent” and “peptide binding” 
(Fig. 2e, f ). The KEGG results also showed that “organelle 
fission”, “regulation of mitotic cell cycle phase transition”, 
“regulation of cell cycle phase transition”, “nuclear division” 
and other signal pathways were related (Fig. 2g, h). There-
fore, the overall function of DEG was associated with the 
functions of cell differentiation and cycle regulation, imply-
ing that the involvement of stromal cells was the prominent 
feature of the TME in RMS.

Network analysis of the overlapped DEG and validation 
with TCGA database
A PPI network of 593 shared DEGs in the stromal and 
immune score groups was constructed using STRING net-
work analysis tools to further explore its potential mecha-
nism (Fig.  3a). Visualization using Cytoscape software 
showed that the PPI network is composed of 189 nodes 
and 836 edges (Fig. 3b). We identified 30 most significant 
genes in the PPI network, including CDK1, CDC20, PLK1, 
KIF11, NDC80, AURKB, MAD2L1, BUB1B, CCNB1 and 
CCNB2 as the top 10 hub genes (Fig. 3c).

Some studies have shown that the TCGA data set 
can be utilized to verify the associations between the 
expression of genes and OS in a variety of sarcoma 
[29–33]. Therefore, we used a similar method to verify 
the associations between OS and the expression of the 
top 10 hub genes in the PPI network. First, we found 
that the levels of CDK1, CDC20, PLK1, KIF11, NDC80, 
AURKB, MAD2L1, BUB1B, CCNB1, and CCNB2 in 
sarcoma tissues were upregulated compared to those 
in control tissues by GEPIA (http://​gepia.​cancer-​pku.​
cn/). Whether or not the expression levels of these 10 
hub genes are related to the OS of sarcoma patients was 
further studied. Our analysis of sarcoma data in TCGA 
by GEPIA showed that high levels of CDK1, KIF11, 
AURKB, MAD2L1, BUB1B and CCNB2 (Fig.  4a–f ) 
were strongly related to worse OS (P = 0.0063, 0.0023, 
0.0036, 0.018, 0.0032 and 0.017, respectively), whereas 
the four other hub genes (PLK1, NDC80, CCNB1, 
CDC20) demonstrated no significant association 
(Fig. 4g–j). Thus, we determined these six hub genes as 
the object of follow-up research.

MAD2L1 and CCNB2 may be potential indicators of TME 
status and clinical stage
As mentioned above, CDK1, KIF11, AURKB, MAD2L1, 
BUB1B and CCNB2 were highly expressed in sarcoma 
and were markedly related to worse OS. Then, we fur-
ther studied their relationship with the clinical stage of 
RMS. The findings demonstrated that the expression of 
MAD2L1 and CCNB2 were associated with the clini-
cal stage of RMS patients. (Fig. 5a, b), whereas the four 
other hub genes were not related the clinical stage of 
RMS patients (Fig. 5c–f ).

Considering the expression MAD2L1 and CCNB2 
was correlated with clinical stage in RMS patients, we 
further determined the differences in enrichment path-
ways between low- and high-expression groups, and 
performed GSEA testing. Our results demonstrated 
that the genes in MAD2L1 high-expression group were 
involved in DNA replication, mismatch repair, and cell 
cycle (Fig. 5g). By contrast, the MAD2L1 low-expression 
group was related to allograft rejection, type 1 diabetes 

Fig. 2  Heatmaps and Venn plots for the DEGs between high and low stromal/immune scoring groups, and functional enrichment of DEGs. a 
Heatmap for DEGs between high and low immune scoring groups. b Heatmap for DEGs between low and high stromal scoring groups. c, d Venn 
diagram shows the overlapped DEGs between stromal and immune scoring groups. e Circos plot reveals the association between DEGs and top 
GO enrichment terms. f GO analysis shows the BP, CC and MF terms for 593 DEGs. g KEGG analysis reveals the 30 pathways for 593 DEGs. h Circos 
plot indicates the association between DEGs and top KEGG pathways. DEGs differentially expressed genes, GO gene ontology, MF molecular 
function, CC cellular component, BP biological process, KEGG Kyoto Encyclopedia of Genes and Genomes

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Establishment of PPI networks. a Interaction networks of differentially expressed genes containing various nodes with confidence 
score > 0.99. b PPI network visualization with Cytoscape software. Purple means upregulation, and blue means downregulation. c The 30 most 
significant genes identified by the amount of nodes
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Fig. 4  The top 10 hub genes in PPI network are differentially expressed between sarcoma and control tissues, and comparison of OS between 
patients with high and low expression. a CDK1, b KIF11, c AURKB, d MAD2L1, e BUB1B, f CCNB2, g PLK1, h NDC80, i CCNB1, j CDC20. *P < 0.05. HR 
hazard ratio, OS overall survival, SARC​ sarcoma
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mellitus, and cell adhesion molecules (Fig. 5h). The genes 
in CCNB2 high-expression group were mainly associated 
with DNA replication, mismatch repair and cell cycle 
(Fig. 5i). By contrast, the genes in CCNB2 low-expression 
group were associated with complement and coagula-
tion cascades, viral myocarditis, and antigen processing 
and presentation (Fig.  5j). These pathways were mostly 
related to the mechanism of RMS metastasis and recur-
rence. Therefore, MAD2L1 and CCNB2 may be potential 
indicators of TME status and clinical stage.

MAD2L1 and CCNB2 were highly expressed in RMS tissue 
and cell lines
Next, we performed IHC to test the expression of MAD2L1 
and CCNB2 in RMS tissue. The staining site of MAD2L1 
was mainly in the nucleus, and no MAD2L1 expression (0%, 
0/11) was detected in 11 control skeletal muscle tissues. 
The expression rate of MAD2L1 in 33 cases of RMS was 
90.9% (30/33) (Fig.  6a are skeletal muscle tissues, ERMS, 
ARMS, and PRMS tissues, respectively). The expression 
rates of MAD2L1 were markedly higher in RMS group that 
in normal control group (p < 0.001). No obvious difference 
was found between the expression of MAD2L1 and clinical 
data (Table 1). Positive cytoplasmic staining was observed 
for CCNB2, and it was not expressed in 11 control skeletal 
muscle tissues. The expression rate of CCNB2 in 33 cases 
of RMS was 100% (33/33) (Fig. 6b are skeletal muscle tis-
sues, ERMS, ARMS, and PRMS tissues, respectively). The 
expression rates of CCNB2 were noticeably higher in RMS 
group than in normal control group (p < 0.001). Accord-
ing to the results of Chi-square test, there was an obvious 
difference in CCNB2 expression between patients with 
different tumour sizes (p < 0.001, Table  1). RMS patients 
with tumour diameters > 5  cm were more susceptible to 
high CCNB2. Western blot results showed that compared 
with normal skeletal muscle cells (HSKMC), MAD2L1 was 
upregulated in RMS cell lines (RD and RH30). CCNB2 was 
also upregulated in the three cell lines (RD, PLA-802 and 
RH30) (Fig. 6c). These results are similar to those derived 
from GEO and TCGA databases, indicating the high reli-
ability and validity of our findings.

Downregulation of MAD2L1 and CCNB2 inhibits RMS cell 
growth
SiRNAs were used to inactivate MAD2L1 and CCNB2 
in RMS cells to determine whether or not MAD2L1 and 

CCNB2 can be used as therapeutic targets for RMS. Immu-
nofluorescence showed that the fluorescence expression 
intensities of the siMAD2L1 groups were remarkably atten-
uated compared to those of the control group and western 
blot findings demonstrated that the protein expression lev-
els of the siMAD2L1 groups were lower than that of the 
control group (Fig. 7a, b). The results of siCCNB2 groups 
were similar (Fig. 7c, d). This finding shows that the down-
regulation of MAD2L1 and CCNB2 is effective and pro-
vides a basis for subsequent experiments.

The results of EdU (Fig.  8a) and CCK8 (Fig.  8b) assays 
observed that reduced MAD2L1 and CCNB2 expression 
resulted in the inhibition of the proliferation ability and 
vitality of RMS cells. TUNEL and flow cytometry assays 
demonstrated that the downregulation of MAD2L1 and 
CCNB2 promoted the apoptosis of RMS cells (Fig. 8c, d). 
AO staining showed that red fluorescent apoptotic cell 
nucleus increased after the downregulation of MAD2L1 
and CCNB2 (Fig.  8e). In addition, GSEA showed that 
CCNB2 and MAD2L1 are closely related to the cell cycle. 
Thus, we measured the cell cycle by performing flow 
cytometry assays. Compared to control group, the pro-
portion of G1-phase cells in siMAD2L1 and siCCNB2 
groups increased, while the proportion of G2-phase 
cells decreased (Fig.  8f), indicating that the decreased 
MAD2L1 and CCNB2 expression suppressed the growth 
of RMS cells. Transwell assays showed that the number of 
tumour cell migration and invasion was markedly lower 
in siMAD2L1 and siCCNB2 groups than in control group 
(Fig. 8g, h).

Correlation of MAD2L1 and CCNB2 with immune cell 
infiltration
As mentioned above, our study revealed that the high lev-
els of MAD2L1 and CCNB2 promoted the proliferation, 
invasion, migration, and inhibition of apoptosis of RMS 
cells, which may be a potential target for RMS treatment. 
Whether or not a connection exists among MAD2L1, 
CCNB2 and immune infiltrating cells was further explored. 
The CIBERSORT algorithm was employed to analyse 
the differences and correlation in immune infiltration of 
22 types of immune cells between low- and high-expres-
sion populations in RMS samples (Fig. 9a, b). Differential 
expression and correlation analyses were performed for 
verification, and then the intersection was determined 

(See figure on next page.)
Fig. 5  Correlation of six hub genes related to survival overall survival with clinicopathological staging characteristics, and GSEA for samples 
with low and high expression of MAD2L1 or CCNB2. a MAD2L1, b CCNB2, c BUB1B, d AURKB, e CDK1, and f KIF11. The p value by Kruskal–Wallis 
rank sum test. g KEGG gene-set enrichment in high MAD2L1 expression group. Each line denotes a gene set with unique colour. Significance 
level = p-value < 0.05 and FDR q < 0.05. h KEGG gene-set enrichment by the low MAD2L1 expression sample. i KEGG gene-set enrichment by the 
high CCNB2 expression sample. j KEGG gene-set enrichment by the low CCNB2 expression sample
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Fig. 5  (See legend on previous page.)
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to obtain the common immune cells. Six tumour-infil-
trating immune cells (TICs) were found to be associated 
with MAD2L1 expression. Specifically, three TICs were 
positively correlated to MAD2L1 expression, including 
resting NK cells, naïve T cells CD4 and mast cells; while 
the remaining three TICs were negatively correlated to 
MAD2L1 expression, including resting memory T cells 
CD4, monocytes, and macrophages M1 (Fig. 10a–k). Anal-
ysis of CCNB2 using the same method revealed that two 
TICs were related to the expression of CCNB2. Resting 
dendritic cells were positively correlated to CCNB2 expres-
sion. Macrophages M2 negatively correlated with CCNB2 
expression, but all the correlations reported were very weak 
(Fig.  10l–s). Altogether, these findings further confirmed 
that MAD2L1 and CCNB2 were related to the TME.

Discussion
RMS is a common malignant tumour in children, and 
the pathogenesis remains unclear. The prognosis of RMS 
patients is poor, the treatment effect is limited, a clear tar-
geted therapy drug remains unavailable, and the 5-year OS 
rate is less than 20% [34–36]. Thus, identifying the diagnos-
tic and prognostic biomarkers of the disease is crucial for 
reducing mortality and morbidity.

The TME plays crucial roles in tumour initiation and 
prognosis. Therefore, exploring the key genes that affect 
TME is beneficial to inhibit tumour metastasis and 
prognosis, which may be a potential target for tumour 
treatment. Some studies have shown that matrix degra-
dation in the TME is a key factor in promoting tumour 
development and invasion. The expression levels of 

Fig. 6  Expression of MAD2L1 and CCNB2 in RMS tissues and cells. a IHC analysis of MAD2L1 demonstrates strong nuclear expression in patients 
with RMS. Negative control, ERMS, ARMS, PRMS (all ×200). b IHC analysis of CCNB2 demonstrates cytoplasm or nuclear expression in patients with 
RMS. Negative control, ERMS, ARMS, PRMS (all ×200). c Western blot shows the expression of MAD2L1 and CCNB2 in normal skeletal muscle cells 
(HSKMC) and RMS cell lines (RD, PLA-802, RH30)
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α-dystroglican (an essential complex for the assembly and 
binding of laminin and basement membrane) are down-
regulated in RMS and other solid tumours. Although the 
meaning of these differential levels in tumour biology has 
not been clarified, the decreased adhesion of these cells 
to laminin could also lead to increased migration capa-
bilities [37]. The macrophage migration inhibitory fac-
tor (MIF) expressed by the RMS cell line interacts with 
CXCR4 and CXCR7 (RMS cell surface receptors) in the 
paracrine loop, which can reduce the number of cancer-
associated fibroblast infiltration, increase cell adhesion, 
and promote blood vessel formation. Downregulation of 
MIF in the RMS cell line leads to large xenografts, high 
stromal cell support, and high tumour cell count [38]. 
Although many studies have suggested that changes in 
the stromal and immune components of TME promote 
cancer progression, the relationship between key dif-
ferential genes in the TME and cancer prognosis and 
tumour stage remain unclear. Therefore, in our study, 
TME-related genes were screened from the GEO datasets 
that help predict the OS rate and tumour stage of RMS 
patients, analysed the biological functions and signalling 
pathways of relevant DEGs, and evaluated the roles of 
key genes in regulating immune cell infiltration.

First, the ESTIMATE algorithm was employed to meas-
ure the stromal, immune, and estimate scores and then 
studied the association between these scores and clinical 
staging in 125 patients with RMS. We observed a corre-
lation between stromal score and clinical staging. Then, 
we compared the expression levels of genes in the low 
and high scoring groups, and 593 DEGs were screened. 
KEGG and GO enrichment analyses showed that these 
DEGs are associated with the differentiation and cycle 
regulation of stromal cells, which is consistent with a 
previous study [39]. However, although the pathogen-
esis of RMS is unknown, histological studies have shown 
that the failure of skeletal muscle lineage precursors to 
exit the cell cycle and fusion of componentized syncyt-
ial muscles is an important factor in the development of 
RMS [40, 41].

Then, we constructed the PPI network and screened the 
most significant hub genes (CDK1, CDC20, PLK1, KIF11, 
NDC80, AURKB, MAD2L1, and BUB1B). The overall 
survival analysis of these genes was performed, and six 
statistically significant differential genes (CDK1, KIF11, 
AURKB, MAD2L1, BUB1B, and CCNB2) were obtained. 
CDK1 promotes the development of lung cancer [42]. It 

Table 1  Association between MAD2L1 and CCNB2 protein expression and patient clinical characteristics

P < 0.05 indicates a significant association among the variables
a Significant difference

Patient characteristics n (%) MAD2L1 P-value CCNB2 P-value

Low 
expression, 
n (%)

High 
expression, 
n (%)

Low 
expression, 
n (%)

High 
expression, 
n (%)

Gender

 Male 21 (63.6) 9 (42.9) 12 (57.1) 0.457 8 (38.1) 13 (61.9) 0.259

 Female 12 (36.4) 3 (25) 9 (75) 2 (16.7) 10 (83.3)

Age (years)

 ≤ 5 7 (21.2) 5 (71.4) 2 (28.6) 0.071 4 (57.1) 3 (42.9) 0.161

 > 5 26 (78.8) 7 (26.9) 19 (73.1) 6 (23.1) 20 (76.9)

Tumor diameter

 ≤ 5 cm 11 (33.3) 4 (36.4) 7 (63.6) 1.000 8 (72.7) 3 (27.3) 0.000a

 > 5 cm 22 (66.7) 8 (36.4) 14 (63.6) 2 (9.1) 20 (90.9)

Histology

 ERMS 14 (42.4) 7 (50) 7 (50) 0.427 5 (35.7) 9 (64.3) 0.164

 ARMS 12 (36.4) 3 (25) 9 (75) 5 (41.7) 7 (58.3)

 PRMS 7 (21.2) 2 (28.6) 5 (71.4) 0 (0.0) 7 (100.0)

Location

 Head and neck 9 (27.3) 3 (33.3) 6 (66.7) 1.000 4 (44.4) 5 (55.6) 0.943

 Torso and limbs 16 (48.5) 6 (37.5) 10 (62.5) 5 (31.3) 11 (68.7)

 Urinary 5 (15.2) 2 (40) 3 (60) 2 (40) 3 (60)

 Abdominal or retroperitoneal 3 (9) 1 (33.3) 2 (66.7) 1 (33.3) 2 (66.7)
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Fig. 7  Downregulation of MAD2L1 and CCNB2. a IF assessment of RH30 and RD cells transfected with si-MAD2L1 and si-CCNB2. Cells were stained 
with 4ʹ,6-diamidino-2-phenylindole (blue) and the antibody against MAD2L1 (green), exposed to the corresponding secondary antibody, and 
analysed with double IF assay. b Western blot shows the expression of siMAD2L1. c and d IF and Western blot shows the expression of siCCNB2
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is a promising drug target or prognostic marker for can-
cer patients, such as hepatocellular carcinoma, lung can-
cer, and pancreatic ductal adenocarcinoma [43–45]. High 
expression of KIF11 is associated with the worse prog-
nosis of clear cell renal cell carcinoma [46]. Inhibition of 
AURKB can suppress the proliferation of osteosarcoma 
cells [47, 48]. The abnormal expression of MAD2 (also 
known as MAD2L1) may be related to the pleomorphic 
morphology and impaired mitoses of soft-tissue sarcoma 
and the high-grade tumour progression of the TA sub-
group [49]. BUB1B accelerates the progression of pros-
tate cancer via the transcriptional modulation of MELK, 
which can be used as a clinical prognostic factor and drug 
target for prostate cancer [50]. CCNB2 may responsible 
for the initiation and progression of liver cancer through 
the CCNB2/PLK1 pathway and increase the growth and 
migration of liver cancer cells [51]. miR-335-5p can tar-
get the downregulation of CCNB2, thereby inhibiting the 
occurrence and development of lung adenocarcinoma 
[52]. In summary, the six genes predicted by our research 
promote the occurrence of various tumours, and may 
serve as the diagnostic markers of RMS.

To understand further the role of these six differential 
genes in RMS, we analysed their correlation with the clin-
ical stage of RMS and finally screened out MAD2L1 and 
CCNB2. These two genes are correlated with the clinical 
stage of tumours. Some studies reported that MAD2L1 
and CCNB2 are highly expressed in gastric cancer, liver 
cancer, lung cancer, and other types of cancers; thus, 
they possibly serve as tumour-promoting genes [51–55], 
which are consistent with our immunohistochemical 
results. Our results further revealed that CCNB2 expres-
sion is associated with tumour size. Previous studies 
reported that MAD2L1 and CCNB2 are responsible for 
cell cycle regulation [56, 57]. Our GSEA analysis revealed 
the key difference between the high- and low-expression 
groups; and particularly, the high-expression group is 
prominently related to the cell cycle pathway. Our cycle 
analysis results also showed that inhibiting MAD2L1 and 
CCNB2 blocks cells in the G0/G1 phase, thereby inhib-
iting RMS cell proliferation. miR-139-5p attenuates the 
growth, invasion and migration of lung adenocarcinoma 
cells by targeting MAD2L1 [55]. MAD2L1 can regulate 

the growth and apoptosis of colorectal cancer cells [58]. 
Dietary sugar increases the growth of pancreatic cancer 
cells by increasing MAD2L1 expression [59]. CCNB2, 
which is upregulated in colorectal cancer, may promote 
tumour cell growth by accelerating the cell cycle [60]. 
HMGA induces the overexpression of CCNB2 to pro-
mote the development of human pituitary tumours [61]. 
In this research, inhibiting the expression of MAD2L1 
and CCNB2 inhibited the proliferation, invasion, migra-
tion, and promotion of apoptosis of RMS cells. Various 
signs indicate that the upregulation of MAD2L1 and 
CCNB2 promotes the occurrence and development of 
RMS.

To study these two genes in more depth, the CIBER-
SORT calculation method was utilized to measure the 
proportion of immune infiltrating cells in the RMS sam-
ple and analysed the relationship between the proportion 
of immune infiltrating cells and MAD2L1 and CCNB2. 
Our findings showed that the expression of MAD2L1 was 
positively correlated with resting NK cells, naive T cells 
CD4 and mast cells, while negatively correlated with rest-
ing memory T cells CD4, monocytes, and macrophages 
M1. The expression of CCNB2 was positively correlated 
with resting dendritic cells and negatively correlated 
with macrophages M2. Some studies also indicated that 
MAD2L1 and CCNB2 may be related to immune infiltra-
tion [62–65]. These results further support that the levels 
of MAD2L1 and CCNB2 are closely related to TME. The 
development of tumours is influenced by various aspects. 
The role of TME in tumours has become a research hot-
spot in recent decades. Research on this type of direc-
tion provides ideas for the pathogenesis and treatment of 
RMS.

Although our research revealed some of the functions 
of genes in the RMS microenvironment, it still has limi-
tations. Since the relationship between TME, MAD2L1, 
and CCNB2 is complex, Additional studies will be 
needed to explore the exact mechanisms between TME, 
MAD2L1, CCNB2, and carcinogenesis of RMS.

Fig. 8  Downregulation of MAD2L1 and CCNB2 inhibits RMS cell growth, invasion and migration as well as promotes cell cycle arrests and cell 
death. a EdU assays showed that RMS cell proliferation was detected. Hoechst staining, EdU labeled cell proliferation (red), total cells (blue), 
siMAD2L1 and siCCNB2 inhibited cell growth (pink). b CCK8 shows the cell proliferation ability. c Apoptosis of RH30 and RD cells transfected with 
small interfering RNA fragments of MAD2L1 and CCNB2 was detected by TUNEL. DAPI staining, all cells (blue), TUNEL-labeled apoptotic cells (red), 
siMAD2L1 and siCCNB2 promoted cell apoptosis (pink). d Rate of apoptosis was analysed by flow cytometry. e AO staining apoptotic cells, followed 
by flow cytometric analysis. f Changes of cell cycle. g, h The migration and invasion capabilities of RMS cells. P-value < 0.05, via independent sample 
t-test

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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Fig. 9  Correlations between the tumour sample and immune cell relative percent. a Bar plot indicates the proportion of immune cells (22 types) in 
RMS samples. b Heatmap shows the relationships among the 22 types of immune cells, and the size of each circle indicates the significance level of 
each association. Blue denotes low and red denotes high. P-value < 0.05, via Pearson’s correlation coefficient

Fig. 10  Association between immune cell proportion and MAD2L1 or CCNB2 expression. a Violin plot shows the proportion of immune cells (22 
types) between control tissues with high and low MAD2L1. P-value < 0.05, via Wilcoxon rank sum test. b Venn plot shows the correlation between 
six types of immune cells and MAD2L1 expression, as codetermined by difference and correlation analysis shown in scatter and violin plots. 
c–k Scatter plot shows the association of nine types of immune cell proportion with MAD2L1 expression. Blue line indicates fitted linear model. 
P-value < 0.05, via Pearson’s correlation coefficient. l Violin plot of CCNB2. m Venn plot shows two types of immune cells correlated with CCNB2 
expression. (N–S) Scatter plot indicates the relationship between six types of immune cells and CCNB2 expression. P-value < 0.05

(See figure on next page.)
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Fig. 10  (See legend on previous page.)



Page 19 of 20Xia et al. Cancer Cell International          (2021) 21:634 	

Conclusions
Through bioinformatics analysis, we finally identified 
two genes related to TME and immune cell infiltration, 
MAD2L1 and CCNB2. And our results showed that the 
expression levels of MAD2L1 and CCNB2 correlated 
with the overall survival of patients with RMS and the 
clinical stage of the tumor. Finally, our experimental 
results showed that MAD2L1 and CCNB2 were highly 
expressed in RMS cells and tissues, downregulation of 
MAD2L1 and CCNB2 inhibited growth of rhabdomyo-
sarcoma cells. Thus, MAD2L1 and CCNB2 are poten-
tial indicators of TME status changes in RMS.
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