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During the past decades, a number of studies have demonstrated multiple beneficial health effects of green tea. Polyphenolics are
the most biologically active components of green tea. Many targets can be targeted or affected by polyphenolics. In this study, we
excavated all of the targets of green tea polyphenolics (GTPs) though literature mining and target calculation and analyzed the
multiple pharmacology actions of green tea comprehensively through a network pharmacology approach. In the end, a total of 200
Homo sapiens targets were identified for fifteen GTPs.These targets were classified into six groups according to their related disease,
which included cancer, diabetes, neurodegenerative disease, cardiovascular disease,muscular disease, and inflammation.Moreover,
these targetsmapped into 143KEGGpathways, 26 ofwhichweremore enriched, as determined thoughpathway enrichment analysis
and target-pathway network analysis. Among the identified pathways, 20 pathways were selected for analyzing the mechanisms of
green tea in these diseases. Overall, this study systematically illustrated the mechanisms of the pleiotropic activity of green tea by
analyzing the corresponding “drug-target-pathway-disease” interaction network.

1. Introduction

Tea is a traditional medicinal plant and the most widely
consumed beverage in the world. Among all teas consumed
worldwide, green tea is the best studied in terms of health
benefits because its chemistry is more well known than that
of other teas [1]. A number of studies have demonstrated
the beneficial health effects of green tea, which include the
reduction of serum cholesterol, the prevention of low-density
lipoprotein oxidation, and a decreased risk of cardiovascular
disease and cancer [2, 3]. It is generally agreed that many of
the effects of green tea are mediated by its polyphenols, as
shown in Figure 1, which include flavanols and flavonoids.
The flavanols, which are also known as catechins, including
(−)-epiafzelechin (EZ, 1), (+)-catechin (C, 9), (−)-epicatechin
(EC, 2), (+)-gallocatechin (GC, 10), (−)-epigallocatechin
(EGC, 3), their respective 3-gallate esters (−)-EZG (4), (+)-
CG (11), (−)-ECG (5), (+)-GCG (12), and (−)-EGCG (6),

and two 3-(3-methy)gallate esters (−)-ECMG (7) and (−)-
EGCMG (8), account for 40–50% of the dry weight of tea
leaves [4, 5]. In addition, three flavonoids, namely kaempferol
(13), quercetin (14), and myricetin (15), have been isolated
as components of green tea [6]. The diverse bioactivities of
green tea have prompted comprehensive research, which has
led to hundreds of published studies. However, most of these
studies mainly focused on the anticancer activity of EGCG,
a major catechin of green tea. Such one-sided studies are
not aligned with the diverse bioactivities of green tea. In
addition, many of the other GTPs also have been proven
to present multiple bioactivities, such as the kaempferol
and quercetin, which exert potentially beneficial effects on
inflammation [7]. Moreover, GTPs often play target multiple
proteins. For example, EGCG has been shown to mediate
multiple signal pathways by binding to many targets in
cancer cells [8]. Therefore, it is reasonable to systematically
and comprehensively analyze the mechanisms of action of
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Figure 1: Structures of green tea polyphenols.

green tea based on the “multicomponent, network target”
model.

Network pharmacology updates the research paradigm
from the current “one target, one drug” model to a new
“multicomponent, network target” model, which enhances
our knowledge of multipathway interactions and helps inter-
pret drug-response signature datasets that collectively decode
the complex mechanisms of drug actions [9]. Unlike earlier
reductionist “one drug, one target” approaches, network
pharmacology invokes the idea that a drug engages with
multiple targets and rarely interacts with a single protein in
isolation [10]. This approach utilizes principles of systems
biology and network analysis to advance drug discovery
through the identification of connectivity, redundancy, and
pleiotropy in biological pathways and has allowed a deeper
understanding of the drug interactions by revealing that
this promiscuity often engages a synergistic combination of
appropriate high-value targets in a complex disease, such as
cancer and diabetes, to produce treatment success [11].

To explore the mechanism of action of green tea from
a holistic perspective, the network pharmacology method
was employed to investigate the molecular behavior of GTPs.
We collected all available target information for fifteen GTPs
through literature mining and computational chemistry (3D
similarity search and reverse docking) to construct a network
of the “drug-target-pathway-disease” interactions (Figure 2).
In the end, 200 Homo sapiens targets were identified for
fifteen GTPs. These targets were classified into six groups
according to their related disease, which included cancer,
diabetes, neurodegenerative disease, cardiovascular disease,
muscular disease, and inflammation, in agreement with the
applications of green tea. Pathways analysis was used to
illustrate the mechanism of action through which the GTPs
exert their comprehensive therapeutic effects. A total of
143 KEGG pathways were identified, and 26 of these were
more enriched, as determined through pathway enrichment
analysis and target-pathway network analysis. Twenty of
the identified pathways that play a role in the GTP-related
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Figure 2: Analysis overview. The methods of similarity search,
literature mining, and reverse docking were utilized to identify
the confirmed and potential targets of GTPs, and these methods
provides 287, 339, and 289 targets, respectively.Ultimately, 200Homo
targetswere selected after removing any redundant and other sapiens
targets and used to construct the “drug-target-pathway-disease”
interaction network.

diseases were selected for analyzing the mechanisms of
action of green tea. By integrating the “drug-target-pathway-
disease” interactions, we found the green tea exerts a variety
of therapeutic effects though the modulation of multiple
pathway by itsmain components, which is in accordancewith
the “multicomponent, network target” model.
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2. Material and Methods

2.1. Literature Mining. All available information on the
targets of fifteen GTPs in the literature was collected by
searching PubMed using the Structure search. Only the
confirmed and active targets were selected from the category
of biological test results.

2.2. Similarity Search. The online web server ChemMapper
[12], which is based on the 3D similarity procedure ShAFTS,
was used to predict the potent targets according to the similar
property principle, which suggests that structurally similar
molecules should exhibit the same (or similar) bioactivities
[13]. SHAFTS provides a ShapeScore (based on the shape
overlap) and a FeatureScore (based on the pharmacophore
fit), and the weighted sum of the two scores is considered
the hybrid similarityHybridScore [14]. A higherHybridScore
implies a better alignment in terms of both shape and
chemotype identities between the query and target molecules
[15]. In this study, the targets with aHybridScore value higher
than 1.400 were selected as potent targets.

2.3. Reverse Docking. Reverse docking is a novel technology
that allows the docking of a compound with a known biolog-
ical activity into the binding sites of all of the 3D structures
in a given protein database. The PharmMapper server is
a freely accessed web server designed to identify potential
target candidates for a specific small molecule probe (drugs,
natural products, or other newly discovered compounds with
unidentified binding targets) using the pharmacophore map-
ping approach [16]. It is backed up by a database with a large
repertoire of pharmacophores extracted fromall of the targets
in TargetBank, DrugBank, BindingDB, and PDTD. More
than 7,000 receptor-based pharmacophore models (covering
1,627 drug targets, 459 of which are human protein targets)
are stored and accessed by PharmMapper. This program
finds the best mapping poses of the user-uploaded molecules
against all of the targets in PharmTargetDB, and the top N
potential drug targets, as well as the respective molecules’
aligned poses, are outputted. In this study, the cutoff Fit Score
value was set to 4.000. The targets with a Fit Score value
higher than 4.000 were selected as potential targets.

2.4. NetworkConstruction andAnalysis. The individual inter-
action networks for each protein were built by use of
the STRING database which is integration of known and
predicted protein interactions [17]. The network interactions
were selected according to STRING-computed confidence
scores (medium confidence 0.4000). The Cytoscape soft-
ware (Version 2.8.3; http://www.cytoscape.org/) and the Net-
work Analyzer plugin (Version 1.0, http://med.bioinf.mpi-
inf.mpg.de/netanalyzer/) were used to visualize the network
and calculate the basic network parameters, including degree
of distribution, degree exponent, shortest-path-length dis-
tribution, and clustering coefficient. The interactions in the
“target-pathway” network were selected from the pathway
enrichment results. The sizes of the nodes correspond to the
node degree.

2.5. Pathway Enrichment. 𝑃 values were used to determine if
a specific pathway in the KEGG database was more enriched
with the related proteins than by chance. Assuming that a
total of 𝐾 proteins related to the GTPs were mapped into
KEGG, which contains 𝑁 distinct proteins, and 𝑘 proteins
from a pathway of size 𝑛 are related to the GTPs, the 𝑃 value
is given by

𝑃 = 1 −
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The two-sided hypergeometric test and the Bonferroni cor-
rection were used.

3. Results and Discussion

3.1. Data Preparation. The 15GTPs shown in Figure 1 were
searched by PubMed, ChemMapper, and PharmMapper.
From the results from the PubMed search, only the active and
confirmed targetswere selected, resulting in the identification
of 339 targets for the 15 components. The web service
ChemMapper, which is based on a 3D similarity search, pro-
vided 287 targets with a HybridScore value of at least 1.400,
and the web service PharmMapper provided 289 targets with
a Fit Score value of at least 4.000. Because polyphenols have
a similar skeleton, most of these compounds often share the
same targets. After removing any redundant andother sapiens
targets, 200Homo sapiens targets were selected for the subse-
quent analysis (see Table S1 in the Supplementary Material
available online at http://dx.doi.org/10.1155/2014/512081).

3.2. Drug-Target Interactions. The network of drug-target
interactions is shown in Figure 3. The target proteins were
classified into six groups according to their related disease, as
determined using the database of Disease and Gene Anno-
tations (DGA) [18]. Among all 200 Homo sapiens targets,
120 targets were related to cancer, which is in agreement
with previous research results showing that green tea has
anticancer activity [19]. In addition, the other 80 targets were
associated with diabetes, cardiovascular disease, Alzheimer’s
disease, muscular disease, mental disease, and inflammation.
The sizes of the nodes correspond to the degree. It was easily
determined that most of the GTPs shared multiple targets,
particularly 13 (kaempferol), 14 (quercetin), 6 ((−)-EGCG),
and 15 (quercetin), which exhibited node degrees greater than
40. Simultaneously, most of the targets can be targeted by
more than one GTP.

3.3. Protein-Protein Interactions. The protein-protein net-
work was constructed via mapping the 200 putative targets
into the String database, which is a collection of known
and predicted protein-protein interactions. After excluding
isolated nodes, the protein interaction network induced by
green tea components was composed of 187 nodes (proteins)
and 1500 edges (interactions) (Figure 4(a), Table S1). The
topological properties of the network rewired by the GTPs
were analyzed with the network analyzer plugin. Among
these properties, the node degree can be used to distinguish
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Figure 3: The drug-target-disease network. Two-hundred Homo sapiens targets targeted by fifteen GTPs were classified into seven groups
according to their related disease, as determined by the Disease and Gene Annotations. The circles represent the targets, and the rhombi
represent the GTPs.

between random and scale-free network topologies. In a
random network, the node degrees often follow a Poisson
distribution, whereas these exhibit a nonuniformdistribution
in a scale-free network. Most network models based on a
biological system are scale-free. In the network rewired by
GTPs, the node degree distribution was in accordance with
a power law, indicating that the constructed network is scale-
free and does not present a random topology (Figure S1).

3.4. Pathway Enrichment. Because green tea exhibits diverse
bioactivities mediated by multiple pathways, it is reasonable
to analyze the potential pathways. In this study, pathway
enrichment based on the hypergeometric test was utilized
to analyze the potential pathways mediated by the GTPs.
Ultimately, 143 KEGG pathways were identified, and 26 of
these were found to be more enriched (𝑃 value < 0.05,

Table 1, Table S2).These results were confirmed by construct-
ing the protein-pathway network. As shown in Figure 4(b),
the pathwayswith a lower𝑃 value exhibited a larger node size,
that is, a greater node degree; thus, the five pathways with
the greatest degrees, namely, hsa05200, hsa05215, hsa05214,
hsa04510, and hsa05218, also presented the six highest 𝑃
values. In addition, because green tea has previously been
associated with cancer, diabetes, cardiovascular diseases,
neurodegenerative disease, muscular disease, and inflamma-
tion, 20 pathways related with these diseases were selected for
further analysis (Table 2).

3.5. Anticancer Mechanism. Anticancer is one of most com-
monly reported effect of green tea. Numerous studies have
provided evidence that green tea has potential chemother-
apeutic activity against a wide range of cancers, including
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Figure 4: Protein-protein network and protein-pathway network. (a) Protein-protein network. The proteins are colored pink and shown as
circles. (b) Protein-pathway network. The proteins are colored pink and shown as circles, and the pathways are colored blue and shown as
triangles. All of the graphs are shown through an organic layout, and the node size corresponds to the degree.
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Table 1: Enriched KEGG pathways.

Pathway ID Term Number of proteins P value
hsa05214 Glioma 21 8.86E − 11
hsa05200 Pathways in cancer 39 2.41E − 09
hsa05215 Prostate cancer 22 8.26E − 09
hsa05223 Non-small-cell lung cancer 17 4.49E − 08
hsa05218 Melanoma 18 6.21E − 07
hsa04370 VEGF signaling pathway 15 9.00E − 06
hsa05212 Pancreatic cancer 13 5.89E − 05
hsa05213 Endometrial cancer 12 1.90E − 04
hsa04115 p53 signaling pathway 12 2.39E − 04
hsa05219 Bladder cancer 11 3.74E − 04
hsa04914 Progesterone-mediated oocyte maturation 13 8.84E − 04
hsa05222 Small cell lung cancer 14 8.84E − 04
hsa04664 Fc epsilon RI signaling pathway 14 8.84E − 04
hsa04510 Focal adhesion 20 1.16E − 03
hsa04722 Neurotrophin signaling pathway 18 1.68E − 03
hsa05220 Chronic myeloid leukemia 13 2.45E − 03
hsa04660 T cell receptor signaling pathway 15 3.03E − 03
hsa04012 ErbB signaling pathway 14 4.66E − 03
hsa04666 Fc gamma R-mediated phagocytosis 11 6.31E − 03
hsa04520 Adherens junction 9 7.74E − 03
hsa04662 B cell receptor signaling pathway 11 1.28E − 02
hsa05221 Acute myeloid leukemia 10 1.58E − 02
hsa00140 Steroid hormone biosynthesis 8 2.15E − 02
hsa04912 GnRH signaling pathway 15 2.43E − 02
hsa05210 Colorectal cancer 9 2.99E − 02
hsa05211 Renal cell carcinoma 11 3.47E − 02

those involving the skin, lungs, gastrointestinal tract, breast,
colon, and the head and neck [20]. Extensive research studies
have attempted to elucidate the molecular mechanisms of
cancer chemoprevention by green tea. However, these studies
have mainly focused on the anticancer activity of EGCG,
and its targeting of specific cell signaling pathways has
received considerable attention for the regulation of cellular
proliferation and apoptosis. Recent studies have shown that
EGCG can target multiple signaling pathways in cancer,
including the epidermal growth factor receptor (EGFR),
insulin-like growth factor (IGF), mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK),
and NF-𝜅B pathways [8, 21]. Although EGCG is the main
polyphenol and has higher anticancer activity, the other
GTPs, such as kaempferol [22] and quercetin [23], also
present anticancer activity.Therefore, a systematic analysis of
the anticancer mechanism of all GTPs is necessary.

To fully elucidate the molecular mechanisms in cancer
prevention, we collected all of the potential and confirmed
targets of the GTPs to identify all of the related pathways.
In the end, 12 pathways in cancer were identified through
pathway enrichment analysis (Table 2). To better understand
the anticancer mechanisms of green tea, we constructed a
simplified pathway covering most of the targets related to the
GTPs based on the hsa05200 pathway (pathways in cancer),

which is an integration of other pathways, including glioma,
prostate cancer, non-small-cell lung cancer, melanoma, pan-
creatic cancer, endometrial cancer, bladder cancer, small
cell lung cancer, acute myeloid leukemia, colorectal cancer,
and renal cell carcinoma (Figure 5). Our analysis revealed
a total of 29 targets that are modulated by the polyphenols
of green tea (colored in red). These were distributed in
different signaling pathways and regulated by one or more
polyphenols (Table S2). GSK-3𝛽 belongs to theWnt signaling
pathway and was modulated by compounds 13, 14, and 15.
FAS and Bax belong to the apoptosis signaling pathway
and were modulated by compounds 5 and 6, respectively.
These pathways affect the growth of cancer cells by regulating
their apoptosis. In addition, the targets cIAPs and P53 were
also related with apoptosis. The other targets modulated by
GTPs were mainly distributed in the HGF-PI3K/Akt-NF𝜅B
signaling pathway (HGF, MET, PKB/Akt, p21, NF-𝜅B, and
COX-2), the EGFR/FGFR/IGFR-MAPK signaling pathway
(EGFR, FGFR, IGFR, PLCy, PKC, Ras, MEK, and ERK)
and other related downstream signal transduction pathways.
In addition to apoptosis, the final impact of these targets
in a cancer cell is mainly associated with angiogenesis,
proliferation, and genomic damage. Importantly, most of
these targets or pathways, such as Bax [24], NF-𝜅B [25],
MAPKpathway [26], EGFR [27], IGFR [28], andCOX-2 [29],
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Table 2: Diseases affected by GTPs and related pathways.

Disease Related pathway

Cancer

Glioma (hsa05214)a

Pathways in cancer (hsa05200)a

Prostate cancer (hsa05215)a

Non-small-cell lung cancer
(hsa05223)a

Melanoma (hsa05218)a

Pancreatic cancer (hsa05212)a

Endometrial cancer (hsa05213)a

Bladder cancer (hsa05219)a

Small cell lung cancer (hsa05222)a

Acute myeloid leukemia (hsa05221)a

Colorectal cancer (hsa05210)a

Renal cell carcinoma (hsa05211)a

Diabetic p53 signaling pathway (hsa04115)a

Type II diabetes mellitus (hsa04930)b

Neurodegenerative
disease

Fc epsilon RI signaling pathway
(hsa04664)a

Fc gamma R-mediated phagocytosis
(hsa04666)a

Alzheimer’s disease (hsa05010)b

Cardiovascular
diseases

Vascular smooth muscle contraction
(hsa04270)b

Muscular disease Chemokine signaling pathway
(hsa04062)b

Inflammation B cell receptor signaling pathway
(hsa04662)a

a
𝑃 value < 0.05; b𝑃 value > 0.05.

have been confirmed to bemodulated by EGCG. However, as
shown in Figure 3, these targets can bemodulated by not only
EGCGbut also other polyphenols, which is in agreementwith
the “multicomponent, network targets” model.

3.6. Antidiabetic Mechanism. Various studies have shown
the beneficial effects of green on diabetes [30]. Japanese
researchers have showed that drinking more cups of green
tea can reduce the risk of diabetes by 33% [31]. Moreover,
individuals who have habitually consumed tea for a long time
present lower body fat, which is the property that is most
related to diabetes [32]. Although several mechanisms have
been proposed to explain the positive effect of green tea on
diabetes [30, 33], these have not been confirmed. Fortunately,
we identified three pathways (p53 signaling pathway, neu-
rotrophin signaling pathway, and type II diabetes mellitus
pathway) related to diabetes from all 147 pathways. Among
these, the p53 signaling pathway and the neurotrophin signal-
ing pathway were also found in the list of enriched pathways
with 𝑃 values of 2.39 × 10−4 and 1.68 × 10−3, respectively. Even
though the 𝑃 value found for the type II diabetes mellitus
pathway was less than the set significance level, it still was
selected for further analysis because it is closely correlated
with diabetes. We constructed a diabetes-related pathway

(Figure 6) by integrating these three pathways. As shown
in Figure 6, 22 targets (colored in red) could be modulated
by the GTPs. Previous studies on the p53 pathway have
proven that hyperglycemia with diabetes promotes myocyte
apoptosis mediated by the activation of p53 [34], which
can be modulated by compound 6. Downstream of p53,
GTPs can affect the cell cycle by mediating the targets p21,
cyclin D, CDK4/6, and Cdc2. Moreover, the apoptosis of
cells can be modulated by GTPs through targeting Fas and
BAX. The ICF-1/mTOR pathway driving insulin resistance
and diabetic complications [35] can also be mediated by
GTPs through targeting its upstream protein PTEN. In the
type II diabetes mellitus pathway, the proteins INSR, ERK,
and PI3K contributing to insulin resistance are affected by
the GTPs. In addition, the key protein GK (HK1), which
is associated with the conversion from glucose to ATP and
thereby contributes to impaired insulin secretion through the
induction of mitochondrial dysfunction, can be regulated by
compound 3.

3.7. Antineurodegenerative DiseaseMechanism. Neurodegen-
eration, which occurs in Parkinson’s, Alzheimer’s, and other
neurodegenerative diseases, appears to be multifactorial, in
which a complex set of toxic reactions, including oxidative
stress (OS), inflammation, reduced expression of trophic
factors, and accumulation of protein aggregates, lead to
the demise of neurons. One of the prominent pathological
features is the abnormal accumulation of iron on top of the
dying neurons and in the surrounding microglia [36]. Tea
flavonoids (catechins) have been reported to penetrate the
brain barrier and to protect against neuronal death in a wide
array of cellular and animal models of neurological diseases
[36, 37]. In this analysis, we identified two enriched pathway,
namely, the Fc epsilon RI signaling pathway and Fc gammaR-
mediated phagocytosis, relatedwith brain iron accumulation.
Fifteen proteins in these pathways can be regulated by the
GTPs (Table S2). Although the 𝑃value found for Alzheimer’s
disease pathway was less than the set significance level, some
of its proteins can be regulated by the GTPs. Alzheimer’s
disease (AD) is a progressive neurodegenerative disorder
that is pathologically characterized by the deposition of 𝛽-
amyloid (A𝛽) peptides as senile plaques in the brain. EGCG
has been proven to reduce A𝛽 generation [38]. Moreover,
many key targets in Alzheimer’s disease pathway can also
be mediated by the GTPs. As shown in Figure 7, the 𝛽-
site APP cleaving enzyme 1 (BACE), which promotes the
formation of A𝛽 by cleaving APP, can be regulated by the
GTPs. The membrane metalloendopeptidase (NEP), which
inactivates the degradation of A𝛽, can also be targeted by the
GTPs. Evidence from several studies has indicated that the
hyperphosphorylation of the Tau protein is responsible for
its loss of biological activity and its resistance to proteolytic
degradation and likely plays a key role in neurofibrillary
degeneration in AD [39, 40]. Based on our analysis, the Tau
proteins and their upstream proteins (p35, p25, PSEN, Cdk5,
and GSK3B) can be modulated by GTPs. In addition, three
proteins (Fas, CaM, and ERK1/2) leading to cell death can be
modulated by GTPs.
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Figure 5: Simplified pathways in cancer. All of the targets are shown by the gene name. The GTP-regulated targets are labeled in red.

3.8. Anticardiovascular Disease Mechanism. Previous epide-
miological, clinical, and experimental studies have estab-
lished a positive correlation between green tea consumption
and cardiovascular health. Catechins have been proven to
exert vascular protective effects through multiple mecha-
nisms, including antioxidative, antihypertensive, anti-inflam-
matory, antiproliferative, antithrombogenic, and lipid lower-
ing effects [41]. Therefore, green tea plays a role in anticar-
diovascular diseases by affecting many pathways shared with
cancer, diabetes, and inflammation. In this study, only one
pathway, namely, the vascular smooth muscle contraction
pathway, was found to be directly related to cardiovascular
diseases. Eight proteins (Cyt p450, PLA, CaM, MLCK, PKC,
MEK, PKA, and MLCK) can be targeted by the GTPs, which
can thus affect myosin (Figure S2).

3.9. Antimuscular Disease Mechanism. Duchenne muscular
dystrophy (DMD) is a progressive muscle wasting disease
that leads to early disability and death [42]. The disease is
characterized by the absence of the dystrophin protein from
the inner surface of the muscle cell sarcolemma. Muscle
cells lacking dystrophin undergo cycles of degeneration and
regeneration and are considered susceptible to contraction-
induced injury [43]. In particular, the satellite cell pro-
liferative capacity is exhausted, and the muscle fibers are

replaced by connective and adipose tissue, resulting in a
progressive loss of force generating capability [44]. Previous
research studies have suggested that green tea can improve
muscle health by reducing or delaying necrosis through an
antioxidant mechanism [45]. In addition to this mechanism,
we identified one pathway, the chemokine signaling pathway,
related to macular degeneration. Through this pathway,
GTPs can mediate the apoptosis, migration, survival, and
growth, and differentiation of macular cells by affecting the
PI3K/Akt/NF-𝜅B signaling pathway (Figure S3). Moreover,
the key target Cdc42, which regulates the actin cytoskeleton,
can be affected by compounds 4 and 5, which may promote
the differentiation and migration of muscle cells.

3.10. Anti-Inflammation Mechanism. The anti-inflammation
activity of green tea has been demonstrated in many studies.
Previous research has mainly focused on EGCG, which can
disturb many inflammation-related pathways, such as the
MAPKs, AP-1, and NF𝜅B pathways and STAT signaling [46].
In addition to these pathways, we identified an additional
pathway, namelym the B cell receptor signaling pathway,
related to inflammation and immunity. In this pathway, nine
proteins (BTK, SYK, Ras, MEK1/2, Erk, PI3K, AKT, GSK3𝛽,
and NF𝜅B) that contribute to the immune response can be
modulated by GTPs (Figure S4).
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4. Conclusions

Green tea is commonly associated with traditional beverage
rituals and particular lifestyles and is currently considered a
source of dietary constituents endowed with biological and
pharmacological activities that result in potential benefits to

human health. Indeed, the novel pharmacological activities
of green tea are arousing interest in the possible clinical use
of green tea components for the prevention and treatment
of several diseases. Although numerous studies are attempt-
ing to elucidate the molecular mechanisms through which
green tea exerts its diverse biological activities, particularly



10 Evidence-Based Complementary and Alternative Medicine

its anticancer activity, a systematic understanding of the
mechanisms through which green tea reduces disease risk is
necessary to establish its efficacy for the population for which
it could be most useful. The favorable properties of green
tea have been ascribed to the high content of polyphenolic
flavonoids. It is possible that different GTPs act on different
targets in the signaling network of complex disease, resulting
in a synergistic effect, which is in accordance with the
holistic philosophy of network pharmacology that follows
the “multicomponent, network target” model. Therefore, to
systematically and comprehensively understand the mecha-
nisms responsible for the diverse biological activities of green
tea, a network pharmacology approach was used to ana-
lyze the “drug-target-pathway-disease” interaction network,
which are constructed by collecting all of the confirmed and
potential targets of GTPs. Six classes of diseases experienced
beneficial therapeutic effects by green tea, as was determined
at the molecular and signaling pathway levels based on the
interaction network, which provides a better understanding
of how themultiple ingredients in green tea act in synergy and
the effects that these can have onmultiple targets of a disease.

Moreover, this research study provides comprehensive
and useful data for more in-depth studies of mechanisms of
action of green tea. In addition, the understanding of the
cell signaling pathways and the molecular events leading to
a therapeutic effect will provide further insight for the iden-
tification and development of potent agents that specifically
target these pathways.
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