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Abstract

Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative
disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein
2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and
has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal
center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of
TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a
transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1
function. Naı̈ve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA
compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in
germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and
plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell
hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B
cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2
levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members
remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be
a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how
Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of
virus-associated tumors.
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Introduction

Epstein-Barr virus (EBV) is a B-lymphotropic gammaherpesvirus

that establishes latent infection in over 90% of the world’s

population [1,2]. Initial infection is usually asymptomatic if the

virus is acquired during childhood. Following infection, EBV may

persist for the life of the host in resting memory B cells where a

limited number of viral genes are expressed [3]. EBV is also

associated with a number of B cell malignancies, including

Hodgkin’s lymphoma, Burkitt’s lymphoma, and post-transplant

lymphoproliferative disorder, as well as epithelial malignancies such

as nasopharyngeal carcinoma. In vitro, EBV has the unique ability of

transforming primary human B cells into lymphoblastoid cell lines

(LCLs) expressing the latency III program of gene products [4],

including six EBV nuclear antigens (EBNA1, -2, -3A, -3B, -3C and -

LP) as well as three latent membrane proteins (LMP1, -2A, and -

2B), and multiple non-coding RNAs (EBERs and miRNAs).

LMP1 is a transmembrane protein with a cytoplasmic C-

terminal tail that is transforming in vitro [5] and tumorigenic in vivo

[6]. LMP1 signaling resembles that of the tumor necrosis factor

superfamily member CD40, expressed on B cells; however, LMP1

signaling is constitutive and amplified [7]. LMP1 and CD40

signaling activate the B cell through downstream kinases and NF-

kB, resulting in upregulation of surface costimulatory and

adhesion molecules [8–10]. LMP1 signaling also plays a role in

B cell survival by upregulating Bcl-2, A20 and Mcl-1 in human B

cell lines and murine transgenic lymphomas [6,11–13]. When

expressed under the control of the immunoglobulin heavy chain

(IgH) promoter and enhancer, LMP1 lineage 3 mice have normal

lymphocyte populations, yet LMP1 predisposes to lymphoma

development when aged [6,14,15]. Several transgenic models have

demonstrated the immunomodulatory capacity of LMP1. LMP1

has been shown to block germinal center formation [10,16], and to

synergize with CD40 signaling to enhance proliferation and

immunoglobulin production [16].

CD40 and LMP1 both utilize the tumor necrosis factor

receptor-associated factor (TRAF) adaptor proteins for signaling

[17,18], but often in opposing ways in different experimental
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systems [7,19,20]. In knockout mouse embryonic fibroblasts,

TRAF6, but not TRAF2 and TRAF5, was required for LMP1

signaling [21]. Compared to CD40, TRAF3 was shown to be

preferentially used by LMP1 in murine B cells, and LMP1 could

still signal in TRAF2 null cells while CD40 could not [7].

Conversely, a study using LCLs found that TRAF3 negatively

modulated LMP1 activation of NF-kB [8]. Another study showed

that TRAF2 was required by LMP1 in LCLs, and TRAF2

expression was controlled by LMP2A [22]. TRAF2 is critical for

germinal center functions such as B cell proliferation, class switch

recombination, and immunoglobulin secretion [23], yet findings

from TRAF3 null mice suggest that TRAF3 prevents or delays

germinal center entry [24]. Based on these arguments, we would

hypothesize that LMP1 alters TRAF2 and TRAF3 regulation in

vivo and that LMP2A might also affect TRAF regulation to

indirectly modulate LMP1.

LMP2A is also capable of eliciting profound effects on B cell

function in vivo. LMP2A is a functional homologue of the B cell

receptor, and constitutively associates with Src family kinases

through its N-terminal cytoplasmic tail to activate Ras/PI3K/Akt

[25] and mTOR [26] to signal to NF-kB [22,27]. LMP2A is not

essential for LCL generation [28] nor B cell proliferation [29], but

appears to promotes survival through upregulation of Bcl-XL and

survivin [30,31]. Expression of LMP2A under the control of the

immunoglobulin heavy chain (IgH) promoter and enhancer in the

Tg6 lineage produces phenotypically normal B cells which express

a BCR, and does not predispose to tumor development [31,32]. In

certain models, LMP2A overcomes the requirement for BCR

expression [31–33], enhances antibody production and plasma cell

frequencies [34], and alters tolerogenic signals induced through

the BCR on the transgenic BCRHEL background [27].

The patterns of LMP1 and LMP2A expression in humans can

vary depending on the type of cell, tissue, or pathology analyzed.

For example, EBNA1, EBNA2, LMP2A and the EBERs can be

found in germinal center B cells, with varying detection of LMP1

[35,36]. In some cases, LMP1 expression is restricted to B cells

outside of germinal centers in the extrafollicular space [37], similar

to observations in LMP1 transgenic mice [10,16]. The bulk of

EBV genomes in peripheral B cells are detected in class-switched

memory B cells where latent gene expression is limited to EBNA1

[35,38–40]. These findings have suggested a model whereby

LMP1 and LMP2A promote terminal differentiation to a memory

B cell in which EBV genomes can quiescently persist [3].

Therefore, we hypothesize that LMP2A could modify LMP1

signaling to allow the B cell to enter germinal centers.

Our hypothesis is supported by studies of LMP1 and LMP2A

co-expression that indicated a role for LMP2A in altering LMP1

signaling through the TRAFs. In an early study, LMP2A

expression reduced signaling through several receptors in EBV-

negative Burkitt’s lymphoma (BL) B cell line transfected with

LMP1 and LMP2A [41]. Also, LMP2A decreased signaling from

LMP1 by modulating the levels of TRAF2 and TRAF3 in BL cell

lines [22]. However, these findings differ from studies with

epithelial cell lines, where LMP2A appeared to stabilize LMP1,

enhancing NF-kB activation [42]. These differential results in

transformed epithelial and B cell lines, and the difficulties with

studying latently EBV-infected B cells in humans warrants the

study the effects of co-expression of LMP1 and LMP2A on TRAF

levels in vivo using transgenic models.

To address whether LMP1 and LMP2A co-expression alters B

cell maturation and function and to identify a role for LMP2A in

modulation of LMP1, we generated double LMP1/2A B cell

transgenic mice. Instead of LMP1 and LMP2A signals synergizing

to enhance B cell proliferation, activation, and immunoglobulin

secretion, we have identified that LMP2A modulates the LMP1-

induced phenotype of the B cell following stimulation. The decrease

in TRAF2, but not TRAF3, levels detected upon co-expression of

LMP1 and LMP2A recapitulates in vitro findings with B cells lines in

an animal model. Our results suggest a role for LMP2A in

modulating the effect of LMP1 on B cell function in vivo, and have

larger implications for the ability of Epstein-Barr virus in the

subversion of normal B cell behavior before disease develops.

Results

LMP1 and LMP2A are expressed in B cells of transgenic
mice

To investigate the significance of expression of LMP1 and

LMP2A in B cells, we crossed LMP1 and LMP2A single

transgenic mice. Both lines express the transgene under the

control of the IgH promoter and enhancer region, rendering

transgene expression B cell-specific. The well-described LMP2A

Tg6 line has no gross defect in B cell numbers, B cell development,

or BCR expression [31,32,43]. In LMP1 lineage 3 mice, modest

alterations have been described in B cell maturation in the

periphery, as well as the ablation of germinal center (GC)

formation in response to antigen [16]. We crossed LMP2A and

LMP1 heterozygotes to obtain LMP1/2A transgenic mice, and

used these mice and the LMP1, LMP2A or non-transgenic

littermate controls (wild-type, WT) in each subsequent experi-

ment. We first examined the expression of LMP1 and LMP2A

protein in splenic B cells from the relevant genotypes as well as

WT mice. Splenic cryosections from 8 week old mice were stained

with antibodies to LMP1 and LMP2A and the B cell marker IgM.

IgM staining was specific, as shown by the follicle border in the

WT IgM panel (Top Left, Figure 1). IgM-positive B cells were also

positive for LMP1 and/or LMP2A, and staining was specific, as

shown by the lack of LMP1 or LMP2A staining in WT spleen

(Figure 1). In all transgenic spleens, LMP1 or LMP2A-positive

cells were located in IgM-positive B cell follicles at low power

magnification (data not shown). These data confirm that LMP1

and LMP2A protein were expressed in B cells of LMP1/2A

transgenic mice.

Author Summary

As a ubiquitous human pathogen, Epstein-Barr virus (EBV)
infection is associated with several human B cell diseases
characterized by inappropriate B cell activation and
function, including infectious mononucleosis and certain
cancers. EBV latent membrane protein 1 (LMP1) and 2A
(LMP2A) hijack cell signaling pathways to alter B cell
activation and function, and are detected in EBV-associat-
ed diseases. Defining the effect on B cell function when
LMP1 and LMP2A are expressed together in the same cell
is critical to understanding how EBV subverts normal B cell
behavior before disease develops. Using transgenic mice,
we have demonstrated that LMP2A dampens cellular
proliferation and activation induced by LMP1, which may
be due to the LMP2A-associated decrease in the levels of
TRAF2, a signaling protein used by LMP1. LMP2A also
allows B cells carrying LMP1 to enter the germinal center
during an immune response, a site that gives rise to EBV-
associated tumors in humans. In sum, this study highlights
the biological outcomes of LMP1 and LMP2A co-expres-
sion in B cells and contributes to the knowledge of how
EBV subverts normal B cell behavior before disease
develops.

Epstein-Barr Virus LMP2A Modulates LMP1 In Vivo
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Lymphoid organs of LMP1/2A animals are
morphologically normal

We examined whether co-expression of LMP1 and LMP2A in B

cells resulted in perturbation of normal splenic architecture, which

has previously been described in LMP1 transgenic animals [6,44].

We isolated spleens and axillary and brachial lymph nodes of mice

at 8 weeks of age, weighed these organs, and stained spleen

sections with H&E. In all genotypes, the splenic red and white

pulp were well organized and follicles were clearly present with no

spontaneous germinal centers observed (Figure 2A). The mass of

lymph nodes and spleens of LMP1/2A animals was similar to WT,

LMP1 and LMP2A animals (Figure 2B). Thus, in peripheral

lymphoid organs, LMP1/2A co-expression did not alter follicle

formation nor elicit spontaneous germinal center formation.

Bone marrow B cell development is not altered by LMP1/
2A co-expression

Since LMP1 and LMP2A act as constitutive signaling mimics of

normal B cell signaling and LMP2A Tg6 mice have previously

been described as having normal bone marrow B cell development

[31,32], we next examined whether expression of LMP1 and

LMP1/2A altered B cell development in bone marrow. Bone

marrow was flushed from tibia and femurs of 4, 6, or 8 week old

mice, stained with fluorescent antibodies against B cell maturation

markers, and analyzed by flow cytometry. Data from 8 week old

mice is shown in Figure 2, although similar B cell populations were

detected at 4 and 6 weeks (data not shown). Similar frequencies of

immature B cells expressing a BCR of the IgM isotype (B220+/

IgM2) were observed in mice of all genotypes (Figure 2D).

Expression of LMP1 and/or LMP2A did not alter B cell

maturation from pro-B to large and small pre-B, as shown by

B220, CD43 and GL7 expression (Figure 2E). In addition, the

frequencies of recirculating, mature B220+/IgM+/IgD+ B cells

detected in bone marrow were similar across genotypes, suggesting

that LMP1/2A co-expression does not alter mature B cell

recirculation (Supp. Figure S1A). Taken together, these data

suggest that LMP1/2A co-expression does not alter B cell

ontogeny.

Figure 1. LMP1 and LMP2A are expressed in transgenic spleen. Immunofluorescence of LMP1, LMP2A and IgM-stained acetone-fixed spleen
cryosections from one representative experiment. IgM staining is specific as shown by follicle border in WT panel; LMP1 and LMP2A staining is
specific as shown by controls. Color code of antibodies used is shown. Magnification, 636. n.3 mice per genotype.
doi:10.1371/journal.ppat.1002662.g001
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Figure 2. Spleen morphology, B cell maturation and antibody levels in LMP1/2A animals is similar to wildtype. (A) Spleen sections
from 8 week old animals were isolated and fixed in 4% formalin. Paraffin-embedded sections were stained with H&E for identification of follicles and
germinal centers. (B) Spleen, axillary and brachial lymph nodes were removed and weighed. (C) Sera of WT, LMP1, LMP2A and LMP1/2A mice was
collected at 8 weeks of age and analyzed by ELISA for naı̈ve Ig isotypes. Corrected OD of WT mice was set as 100%. (D–G) Single cell suspensions from
lymphoid organs of WT, LMP1, LMP2A or LMP1/2A mice (6–8 weeks old) were surface stained with indicated antibodies and analyzed by flow
cytometry. Frequencies of the live cell population (LiveDead stain negative) were averaged across 4 independent experiments. Either a representative
experiment (D, F) or average of all mice used (E, G) is shown. (D) Immature bone marrow B cells (B220+/IgM+/IgD2). (E) Bone marrow large pre-B (L-
PreB, CD43+/GL7int), small pre-B (CD43+/GL72) and pro-B cells (CD432/GL72). (F) Total splenic B cells (B220+/IgM+). (G) Splenic follicular (FO) B cells

Epstein-Barr Virus LMP2A Modulates LMP1 In Vivo
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LMP1/2A animals have normal peripheral B cell
maturation and production of natural immunoglobulin

We next examined whether expression of LMP1 and LMP2A

alters maturation of B cells by examining B cell populations in

peripheral lymphoid organs. Upon exiting the bone marrow,

immature bone marrow B cells home to the spleen via the blood,

differentiating into mature follicular B cells which recirculate, or

marginal zone B cells, which remain in the spleen. Spleen and

axillary and brachial lymph nodes from mice at 8 weeks of age

were isolated and single cell suspensions were prepared. Cells were

stained with fluorescent antibodies against B cell maturation

markers and analyzed by flow cytometry. In spleen, significantly

fewer total B220+/IgM+ B cells were detected in LMP1/2A spleen

compared to LMP1, LMP2A and WT spleen (Figure 2F). Lower,

but not statistically significant, frequencies of mature follicular

(FO) B cells (B220+/IgM+/IgD+) were observed in LMP1 spleen

(Figure 2F), and this was consistent with a slight increase in

marginal zone (MZ) B cells (B220+/IgM+/IgD2) in LMP1 spleen,

while LMP2A and LMP1/2A B cell populations appeared more

similar to WT (Figure 2G). The frequency of splenic B1 B cells

(Figure S1B) and T cells (Figure S1C) was not altered by

expression of LMP1 and/or LMP2A when compared to WT.

Next, we assessed frequencies of total (B220+/IgM+), FO B cells

(B220+/IgM+/IgD+) and MZ B cells (B220+/IgM+/IgD2) in

axillary and brachial lymph nodes. The expression of LMP1 and/

or LMP2A did not alter the frequencies of total lymph node B cells

(Figure S1D), MZ or FO B cells (Figure S1E), or CD4+ and CD8+

T cells (Figure S1F).

Because LMP1/2A animals did not demonstrate gross

alteration of B cell maturation, we postulated that the levels of

natural immunoglobulin in LMP1/2A animals would be similar

to controls. We assessed the levels of immunoglobulin in serum

from 8 week old naı̈ve animals by isotype-specific ELISA. Levels

of IgM in LMP1/2A serum were significantly increased

(p,0.05) over LMP1, LMP2A and WT animals, whereas levels

of IgG1, IgG2a and IgG2b were similar across all genotypes

(Figure 2C).

Germinal center formation is rescued in LMP1/2A animals
following immunization with thymus-dependent antigen

To assess whether LMP2A alters the ability of LMP1-expressing

LMP1/2A B cells to enter GC in response to antigen, we

immunized mice with the hapten TNP24-KLH and isolated spleen

at Day 7, as the GC response peaks between Days 7 and 10.

Splenic cryosections were stained for the GC B cell markers PNA

and IgM, as well as CD4 for T helper cells to demarcate follicles

(Figure 3A). The location of GC in follicles was confirmed by

staining separate sections for the germinal center marker GL7

(data not shown). PNA+/IgM+ GC were observed in spleens of

WT mice, surrounded by a network of CD4+ T helper cells

(Figure 3A). PNA-positive GC per follicle were counted and the

percentage of follicles containing GC was enumerated (Figure 3B).

As previously shown [16], GC were rarely detected in LMP1

spleen (Figure 3A), and the frequency of GC per follicle was

significantly decreased in LMP1 spleen to less than half that of WT

(p,0.05) (Figure 3B). Similar to WT, LMP2A-expressing B cells

were able to enter GC. Intriguingly, LMP1/2A-expressing B cells

were able to form GC at a similar frequency per follicle compared

to LMP2A or WT animals, suggesting that the LMP2A signal

restores normal GC development and allows LMP1-expressing B

cells to enter GC.

High affinity antigen-specific antibody is generated in
LMP1/2A animals

Previously, it was shown that despite the inability of LMP1 B

cells to participate in the GC reaction, LMP1 expression maintains

the production of high-affinity class switched antibody at levels

similar to WT animals [16]. We assessed the kinetics of TNP-

specific IgG1 production in serum of immunized LMP1/2A mice

compared to single LMP1, LMP2A, and WT animals during the

primary response. Between Day 7 and Day 35 following

immunization, the levels of TNP-specific IgG1 increased with

similar kinetics among all genotypes and was maximal by Day 35

(Figure 4A). The germinal center response is also critical for

affinity maturation. TNP-specific antibodies were tested by ELISA

for high or low affinity for TNP by binding to low-density or high-

density hapten, respectively. Serum isolated at Days 7, 21 and 35

following immunization was assayed for high and low affinity

IgG1. The ratio of TNP2:TNP11-binding IgG1 increased with

similar kinetics over time for each genotype, and was not altered

by expression of LMP1 or LMP2A either alone or in combination

(Figure 4B).

We also explored the possibility that LMP1 and LMP2A co-

expression in B cells responding to antigen might enhance signals

for class switching to IgG and IgE, as has been shown in LMP1-

expressing cell lines [45]. By ELISA, we compared serum levels

of TNP-specific immunoglobulin at Day 35 of the primary

response. IgM, IgG1 and IgE levels were similar in LMP-

expressing mice compared to WT. TNP-specific IgG2a levels in

LMP1, LMP2A, and LMP1/2A mice were elevated compared to

WT (Figure 4C). Conversely, the expression of LMP1 and

LMP1/2A decreased TNP-specific IgG2b levels in serum; for

LMP1 and LMP1/2A mice, this decrease was significant when

compared to WT (p,0.05). The physiological significance of the

decrease in IgG2b in LMP1 and LMP1/2A animals is unclear at

present.

LMP1/2A animals generate normal frequencies of plasma
cells during the secondary response

It has been proposed that co-expression of LMP1 and LMP2A

during the GC reaction may drive antigen-specific B cells to

become memory B cells by augmenting BCR and CD40 signals

[3]. If higher percentages of memory B cells were present in

LMP1/2A transgenic mice, an increased frequency of antigen-

specific plasma cells may be detected following secondary

immunization. Thus, the ability of LMP1, LMP2A, and

LMP1/2A to alter plasma cell generation during the secondary

immune response was investigated using TNP24-KLH. Mice were

boosted with TNP24-KLH at Day 50 following primary

immunization, and TNP-specific IgG1 antibody-secreting cells

(ASCs) were enumerated in bone marrow and spleen by ELIspot

on Day 7 after boost. A representative experiment is shown

(Figure 4D–E). As expected, levels of bone marrow plasma cells

were tenfold higher in bone marrow than spleen among all

genotypes, reflecting the ability of plasma cells to home to bone

marrow following generation in secondary lymphoid tissues

(Figure 4D). The frequencies of TNP-specific IgG1+ ASCs in

LMP1/2A mice were comparable to controls in both bone

(IgM+/IgD+), and marginal zone (MZ) B cells (IgM+/IgD2). BM, bone marrow; SP, spleen; LN, axillary and brachial lymph nodes. Data are represented as
mean 6 standard error. n.4 mice per genotype for all experiments; *, P,0.05, Student’s t test.
doi:10.1371/journal.ppat.1002662.g002
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marrow (Figure 4D) and spleen (Figure 4E), suggesting that

LMP1, LMP2A, and LMP1/2A do not alter the frequency of

IgG1+ ASC nor the ability of plasma cells to home from spleen to

bone marrow during the secondary response.

LMP1/2A has heterogeneous effects on B cell activation
following BCR stimulation

Next, we tested whether co-expression of LMP2A altered the

expression of B cell surface activation and co-stimulation markers in

vitro on LMP1-expressing cells. Following antigen exposure, B cells

upregulate the co-stimulatory molecules CD80 and CD86, which

interact with T cell ligands to elicit secondary activation signals

critical for GC formation [46,47]. Once B cells enter the GC, they

upregulate Fas and bind PNA at higher levels than non-GC B cells

[48,49]. Splenic B cells were purified by negative selection using

CD43+ microbeads to generate a .95% pure population of resting

naive B cells. B cells were stimulated with anti-IgM to crosslink B cell

receptors for 72 hours, due to maximal upregulation of all markers by

this time [50–52]. B cells were surface stained for expression of CD80,

CD86, and Fas, and with PNA-FITC, and were analyzed by flow

cytometry by gating on live B220+ cells. Resting B cells from all

genotypes appeared similar in expression levels of all markers,

although LMP1 B cells expressed slightly higher surface levels of Fas

(Figure 5), confirming previous observations with this transgenic line

[16]. Upon BCR cross-linking, all genotypes upregulated expression

of all markers but to different levels. LMP1 and LMP1/2A further

upregulated CD80 and Fas upon BCR crosslinking compared to WT

and LMP2A alone. The intensity of PNA staining on LMP1 B cells

was decreased compared to WT, LMP2A and LMP1/2A controls. In

sum, LMP1 expression alone or with LMP2A appears to enhance cell

Figure 3. LMP2A co-expression rescues LMP1 impairment of germinal center formation. (A) Spleen cryosections from immunized WT,
LMP1, LMP2A and LMP1/2A mice at Day 7 of the primary response and a WT non-immunized control (WT-NI) were stained with the indicated
reagents. A representative image is shown from 3 experiments with at least 3 mice per genotype. Arrows indicate location of germinal center (PNA+/
IgM+) in follicles. (B) Percentage of follicles containing germinal centers calculated from blinded counts of two serial sections for each mouse with 3–5
mice per genotype. Data are represented as mean 6 standard error. **, P,0.01, Type I ANOVA and Dunnett’s multiple comparison test.
doi:10.1371/journal.ppat.1002662.g003
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surface expression of CD80 and CD86 following B cell stimulation,

but decreases levels of PNA following IgM stimulation compared to

WT and LMP2A alone.

LMP2A dampens LMP1-driven hyperproliferation
following B cell stimulation

Next, we wanted to assess whether LMP1/2A co-expression

influenced in vitro B cell proliferation in response to BCR and T

cell signals, as both LMP1 and LMP2A have been shown to

influence proliferation in the presence of antigens, mitogens, or

oncogene overexpression [16,34,53–55]. Purified resting CD432

B cells were stimulated with optimized concentrations of anti-IgM,

anti-CD40 and/or recombinant murine IL-4. LPS was used as a

BCR and CD40-independent positive control. Proliferation of B

cells was assessed by incorporation of 3[H]-thymidine at 72 hours

of culture. Under all stimuli, LMP1 promoted B cell hyperpro-

liferation and recapitulated the ability to proliferate with the T

helper cell cytokine IL-4 that has been observed elsewhere [16],

while LMP2A and LMP1/2A did not synergize with IL-4

(Figure 6A). B cells from all genotypes proliferated in response

to LPS, but there was no significant difference in proliferation level

(Figure 6A). In the presence of a BCR agonist, LMP1/2A B cells

proliferated at the same level as LMP1 B cells (Figure 6B),

indicating that the LMP2A signal did not synergize with nor

impair BCR-induced proliferation, similar to previous results with

LMP2A transgenic mice [25,27]. However, when stimulated with

a BCR agonist in the presence of IL-4, LMP1/2A B cells exhibited

a lower level of proliferation compared to LMP1 alone (Figure 6B).

We also observed the dampening effect of LMP2A and

intensification of this effect by IL-4 when LMP1/2A B cells were

stimulated with signals mimicked by LMP1 and LMP2A (i.e. the

BCR and CD40) (Figure 6C). These data suggest that LMP2A co-

expression decreased the hyperproliferation driven by LMP1, and

that this normalizing phenotype in LMP1/2A B cells is more

strongly promoted in the presence of IL-4 stimulation.

Figure 4. LMP1/2A co-expression maintains antibody generation and frequency of plasma cells similar to wildtype. (A–C) Sera of WT,
LMP1, LMP2A and LMP1/2A mice was collected from animals immunized with 100 mg TNP24-KLH at Day 7, 14 and 35 of the primary response, and
analyzed by ELISA for (A) TNP-specific IgG1 titers over time, and (B) for affinity (ratio TNP2:TNP11 binding) over time, and (C) for TNP-specific isotype
levels at Day 35. Data are represented as mean 6 standard error of 3–5 mice per genotype over 3 independent experiments. (D–E) Comparison of the
number of TNP-specific IgG1 ELIspots per 104 cells at Day 7 of the secondary response from bone marrow (D) or spleen (E). A representative image is
shown from 4 experiments with 3–5 mice per genotype. Horizontal line represents mean. *, P,0.05, Type I ANOVA and Dunnett’s multiple
comparison test.
doi:10.1371/journal.ppat.1002662.g004
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LMP2A decreases the LMP1 signaling mediator TRAF2 in
resting LMP1/2A B cells

The cytoplasmic C terminal activating domain-1 (CTAR1) of

LMP1 directly recruits TRAF2 and TRAF3 to elicit proliferative

effects on B cells, [8,9,17,44] and LMP2A has been shown to

decrease TRAF2 and TRAF3 expression in B cell lines expressing

LMP1 [22]. To examine mRNA levels of TRAF2 and TRAF3 in

resting CD432 splenic B cells, we prepared cDNA from isolated

CD432 splenic B cells and amplified TRAF2 and TRAF3 message

by RT-PCR. In resting LMP1 B cells, TRAF2 was upregulated to

approximately four-fold compared to WT (Figure 6D). LMP2A

expression decreased TRAF2 mRNA by half compared to WT,

which was also observed in LMP1/2A-expressing B cells. The

levels of TRAF3 were not significantly altered by either single or

co-expression of LMP1 and LMP2A.

To assess whether the effects on TRAF2 and TRAF3 at the

mRNA level were recapitulated at the protein level, we carried out

TRAF2 and TRAF3 immunoblots on lysates prepared from

purified B cells and CHO-K1/hTRAF2 cells using the house-

keeping protein GAPDH as a loading control (Figure 6E). The low

levels of expression of TRAF2 in purified B cells have been seen in

other murine models [56,57]. To confirm TRAF2 levels, we used

an additional anti-TRAF2 antibody that gave similar results

(Figure S2). Quantitation revealed that TRAF2 levels were

increased up to twofold in LMP1 B cells (Figure 6F) while TRAF2

levels in LMP2A and LMP1/2A B cells were similar to WT.

Expression of LMP1, LMP2A, and LMP1/2A did not appear to

significantly alter TRAF3 protein levels. [56,57]. In sum, LMP1

appears to increase mRNA and protein levels of TRAF2, but not

TRAF3, and this increase is reversed when LMP2A is co-

expressed with LMP1. Hence, in resting B cells, LMP2A

expression appears to regulate levels of TRAF2, a molecule

critical for LMP1 signaling.

Discussion

Our results describe LMP2A as a regulator of LMP1-induced B

cell hyperactivation during LMP1/2A co-expression in B cells in

an animal model of EBV latency. Specifically, we found that in

LMP1/2A animals: (1) LMP2A dampened LMP1-mediated

hyperproliferation in response to mitogenic stimuli; (2) LMP2A

expression allowed LMP1-expressing B cells to enter germinal

centers consistent with decreased proliferation; (3) LMP2A

decreased levels of TRAF2, required by LMP1 for signaling to

NF-kB. The finding that B cell maturation is not perturbed in

naı̈ve LMP1/2A animals in the absence of a strong antigenic

signal supports this conclusion.

Many studies of LMP1 and LMP2A expression in cell lines and

transgenic mouse models of disease have indicated that these viral

proteins can elicit profound effects on B cell function. Our study is

the first to explore the effect of co-expressing both LMP1 and

LMP2A in the same naı̈ve B cell from early stages of development,

and indicates that LMP1/2A-expressing B cells develop and

function normally in naı̈ve mice without driving spontaneous B

cell proliferation in the absence of antigen. Once stimulated by

antigen, LMP1/2A normalized responses in terms of germinal

center physiology and antibody production, as well as production

of normal plasma cell frequencies during the secondary response.

Whether LMP1/2A can alter plasma cell numbers during the

primary response remains to be determined, although antibody

titers in LMP1/2A animals were similar to control animals during

the primary response.

Cooperation of LMP1 and LMP2A signaling has been reported

in vitro [42], however, we did not detect evidence of synergistic

activity of LMP1 and LMP2A in our model, as demonstrated by

no acceleration of mortality (data not shown), the dampening

effect on B cell proliferation in LMP1/2A B cells, and the

downmodulatory effect of LMP2A on TRAF2 levels. Our findings

are the first description of LMP2A alteration of LMP1 signaling by

TRAF2 modulation in an animal model, and support similar

findings in EBV-positive nasopharyngeal carcinoma and Burkitt’s

lymphoma cell lines [22,41,58].

Previous studies of EBV-positive or LMP1-transfected tumor

cell lines proposed that LMP1 perturbs TRAF regulation in order

to enhance NF-kB activity [8,9,21]. One study identified that

protein levels of TRAF2 were increased in transformed B cell lines

when LMP1 was expressed, but that co-expression of LMP2A

decreased TRAF2 levels to normal [22]. These data are consistent

with our findings that LMP2A decreases TRAF2 transcript and

Figure 5. LMP1/2A has heterogeneous effects on B cell
activation following BCR stimulation compared to controls.
Splenic CD432 B cells were purified by magnetic beads and incubated
for 72 hours in complete media (Left panel) or with 10 mg/mL anti-IgM
(F(ab9)2) (Right panel). Cells were stained for surface activation marker
expression as indicated and analyzed by flow cytometry. One
representative experiment of 4 experiments is shown with .4 mice
per genotype.
doi:10.1371/journal.ppat.1002662.g005
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protein levels in resting LMP1/2A B cells in vivo. The in vivo effect

of the two-fold increase in TRAF2 detected in LMP1 mice is

currently unclear. While TRAF2 transmits signals from TNF

family receptors to AP-1 and NF-kB, studies from TRAF2

deficient mice have revealed potentially conflicting roles in

activation of the canonical and noncanonical NF-kB pathways

[56,57,59,60]. Future studies of TRAF2 requirement for NF-kB

activation and the effect on the B cell phenotype are warranted,

especially with regards to the ability of TRAF2 to promote synergy

between BCR and CD40 signals, and to degrade TRAF3 during

CD40 signaling [61]. In addition, the effects on LMP1 localization

and turnover when LMP2A is co-expressed necessitate additional

investigation, as previous data suggested that LMP1 turnover

could be altered by LMP2A co-expression in epithelial cell lines

[42], which may alter TRAF2 recruitment by LMP1.

The most striking finding during the T cell-dependent immune

response in LMP1/2A mice is the restoration of germinal center

frequencies similar to LMP2A and WT mice, suggesting that

LMP1 signals impeding GC formation may be overcome in the

presence of LMP2A. Signals from activated CD40 through

Figure 6. Co-expression of LMP1/2A decreases B cell proliferation and TRAF2 levels compared to LMP1. (A–C) Purified splenic CD432 B
cells were stimulated with combinations of IL-4, LPS, anti-IgM and anti-CD40. Proliferation as measured by 3[H]-thymidine incorporation is shown for
8 experiments with 8 mice per genotype. (D) Levels of TRAF2 and TRAF3 message were compared by RT-PCR using the DDCT method with HPRT as a
housekeeping gene. Fold change in TRAF2 and TRAF3 expression in transgenic B cells compared to wildtype is shown for at least 4 experiments with
9 mice per genotype. (E) Immunoblot analysis shows TRAF2 (,53 kDa), TRAF3 (,62 kDa) and GAPDH (,38 kDa) expression in purified B cells from
WT, LMP1, LMP2A and LMP1/2A mice and TRAF2-expressing CHO-K1 cells. Each lane represents a single mouse, and the data are representative of
several immunoblot analyses with between 6 and 12 mice per genotype. (F) Quantification of TRAF2 signal normalized to GAPDH and wildtype TRAF2
signal is shown as an average of all mice from each genotype. For a description of quantification, see Methods. LMP1 bars have been placed first as
LMP1 B cells gave the largest responses. Data are represented as mean 6 standard error. *, P,0.05; **, P,0.01; ***, P,0.001 by one way ANOVA.
doi:10.1371/journal.ppat.1002662.g006
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TRAF2 and NF-kB are critical for GC-associated functions,

including B cell proliferation, class switch recombination, and

immunoglobulin secretion [23]. Although the two-fold increase in

TRAF2 message in LMP1 B cells is difficult to reconcile with the

finding that LMP1 B cells are impaired in GC entry, a possible

explanation may be that an overly strong CD40 signal prevents B

cells from entering germinal centers. In support of this hypothesis,

one study suggested that overly strong CD40 signaling downreg-

ulated the master germinal center regulator, BCL-6 [62], while

another study found that overexpression of CD40 drives B cells to

exit the germinal center to memory [63]. While BCL-6 levels and

activity have not been assessed in this study, several lines of

evidence support LMP1 repression of BCL-6 expression in EBV-

positive Hodgkin’s lymphoma cells [64,65]. While LMP2A

appears to have a more variable effect on BCL-6 in human B

cell lines and primary transgenic murine B cells [30,33], other

evidence supports a role for LMP2A in promoting a germinal

center-like cellular environment in LMP1/2A B cells. Microarray

analysis of LMP2A transgenic B cells and LMP2A-positive LCLs

indicated that LMP2A induces a gene expression pattern that

resembles that detected in GC centroblasts [30]. Thus, it is

possible that during the response to antigen, LMP1 and CD40

signaling together provide an overly strong CD40 signal,

downregulating BCL-6 and diverting B cells from entering the

germinal center, which may be rescued by the ability of LMP2A to

induce a GC-like gene expression program. Evidence suggests that

LMP1 and LMP2A also alter B cell cytokine profiles, which may

have global effects on gene transcription, warranting future study

of the alteration in cytokines and global gene expression induced

during LMP1/2A-co-expression. Taken together, our findings

suggest a model whereby LMP1/2A co-expression does not

provide a synergistic signal for B cell activation, but instead

normalizes B cell function by allowing B cells to enter the germinal

center in a manner that may be advantageous to the virus.

As LMP1 and LMP2A confer survival and proliferative

functions to latently EBV-infected B cells in vitro, several groups

have suggested that these characteristics may allow latently

infected human B cells to survive the germinal center reaction in

order to enter the memory pool [3,35,39]. However, conflicting

reports exist on the detection of LMP1 and LMP2A in human GC

B cells [36,37]. The entry of LMP1/2A-expressing B cells into

germinal centers described herein is notable, as it is the first time

that detection of LMP1/2A-expressing B cells in germinal centers

of latently infected humans can be recapitulated in a mouse model.

Similar to findings with latently-infected humans and LMP1

transgenic mice, we have confirmed that LMP1 B cells are

defective in the ability to enter GC [16,37], although the location

of LMP1 B cells during an immune response and the nature of the

signals received that generate high-affinity antibody, memory and

plasma B cells are not well-defined. Our findings suggest that

LMP2A expression in LMP1/2A B cells alters B cell biology by

allowing LMP1-expressing B cells to transit the germinal center

and successfully become memory cells, based on the finding that

LMP1/2A B cells differentiate into plasma cells at the same

frequency as wild-type animals during a secondary immune

response.

As highly-proliferative LMP1-expressing B cells responding to

antigen are more at risk of recognition by CD8+ T cells, the

expression of LMP2A with LMP1 could be a viral strategy to

normalize B cell physiology during the response to antigen. If this

were the case, the latently-infected GC B cell could potentially

access the memory compartment. The presence of LMP1/2A-

expressing B cells in the germinal center has other implications for

germinal center-derived neoplasms that express LMP1 and

LMP2A, such as Hodgkin’s lymphoma. It is plausible that a B

cell that would normally apoptose due to a selection defect during

GC transit might be rescued by LMP1/2A co-expression, allowing

aberrant B cell activation, proliferation, and survival, which are

hallmarks of EBV-associated germinal center-derived tumors. As

such, our findings underscore the utility of the LMP1/2A model in

providing novel insights as to the behavior of LMP1/2A-

expressing B cells in vivo before the development of overt disease.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by and all experimental procedures were in

compliance with the Institutional Animal Care and Use Commit-

tee of Northwestern University. Where indicated, procedures were

performed under isoflurane anesthesia and all efforts were made to

minimize suffering.

Generation of LMP1/2A double transgenic mice and PCR
genotyping

LMP1 lineage 3 heterozygotes (LMP1) [6] were backcrossed to

C57BL/6 mice and crossed with LMP2A Tg6 heterozygotes [32] to

generate double transgenic LMP1/2A mice. Both transgenes are

driven by an IgH promoter and enhancer region. Expression of

transgenes was confirmed by multiplex PCR on genomic DNA

isolated from tail snips [27]. Primers used were OL106 (TACCCT-

GAGCTTCAGTTCTGCACC) and OL107 (TGACTGTGG-

GAACTGCTGAACTTT) (RAG control, 560 bp), LMP2A-RC-

F2 (TCTTCTGTTTGCATTGCTGG) and LMP2A-RC-R2

(TCCAGAAAACATGTGGCAAA) (LMP2A, 404 bp), LMP1-

AA-F1 (ATGGCCAGAATCATCGGTAG) and LMP1-AA-R1

(CACACCCCCTTTCCCTTACT) (LMP1, 490 bp). LMP1 and

LMP2A expression in transgenic B cells was confirmed by

immunofluorescence on spleen sections. All non-transgenic litter-

mates are referred to as wildtype (WT) mice.

Antibodies and reagents
Antibodies against LMP1 and LMP2A included rat 14B7

(LMP2A) and rabbit Lympa-1 (LMP1; gift of Dr. K. Izumi, UT

Health Center, San Antonio). Monoclonal antibodies against

mouse IgM, IgD, IgG1, IgG2b, IgG2a, B220, CD19, GL7, CD21,

CD23, CD43, CD138, CD38, CD4, and CD8 were purchased

from BD Biosciences (San Jose, CA). Antibodies used in

immunoblotting included TRAF2 C-20 (Santa Cruz, Santa Cruz,

CA), TRAF2 #4712, TRAF3 #4729 (Cell Signaling, Danvers,

MA) and GAPDH ab8245 (Abcam, Cambridge, MA). Germinal

center staining was carried out with PNA-biotin (Vector,

Burlingame, CA). Viability reagents included Live/Dead Fixable

Violet (Invitrogen, Carlsbad, CA). Secondary reagents included

streptavidin-HRP (GE Healthcare, Piscataway, NJ), streptavidin-

AP (Vector, Burlingame, CA), streptavidin-Alexa 488 (Invitrogen,

Carlsbad, CA), goat anti-rat Cy3, anti-rabbit Cy5 (Jackson

ImmunoResearch, West Grove, PA) and goat anti-mouse IRDye

800 and goat anti-rabbit IRDye 680 (LiCor, Lincoln, NE).

Isolation of primary lymphoid cells
Single cell suspensions of bone marrow, spleen and lymph node

cells were prepared as previously described [27,32]. For flow

cytometry, cells were washed in cold FACS buffer (1% fetal bovine

serum [FBS] in 16 phosphate buffered saline [PBS]). For plating

primary cells, cells were washed in cold complete medium (RPMI
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1640 with L-glutamine and 10% FBS, 50 U/mL penicillin,

50 mg/mL streptomycin).

Flow cytometry
One million bone marrow and spleen cells were resuspended in

50 mL antibody cocktail in cold FACS buffer and stained in the

dark for 30 min on ice. Following three washes in FACS buffer,

secondary streptavidin staining took place in PBS for 20 min in the

dark on ice. Following three washes in FACS buffer, cells were

either analyzed immediately using a BD FACSCanto, or fixed in

3% PFA and analyzed within 24 hours. Positive and negative gates

were set using unstained or single-stained BD CompBeads (BD

Biosciences, San Jose, CA).

Immunization of LMP1/2A mice
Mice were immunized with 100 mg TNP24-KLH (Biosearch

Technologies, Novato, CA) in CFA s.c. For germinal center

analysis, spleen was isolated at Days 7 post-immunization. For

serum ELISA, blood was drawn from anesthetized mice at Day 0,

7, 14 and 35 following immunization and sera separated by

centrifugation. Mice were boosted after Day 50 with 50 ug of

TNP24-KLH in sterile 16 PBS i.p.

Histology
For hematoxylin and eosin (H&E) staining, spleen was isolated

and processed as described [34]. For immunofluorescence, tissue

was cryopreserved in Tissue-Tek OCT Compound (Redding,

CA), snap frozen in a bath of ethanol and dry ice and stored at

280uC. Sections 5–6 mm thick were air dried for 10 min then

fixed in ice cold acetone for 10 min. Sections were allowed to dry

and rehydrated in a humid chamber for 20 min. Sections were

blocked for 60 min with 10% goat serum, 5% bovine serum

albumin (BSA) in 16 PBS, followed by washes with PBS.

Incubations with primary antibody diluted in blocking buffer for

60 min were followed by washes in 16 PBS. Sections were

incubated with secondary antibody diluted in blocking buffer for

30 min, washed twice and mounted with Fluoromount-G

(Southern Biotech, Birmingham, AL).

ELISA
To quantitate total serum immunoglobulin, plates were coated

with isotype-specific purified antibodies. To quantitate TNP-

specific IgG1, plates were coated with 50 mg/mL TNP11-BSA

(Biosearch Technologies, Novato, CA). For IgG1 affinity, plates

were coated with TNP2-BSA and TNP11-BSA. Following blocking

with 3% BSA in PBS, serial dilutions of serum or an anti-TNP

IgG1 standard (BD Biosciences) in blocking buffer in triplicate

were incubated overnight at 4uC. Plates were washed multiple

times with 16 TBST, and incubated with a biotinylated isotype-

specific Ig, followed by washing and incubation with a streptavi-

din-conjugated HRP. Plates were developed with TMB (BioFX,

Eden Prairie, MN) and stopped with StopSolution (BioFX, Eden

Prairie, MN) and read at 450 nm on a Wallac Victor2 counter.

IgG1 titers were calculated from the line generated from standards

of a known calculation. Background subtracted (corrected) OD

values were used to calculate the ratio of TNP2 (high affinity) to

TNP11 (total) binding IgG1. For isotypes, corrected OD is shown

as a percentage of the wildtype corrected OD.

ELISPOT
For plasma cell ELIspots, immunized mice were boosted at Day

50 or later with 50 mg TNP-KLH i.p., and splenocytes and bone

marrow isolated at day 7. Cells were treated with erythrocyte lysis

buffer, washed and plated in B cell medium (RPMI 1640 with L-

glutamine and 10% FBS, 50 U/mL penicillin, 50 mg/mL

streptomycin, 50 mM b-mercaptoethanol) in serial dilutions

(starting with 46105/well) on plates previously coated with

50 mg TNP11-BSA, and incubated for 18 hours at 37uC. IgG1-

expressing ASC were revealed with streptavidin-AP and spots

were counted using an ImmunoSpot (Cellular Technology LTD).

Cell proliferation
Resting splenic CD432 B cells were isolated from single cell

suspensions by magnetic column (Miltenyi Biotec, Auburn, CA).

Cells were incubated in B cell medium and stimulated with

recombinant mouse IL-4 at 5 ng/mL (eBioscience, San Diego,

CA), anti-CD40 at 10 mg/mL (eBioscience, San Diego, CA), goat

anti-mouse anti-IgM F(ab9)2 at 10 mg/mL (Southern Biotech,

Birmingham, AL) or LPS (Sigma-Aldrich). The concentrations of

these reagents and the timepoint used had been previously

optimized. Cells were incubated for 48 hours at 37uC, and 1 mCi
3[H]-thymidine was added for the last 18 hours of culture before

the cells were harvested for analysis of thymidine uptake.

RT-PCR
Total RNA was extracted from resting CD432 splenic B cells

using the RNeasy RNA Extraction kit (Qiagen) and cDNA was

prepared with the High Capacity cDNA Reverse Transcription

Kit (Applied Biosystems). Real-time PCR was performed and data

analyzes as described previously [53]. Primer sequences for

TRAF2, TRAF3 and HPRT are available at http://

mouseprimerdepot.nci.nih.gov. The difference between the gene

expression in transgenic compared to WT mice backgrounded to

HPRT expression (DDCT) was used to determine the relative gene

expression in transgenic B cells compared with wildtype B cells,

and fold change was calculated by 22DDCT [66].

Immunoblots
Purified B cells were lysed in modified RIPA buffer (0.1 M Tris-

HCl pH 8.2, 0.15 M NaCl, 2% SDS, 1% NP40 alternate, 0.5%

Na-deoxycholate, 0.01 M NaF, 0.002 M Na3VO4, 0.002 M

phenylmethylsulfonyl floride, 0.01 M DTT) with protease and

phosphatase inhibitor cocktails (Roche Diagnostics). Control

lysates included CHO-K1 cells and CHO-K1/hTRAF2 (CHO-

K1 cells transfected with hTRAF2 plasmid from Addgene,

#20229). DNA and nucleic acid were digested with Benzonase

nuclease (Sigma-Aldrich). Lysates were cleared and heated for

10 minutes at 72uC and then electrophoretically separated by 10%

SDS-PAGE. Protein was transferred to Immobilon-P membrane

(Millipore), blocked with 5% BSA in 16 TBST, and probed for

TRAF2, TRAF3 and GAPDH. Membranes were incubated with

IRDye secondary antibodies in blocking buffer for 1 h at room

temperature, and imaged using a LiCor Odyssey Fc scanner and

LiCor Image Studio Software (v2.0, Lincoln, NE). Boxes were

manually placed around each band of interest, which returned

near-infrared fluorescent values of raw intensity with intra-lane

background subtracted [67]. TRAF2 and TRAF3 signal was

normalized to GAPDH for each sample. The relative expression of

TRAF2 and TRAF3 for each sample relative to wildtype was

calculated by (normalized signalsample/normalized signalwildtype)*1.

Supporting Information

Figure S1 Lymphocyte frequencies are similar in
LMP1/2A mice and controls. Single cell suspensions from

different lymphoid organs of 8 week old WT, LMP1, LMP2A or

LMP1/2A mice were surface stained with indicated antibodies
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and analyzed by flow cytometry. Frequencies of the live indicated

cell population are shown in (A–F). (A) Recirculating mature B

cells (IgM+/IgD+) in bone marrow. (B) B1a cells (CD5+/CD43+),

B1b cells (CD52/CD43+) in spleen. (C) CD4+ or CD8+ T cells in

spleen. (D) Total B cells (B220+/IgM+) in lymph nodes. (E)

Follicular (FO) B cells (IgM+/IgD+) or marginal zone (MZ) B cells

(IgM+/IgD2) in lymph nodes. (F) CD4+ or CD8+ T cells in spleen.

n.4 mice per genotype for all experiments; *, P,0.05, Student’s t

test.

(TIF)

Figure S2 TRAF2 levels in purified B cells using a
different antibody. (A) Whole cell lysates from purified splenic

B cells of WT (n = 7), LMP1 (n = 8), LMP2A (n = 8) and LMP1/

2A (n = 7) animals and CHO-K1/hTRAF2 cells were probed for

TRAF2 using an antibody from Santa Cruz (C-20). A represen-

tative immunoblot is shown. (B) Quantification of TRAF2 signal

normalized to GAPDH and wildtype TRAF2 signal is shown as an

average of all mice from each genotype by LI-COR Odyssey

analysis. LMP1 bars have been placed first as LMP1 B cells

showed the largest TRAF2 increase. Data are represented as mean

6 standard error. **, P,0.01 by one way ANOVA.

(TIF)
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