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Collective behavior observed in nature has been actively employed in swarm

robotics. In order to better respond to external cues, the agents in such systems

organize themselves in an ordered structure based on simple local rules. The

central assumption, in swarm robotics, is that all agents in the system

collaborate to fulfill a common goal. In nature, however, many multi-agent

systems exhibit a more complex collective behavior involving a certain level of

competition. One representative example of complex collective behavior is a

multi-ball Bernoulli-ball system. In this paper, by extracting local force among

the Bernoulli balls, we approximated the state-transfer model mapping

interaction forces to observed behaviors. The results show that the

collective Bernoulli-ball system spent 41% of its time on competitive

behaviors, in which up to 84% of the interaction state is unorganized. The

rest 59% of the time is spent on collaborative behavior. We believe that the novel

proposed model opens new avenues in swarm robotics research.
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1 Introduction

In the animal kingdom, collective behaviors arise from the local exchange of

information between individuals (Couzin, 2009; Ramdya et al., 2015). This

circumvents the cognitive limitation of individuals and helps a group of animals like

a flock of birds, a school of fish, and a society of ants to respond to environmental cues

(Schaerf et al., 2017), and align in an ordered and complex structure (Hooker, 2011). This

ability to form a complex shape through a local information exchange is considered to be a

primary source of inspiration in robotics self-organization research (Willshaw, 2006;

O’Sullivan, 2009; Camazine et al., 2020).

With the growing demand for robot functionalities, scientists strive to develop a large

group of robots that cooperate to accomplish complicated tasks (Dorigo et al., 2021).

Inspired by self-organization in nature, swarm robots are designed to exhibit robust,

scalable, and flexible behaviors through local interactions (Brambilla et al., 2013).

Scientists first try to simulate the local information exchange of a flock of birds
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(Reynolds, 1987; Vicsek et al., 1995), and mathematically proved

the emergence of the self-organization process in this system

(Jadbabaie et al., 2003). Then, a variety of swarm robots are

designed to imitate social animals, e.g., collective bristle robots

(Giomi et al., 2013), ant-like cooperating robots (Krieger et al.,

2000), particle swarm robots (Li et al., 2019), and collective

drones (Vasarhelyi et al., 2018). Some of them interact through

physical contact, and others have additional information

exchange with a decision-making algorithm to enable them to

do locomotion and detection (Olfati-Saber, 2006; Ebert et al.,

2020).Without a central leader to send commands to individuals,

the interaction rules govern the swarm robots and limit their

functionalities.

To enhance their functionalities, a more intelligent

interaction rule should be applied to swarm robots. Usually,

scientists in swarm robotics focus on the development of the

interaction rules between robots. For example, ant-like swarm

robots use radio communication to cooperatively search for

objects and for navigation (Hoff et al., 2010). Bee-like swarm

robots use a broadcast architecture to form the robot group and

produce a specified distribution of pollination (Berman et al.,

2011). Fish-like swarm robots communicate through lights to

exhibit collective behaviors like synchrony, dispersion, dynamic

circle formation, and search-capture (Berlinger et al., 2021).

Morphologically communicated swarm robots deform their

shape through physical interaction. These researches take the

interactions between individuals as a method of communication

(Rubenstein et al., 2014; Sharma et al., 2020). However, in nature,

especially for birds (Lissaman and Shollenberger, 1970) and fish

(Liao et al., 2003), the interactions in the swarm include

information exchange and dynamic forces that grant them

high coordination complexity. These methods, however,

require an intelligent controller to help individual agents

make simple decisions. To eliminate the uncertainty of the

level of contribution of individuals’ intelligence, we propose to

use a Bernoulli-ball system where interactions are governed

solely by physical rules. Furthermore, we are interested in the

emergence of collaboration and competition through the analysis

of dynamic forces. As shown in Figure 1, in this system, a nozzle

at the bottom emits vertical airflow, which allows the balls to float

in the air (Nudehi et al., 2018; Howison et al., 2020a). When only

one ball is put into the system, it gets vertically balanced by

compensating the gravity force with the drag of the airflow

(Taneda, 1956; Flemmer and Banks, 1986) and horizontally

balanced by side forces pointing to the horizontal center

governed by Bernoulli’s principle (Massey and Ward-Smith,

2018). When there are multiple balls in the same air stream,

the interaction emerges among balloons by influencing the

airflow surrounding them (Magarvey and Bishop, 1961; Lee,

1979; Ormières and Provansal, 1999; Tyagi et al., 2006). This

interaction leads to competition, where one balloon pushes away

the other one from the air stream, and collaboration, when one

balloon influences the flow preventing the other one from the fall.

Even though it is difficult to observe interaction forces in a

physical Bernoulli ball system, they can be approximated in

simulation as in our previous work (Ye et al., 2022). However,

based on force observations, it is still not trivial to find the

relation between force patterns and consequent collective

behavior.

In this paper, by clustering interaction forces (interaction

states) using Self-organizing Maps, we developed a state

transition model that considers basic scenarios of the system,

i.e., the win-win situation, the kick-out effect, and the lose-lose

competition (see Figure 2). In a four-ball system, a win-win

situation indicates that all four balls stay in the vertical airflow; a

kick-out effect means that one of the four balls falls out of the

flow; a lose-lose competition refers to a situation where more

than one ball falls out of the flow. Since the perturbation from the

outside environment is negligible, all the collective behaviors

result from the interactions among these balls through airflow or

FIGURE 1
The collective Bernoulli-ball systemwith 1 (A), 2 (B), and 4 (C) balls in experiments and simulation. The vertical airflow comes out of the nozzle to
provide drag forces (FD) and horizontal forces (FH) to the balls. Interactions emerge betweenmultiple balls. The umbrella is used to collect falling balls
and put them back into the airflow.
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mechanical contact. We classified different collective behaviors

observed in the experiment and simulator and figured out several

probable causes of typical behaviors. Finally, the interaction state

transfers during typical behaviors were investigated in the form

of Markov chains, which revealed that certain time series of

interaction states probably lead to typical collective behaviors.

2 Materials and methods

2.1 Collective Bernoulli-ball simulator

The collective Bernoulli-ball simulator consists of three

parts. The first part focus on the forces that the flow field

applies to the balls. The upward airflow provides a drag force

that counters the weight of the ball. Horizontally the airflow is

fast at the center and slows down with the distance from it.

According to Bernoulli’s principle, a low-pressure area

develops in the center and produces horizontal forces

attracting the balls to the center. The second part takes the

flow turbulence into account. The turbulence results in

uncertain forces in the collective Bernoulli-ball system and

was modeled as a Gaussian random process. The third part

considers the interactions among the Bernoulli-balls,

including the mechanical contact forces and the interaction

forces through the airflow, shown in Figure 3. We investigate

the collective behavior of four balls in the collective Bernoulli-

ball system, and the error of the simulator could be minimized

to 2.00% in position trajectory compared to the real-world

experiment. After 10 simulations with different random seeds,

90,000 frames of ball trajectories and the dataset interaction

forces were collected. The simulator is implemented in the

MATLAB SIMULINK environment. Example code, data and

experiment video are available at https://github.com/

Kyushudy/collective_bernoulli_ball_behavior_analysis.

2.2 Force cluster

Since all four balls share the same characteristics like

diameters and weights, it is important to distinguish these

balls by a dynamic property except their colors. For example,

the behavior of the red ball falling means the same as the green

ball falling, the blue ball falling, etc. By introducing the

interaction forces, we can tell the magnitude of pushing

(positive normal interaction forces FNI) or pulling (negative

normal interaction forces) forces between every two balls. If

one ball pulls all the other balls, it tries to bond with others, so we

manually define it as a strong ball. In contrast, if one ball is

pushed by all other balls, it gets repulsed by others, so we define it

as a weak ball. Therefore, the strength of a ball is defined as

follows:

FIGURE 2
Frame arrays of several typical collective behaviors showing collaboration and competition in both experiment and simulation, like win-win
situation (A), kick-out effect (B), and lose-lose situation (C). Especially, the lose-lose situation (C) in the experiment is caused by the impulse between
the green ball and the yellow ball.
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Kbi � ∑
4

j�1
Fbij, j ≠ i, i � 1, 2, 3, 4, (1)

where Kbi is the strength of ball i, variable j indicates all other

balls except ball i, and Fbij is the normal interaction force between

ball i and j projected onto the line of their center of mass. For

example, for ball 2, Kb2 is the summation of Fb21, Fb23, and Fb24.

A smaller Kbi indicates that ball i is stronger. By ranking Kbi at

every frame, we can sort the balls from the strongest ball to the

weakest ball, labeled as the first (the strongest), second, third, and

fourth (the weakest) ball. The sort of balls represents the dynamic

property of every ball at every frame and may change as

interaction forces change in different frames. After sorting, the

strength of the ith ball is rewritten as follows:

Ki � ∑
4

j�1
Fij, j ≠ i, i � 1, 2, 3, 4, (2)

whereKi is the strength of the ith ball, variable j indicates all other

balls except ball i, and Fij is the normal interaction force between

the ith and jth ball projected onto the line of their center of mass.

As we have the sorted interaction forces Fij at every frame, a

self-organizing map (SOM) method is used to distinguish

different frames based on their different combination of

sorted interaction forces. After 200 iterations, the SOM

clustered 90,000 frames into six states, and every state

represents a typical combination of interaction forces, labeled

from S1 to S6.

2.3 Behavior modality

The collective behaviors of the collective Bernoulli-ball

system are generally classified into the win-win situation, the

kick-out effect, and the lose-lose competition through the

observation of the experiment and simulation. Through

simulation, we found that these behaviors mainly result from

two kinds of forces: the interaction forces between every two balls

through airflow, and the impulse between two balls through

mechanical contact. In this case, seven typical behaviors are

defined as follows:

FIGURE 3
The interaction model of the collective Bernoulli-ball system
in simulation. FNI is the normal interaction force, and FTI is the
tangential interaction force between two balls. θ is the angle of
attack of two balls, D is the diameter of the ball and R is the
distance between two balls. The interaction forces depend on θ
and R/D.

FIGURE 4
Force distribution of clustered states. The gray violin plot
shows the distribution of interaction forces. The lines show the
mean of interaction forces in respective states, and the shadings
around the mean show its standard deviations.
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1. The win-win situation: All the four balls float in the airflow in

dynamic stability and no one falls, labeled as B1.

2. The kick-out effect: One ball falls out of the airflow and all the

other three balls are inside the airflow.

a. There is no obvious cause for this kick-out effect, labeled

as B2.

b. The kick-out effect is caused by interaction forces: from

0.5 s before this behavior to the end of this behavior, there

is at least one frame that the falling ball is pushed by all the

other three balls, labeled as B3.

c. The kick-out effect is caused by impulses: from 0.5 s before

this behavior to the end of this behavior, there is at least

one frame that the falling ball has mechanical contact with

any other balls, labeled as B4.

3. The lose-lose competition: More than one ball falls out of the

airflow.

a. There is no obvious cause for this lose-lose competition,

labeled as B5.

b. The lose-lose competition is caused by interaction

forces: From 0.5 s before this behavior to the end of

this behavior, there is at least one frame that at least one

falling ball is pushed by all the other three balls, labeled

as B6.

c. The lose-lose competition is caused by impulses: From

0.5 s before this behavior to the end of this behavior,

there is at least one frame that at least one falling ball

has mechanical contact with any other balls, labeled

as B7.

3 Results

3.1 States of interaction forces

The SOM clustered six states of combination of

interaction forces F12, . . . , F34, labeled from S1 to S6. As

shown in Figure 4A, S1 consists almost all the outliers of F12,

F13, F14, and F24, indicating that S1 is the outlier of all the

states. S6 consists of all the interaction forces near 0, indicating

that there are few interactions between balls in S6. Figure 4B

zooms in and shows details of S2 to S5. S2 consists of a low

region of F12 while other forces are relatively near 0, indicating

that the first ball and the second ball strongly bond together in

S2. S3 consists of all interaction forces smaller than those of S2,

indicating that S3 is a weaker version of S2, and the bond

between balls in S3 is not strong. S4 consists of similarly low

F12, F13, and F14, while other forces are near 0, which means

that the first ball tries to catch all the other balls in S4. S5
consists of high F34, indicating that the third ball tries to move

away from the fourth ball.

The characteristics of states can be shown more clearly in a

position-based plot. Although states were clustered through

interaction forces, they show typical ball position distribution

in Figure 5. Since the density of dots represents the number of

occurrences of a state, we found that S1 rarely happens in the

collective Bernoulli-ball system, while S6 happens most

frequently. S2 and S4 happen in medium frequencies while

S3 and S5 happen in relatively higher frequencies. In S1, balls

FIGURE 5
Position distribution of clustered states. Every dot shows the position of a ball at a frame. The density of dots shows the frequencies of clustered
interaction states, and the distribution of dots in different colors shows the distribution of all the four balls from the strongest (first) to the weakest
(fourth).
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are distributed in a vertical line. In S2 and S3, there are clear

layer distributions of balls: the first, second, third, and fourth

ball are distributed in a vertical sequence from the bottom to

the top, and the balls in S3 distribute wider than those in S2. In

S4, the first ball is at the bottom, the second and third ball

share the middle region, and the fourth ball is above them. In

S5, the first ball, the third ball, and the fourth ball share the

bottom, while the second ball is at the top. In S6, all balls

distribute widely in similar distribution. The first ball is not

likely to fall in any state. The second ball is most likely to fall in

S5 and S6. The third ball and the fourth ball mostly fall in S2, S3,

and S6.

3.2 Typical behaviors

Although we classified seven behaviors of the collective

Bernoulli-ball system, some of them are stochastic and

unexceptional. Therefore, we selected four typical

behaviors to discuss their ball trajectories, interaction

forces, and state transfer. These typical behaviors are the

kick-out effect through interaction forces B3, the kick-out

effect through impulses B4, the lose-lose competition through

interaction forces B6, and the lose-lose competition through

impulses B7. Notice that in this section we used unsorted

forces Fbij and label the red, green, blue, and yellow ball as the

ball 1, 2, 3, 4, respectively. This helps us to correlate the ball

trajectories with the interaction forces based on consistent

ball labels.

3.2.1 The kick-out effect through interaction
forces

Figure 6 shows a kick-out effect happening at t = 137.2 ~

138.4 s. During this period, the blue ball (ball 3) was kicked out of

the airflow, while other balls were staying inside. There were

frames at around t = 137.83 s showing that the interaction forces

of ball 3 (Fb13, Fb23, Fb34) were all positive, indicating that ball

3 was rejected by other three balls by the interaction forces

through the airflow. At t = 137.3 s, all four balls were stable in the

airflow. At t = 137.5 s, the blue ball was kicked out of the airflow

due to positive Fb13 and Fb23. The blue ball tried to go back to the

center because of the centering force based on Bernoulli’s

principle, but Fb13, Fb23, Fb34 were increasingly positive that

resisted the return of the blue ball at t = 137.5 ~ 138.1 s.

Afterward, the blue ball was completely outside the airflow

and falled to the ground.

The interaction state shifted from S6 to S3 when entered this

behavior in Figure 6, and from S3 to S6 when it exited. During t =

137.6 ~ 138.2 s, the interaction state generally shifted from S3 to

S2 and then back to S3.

3.2.2 The kick-out effect through impulses
Figure 7 shows a kick-out effect happening at t = 33.0 ~

34.2 s. During this period, the green ball (ball 2) was kicked out of

the airflow, while other balls were staying inside. At t = 33.5 s, the

blue ball hit the green ball, which resulted in the fall of the green

ball. The interaction forces were almost near 0 in this behavior

except that Fb13 was negative during t = 33.0 ~ 33.6 s, which

indicated the red ball (ball 1) and the blue ball (ball 3) bond

together in this period of time.

The interaction state in Figure 7 was always S6 before the

impulse at t = 33.5 s till the end of the green ball’s fall at t = 34.2 s.

FIGURE 6
Interaction forces between balloons during kick-out
behavior led by interaction forces (B3). The balls are labeled as red
(1), green (2), blue (3), and yellow (4). The line chart shows the
magnitude of interaction forces between balls. The frames
show the exact positions of the balls at that time. The color bar
shows the interaction states and their transfers in this period of
time.

FIGURE 7
Interaction forces between balloons during kick-out
behavior led by impulses (B4).
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This indicates that the impulse dominates this behavior while the

interaction forces did not make remarkable changes to the

system.

3.2.3 The lose-lose competition through
interaction forces

Figure 8 shows a lose-lose competition happening at t = 160.4

~ 161.6 s. During this period, the blue ball (ball 3) and the yellow

ball (ball 4) were out of the airflow, while other balls were staying

inside. There were frames at around t = 160.6 s showing that the

interaction forces of ball 4 (Fb14, Fb24, Fb34) were all positive,

indicating that ball 4 was rejected by other three balls by the

interaction forces through the airflow. At t = 160.5 s, the red ball,

the blue ball, and the yellow ball were all out of the airflow, and

the forces were all near 0. During t = 160.6 ~ 161.3 s, Fb12 was

negative and attracted the red ball (ball 1) back to the airflow,

while all other interaction forces were slightly positive near 0,

which kept the blue ball (ball 3) and the yellow ball (ball 4)

outside of the airflow. At t = 161.3 s, Fb34 was clearly positive,

which continuously kept the blue ball (ball 3) and the yellow ball

(ball 4) outside. Afterward, the blue ball (ball 3) and the yellow

ball (ball 4) went back to the airflow due to the centering forces.

The interaction state shifted from S6 to S3 when entered this

behavior in Figure 8, and from S3 to S6 when it exited. During t =

160.7 ~ 161.3 s, the interaction state was generally S3, but

sometimes shifted to S2 and S6, and immediately back to S3.

3.2.4 The lose-lose competition through
impulses

Figure 9 shows a lose-lose competition happening at t = 165.6

~ 166.8 s. During this period, the red ball (ball 1), the blue ball

(ball 3), and the yellow ball (ball 4) were out of the airflow, while

the green ball (ball 2) was staying inside. At t = 166.1 s, the blue

ball hit the yellow ball, which results in the fall of them both. At

t = 166.2 s, the green ball hit the red ball, which kicked the red ball

out of the airflow. The interaction forces were almost near 0 in

this behavior except that Fb23 was positive during t = 165.9 ~

166.7 s, which indicated the green ball (ball 2) keeps the blue ball

(ball 3) outside.

The interaction state in Figure 9 was generally S6 before the

first impulse at t = 166.1 s till the end of the balls’ fall at t = 166.8 s.

This indicates that the impulses dominate this behavior while the

interaction forces did not make remarkable changes to the

system.

3.3 State transfer in behaviors

Figure 10 shows the state transfer model (Markov chains) of

interaction forces leading to certain behavior (from B1 to B7).

Some shared patterns between behaviors are discovered: state

1 mostly shifts to other states while other states rarely shift to

state 1. The probability of staying in state 6 is always higher than

0.8, the probabilities of staying in state 3,4,5 are around 0.6, and

the probability of staying in state 2 is about 0.4. The transfer rates

from state 2 or state 4 to state 3 are around 0.3. The transfer rates

from state 3 or state 5 to state 6 are around 0.2, while the transfer

rates from state 6 to state 3 or state 5 are around 0.1. The transfer

rates between state 2 and state 4 are about 0.1, and similarly, the

transfer rates between state 3 and state 5 are about 0.1. Other

transfer rates are mostly below 0.1.

In particular, the probability of staying in state 6 increases from

B1 (0.81) to B7 (0.89), indicating that the more balls fall, the more

probably the system stay in state 6. Similarly, the transfer rate from

FIGURE 8
Interaction forces between balloons during lose-lose
behavior led by interaction forces (B6).

FIGURE 9
Interaction forces between balloons during lose-lose
behavior led by impulses (B7).
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state 5 to state 6 increases from B1 (0.17) to B7 (0.32), the transfer

rate from state 2 to state 3 increases from B1 (0.28) to B7 (0.42), the

transfer rate from state 4 to state 3 in B2 (0.38) to B7 (0.42) is higher

than that in B1 (0.23), and the transfer rates from state 3 or state 5 to

state 6 increase from B1 to B7, while the transfer rates from state 6 to

state 3 or state 5 decrease from B1 to B7.

Figure 11 shows the proportions of time spent in behaviors

and states. B1 (59%) takes up half of the time. B2 (8%), B3 (13%),

B4 (9%), and B6 (8%) take about 10% of the time, while B5 (1%)

and B7 (3%) rarely happen in the collective Bernoulli-ball system.

Among all the frames, S6 (53%) takes up half of the time. S5 (21%)

and S3 (20%) take about 20% of the time, while S4 (4%), S2 (2%)

and S1 (< 1%) rarely happen in the collective Bernoulli-ball

system.

Compared with the overall proportion, B1 has less proportion

of S6 (45%) and more proportion of S5 (27%). The proportion of

S6 increases from B1 (45%) to B7 (73%), and the proportion of S5
decreases from B1 (27%) to B7 (10%). The proportion of S4 is 5%

in B1, around 2% in B2, B3, and B4, and less than 1% in B5, B6, and

B7. The proportion of S3 is always around 20% among behaviors

except B2 (27%), B6 (10%), and B7 (14%). The proportions of S2
(2%) and S1 (< 1%) are similar among all the behaviors.

4 Discussion

The results show that the interaction of balls depends on their

relative positions, and the sequence of interaction states reflects

collective behaviors. Although we clustered the interaction states

through the properties of interaction forces, the position

distribution from the strongest ball to the weakest ball in the

interaction states seems to have a clear layer as shown in Figure 5.

This suggests that although the balls with different colors are

equal, their strength, defined by the interaction forces that they

provide to other balls, distinguishes them. Thus the interaction

state in the case with various strength balls can be represented by

FIGURE 10
Markov chains of interaction state transfer in typical behaviors. The red dots indicate interaction states from S1 to S6. The color of the arrows
indicates the probabilities of state transfer.

FIGURE 11
The proportion of time spent in behaviors and states. The
values near the stacked bars indicate the proportion of time in
percentage, and values less than 1% are hidden in this graph.

Frontiers in Robotics and AI frontiersin.org08

Ye et al. 10.3389/frobt.2022.980586

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.980586


their positions. In addition, Figure 5 shows that balls are

symmetrically distributed around the vertical axis. Therefore,

the position of the ball can be represented by a reduced vector of

the ball’s altitude and horizontal distance from the center of the

flow. Consequently, collective behavior can be determined by

relating interaction forces and relative strengths among balls to

the reduced vector of position. For example, Figure 6 shows a

kick-out behavior where the red, green, and yellow balls are

pushing the blue ball out of the air stream. During this typical

behavior from t = 137.5 s to t = 138.1 s, the position of the green,

red, and yellow balls were distributed horizontally in the canter of

the flow for various heights, while the position of the blue ball was

far from the flow center. The force trajectories show that when

the blue ball was vertically close to the green and red balls from

t = 137.5 s to t = 137.8 s, the interaction forces (Fb13, Fb23)

between them became positive and increased to repulse the blue

ball. When the blue ball was vertically far from the green and red

balls but close to the yellow ball from t = 137.8 s to t = 137.9 s,

Fb13, Fb23 decreased to around 0, while Fb34 became positive and

increased to repulse the blue ball. This effect made the green ball

the weakest ball since the interaction forces (Fb13, Fb23, Fb34)

related to it were all higher than other forces. Therefore, as the

weakest blue ball fell, the interaction state switched in a chain

(S6 − S3 − S2 − S3 − S6) and consequently led to a kick-out

behavior.

Behaviors spent minor time on S1 and it has high

possibilities to switch to other states, indicating that S1 is

an outlier of the states, and it always immediately switches to

other states. Mostly, behaviors spent the time on S6, and the

probability of staying at S6 is also pretty high, indicating S6 is a

base state of all behaviors, and the state transfer from S6 to

other states determines its behavior. As shown in Figures 10,

11, if S6 is more likely to shift to S5 or S3, the behavior will

more likely be B1, a win-win situation. If S6 is slightly less

likely to shift to S5, and the proportion of S4 decreases, the

behavior will more likely be B2, B3, and B4, a kick-out effect. If

S6 is more likely to keep unchanged, and the proportion of all

other states decreases, the behavior will more likely be B4, B5,

and B6, a lose-lose competition.

If we simplify the interaction forces to pushing (positive

forces) and pulling (negative forces), and regard these pushing

and pulling forces as kinds of competition and collaboration

among these balls, a more interesting discovery is: a certain time

sequence of competition and collaboration patterns leads to

certain behaviors of the collective Bernoulli-ball system.

Additionally, the Bernoulli-ball system can be considered to

be autonomous, as the collective behavior is determined by

the set of local rules (physics principles) related to a flow field

with no leader or external controller. Since the interaction

happens through the medium of the airflow, the noise from

the environment (e.g., turbulence) introduces the stochastic

effect to the system. Therefore, the environment of our system

in a way affects the behavior of the balls and can be potentially

used for control, which makes the Bernoulli-ball system

applicable to swarm robotics.

The collective Bernoulli-ball system can be also used to

analyze other multi-agent systems like the Brownian motion

(Kramers, 1940) or complex systems like the falling paper

(Howison et al., 2020b). These systems exhibit similar

behaviors to the Bernoulli-ball system since they are

autonomous, rely on the body-environment interaction (the

fluid in the Brownian motion and the airflow in the falling

paper experiment), depend on local interaction rules, and

have a certain level of randomness. Furthermore, the control

of airflow in the collective Bernoulli system makes it more

appealing for practical use in swarm robotics.

5 Conclusion

In this paper, we developed a state-transfer model that

describes the collective behavior of the multi-ball Bernoulli

system. To convert interaction forces into behavior states, we

employed self-organizing maps to find distinct clusters of

interaction forces. We defined seven various behaviors that

consider both cooperation and competition and applied the

Markov chain model, with six interaction force states, to find

the correlation between the interaction states and collective

behaviors in this system. In general, the more time this

system spends on organized interaction states (S6, S5, and S4),

the more probable this system will be performing a self-organized

behavior (B1).

In the future, we will focus on the development of control

methods to keep this collective Bernoulli-ball system in defined

interaction states. Additionally, it is interesting to see how this

system reacts to external cues, e.g., the fluid speed, the

perturbation of the surrounding airflow, and the external

object that obstruct the fluid. By finding the efficient input

method for control of the Bernoulli-ball system, we can try to

apply it for physical computing (Fresco, 2014; Piccinini, 2015)

and as a reservoir computer like the liquid state machine (Maass

et al., 2002).
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