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So far, little is known how the sample assignment of surface electromyogram (sEMG)
features in training set influences the recognition efficiency of hand gesture, and the aim
of this study is to explore the impact of different sample arrangements in training set
on the classification of hand gestures dominated with similar muscle activation patterns.
Seven right-handed healthy subjects (24.2±1.2 years) were recruited to perform similar
grasping tasks (fist, spherical, and cylindrical grasping) and similar pinch tasks (finger,
key, and tape pinch). Each task was sustained for 4 s and followed by a 5-s rest interval
to avoid fatigue, and the procedure was repeated 60 times for every task. sEMG were
recorded from six forearm hand muscles during grasping or pinch tasks, and 4-s sEMG
from each channel was segmented for empirical mode decomposition analysis trial by
trial. The muscle activity was quantified with zero crossing (ZC) and Wilson amplitude
(WAMP) of the first four resulting intrinsic mode function. Thereafter, a sEMG feature
vector was constructed with the ZC and WAMP of each channel sEMG, and a classifier
combined with support vector machine and genetic algorithm was used for hand gesture
recognition. The sample number for each hand gesture was designed to be rearranged
according to different sample proportion in training set, and corresponding recognition
rate was calculated to evaluate the effect of sample assignment change on gesture
classification. Either for similar grasping or pinch tasks, the sample assignment change
in training set affected the overall recognition rate of candidate hand gesture. Compare
to conventional results with uniformly assigned training samples, the recognition rate
of similar pinch gestures was significantly improved when the sample of finger-, key-,
and tape-pinch gesture were assigned as 60, 20, and 20%, respectively. Similarly, the
recognition rate of similar grasping gestures also rose when the sample proportion of
fist, spherical, and cylindrical grasping was 40, 30, and 30%, respectively. Our results
suggested that the recognition rate of hand gestures can be regulated by change
sample arrangement in training set, which can be potentially used to improve fine-gesture
recognition for myoelectric robotic hand exoskeleton control.
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INTRODUCTION

Myoelectric control systems have been widely used to control
assistive and rehabilitation devices, i.e., EMG-controlled robotic
hand exoskeleton (Leonardis et al., 2015), which collected the
surface electromyogram (sEMG) from the forearm muscles of
non-paretic hand controlling the movement of exoskeleton, and
to train and/or guide the grasping or pinch task conduction
of paretic hand as well. Feature classification of sEMG in time
and/or frequency domain is usually employed for recognizing
non-paretic hand gesture under the following principle: different
handmotions/gestures are dominated with differentmuscle activ-
ity patterns, which result in a distinguishable sEMG feature vector
(Lima et al., 2016). Although a variety of myoelectric pattern
identification strategies have been proposed to classify the sEMG
signals for different hand gestures, very little attention has been
paid to the recognition of hand gestures dominated with similar
handmuscle activity patterns (AbdelMaseeh et al., 2016). Improv-
ing the classification and identification of similar hand gestures
is helpful for exquisite myoelectric control system development
(Amsuess et al., 2015).

Up to date, increased interests have been focused on hand ges-
ture recognition based on sEMG features, and high classification
accuracies can be obtained (Khezri and Jahed, 2007). Usually,
hand gestures dominated by different hand muscle contractions
(Young et al., 2012), such as palm extension and closure, wrist
flexion and extension, and supination and pronation, are used to
test the classification efficiency. Therefore, it is believed that high
recognition rates of the hand gesture strongly depend on differ-
entiation of EMG activities among these hand motions. Urwyler
et al. (2015) reported that a high classification accuracy (above
95%) for classifying the four or six movements. Peerdeman et al.
(2011) improved the classification rate in daily hand movements
by optimizing the sEMG feature sets and classification algorithm.
Although numerous studies have focused on the most suitable
signal feature selection and classification strategy design (Sapsanis
et al., 2013), little efforts has been put to the specific demand
of similar gesture recognition. As one of the most dexterous
organs in the world, our hand can perform a variety of hand
motions with different finger coordination patterns, and part of
these hand motions are controlled with almost same hand muscle
contraction patterns, such as hand pinch andhand tripod gestures.
Unfortunately, these hand gestures with similar muscle activities
patterns were usually excluded from hand motion classification
studies due to their low sensitivity and poor classification perfor-
mance (Castro et al., 2015). According to our previous work, the
accuracy rate of similar gestures recognition for pinching different
items or grasping bottles with different weights was less than 80%
(Zhang et al., 2016). However, to train the paretic hand after
stroke with a robotic hand exoskeleton, it is necessary to identify
gestures with high similarity based on sEMG features detection
from contralateral non-paretic hand.

The key obstacle for similar hand gesture recognition is that
these hand movements are dominated with the same hand mus-
cle’s contraction patterns (Liu et al., 2014). However, a critical
factor for gesture classification is that the feature vector of different
gestures should contain sufficient sensitivity and specificity (Chen

et al., 2016b). In other words, the distance between gesture classes
in the myoelectric feature space must be sufficiently wide. Unfor-
tunately, distances between classes of similar gestures are dimin-
ished due to the feature vector extracted from similar muscle
activation pattern are difficult to be distinguished, which dete-
riorate the final classification performance. In addition to the
feature selection and classification algorithm optimization, the
performance of hand gesture recognition highly depends on the
quality of a training set (Lorrain et al., 2011). Growing evidences
have shown that the design of training sample assignment, both
the sample size and proportion in training set, can impact the clas-
sification accuracy. Foody et al. (1995) verified that variations in
the size of each class in the training set affected the pattern of class
allocation; Chen et al. (2009) demonstrated that better perfor-
mance of a classifier could be achievedwhen optimizing a training
set by expanding the sample size. Wigdahl et al. (2013a) showed
that a small training set size could achieve better overall classifi-
cation results when they varied the number of normal controls in
corresponding training set. Generally, the sample size and propor-
tion of the training sample play a non-ignorable role on the classi-
fication efficiency, and better classification could be obtained by
optimizing the constitution of the training set (Fratini et al., 2015).
Therefore, it can be presumed that optimizing the myoelectric
training set could impact similar gesture recognition performance
accordingly.

Due to the principle of inter-limb coordination (Luft et al.,
2014), voluntary movement of non-paretic hand controlling the
paretic hand activities, or bimanual training, is a promising
approach for stroke rehabilitation (Oujamaa et al., 2009; Cau-
raugh et al., 2010). To accurately control the movement of hand
exoskeleton for paretic hand training, it is essential to detect
the dexterous hand motions performed by finger coordination
patterns, which sometimes may be controlled with very similar
hand muscle contractions. This study is to investigate how sample
arrangement in training set affects the hand gesture classification
accuracy. sEMG signals have been recorded from forearm hand
muscles when conducting similar grasping gestures or similar
pinch gestures, and the impact of the sample proportion in the
training set on the recognition efficiency of similar hand gestures
are evaluated by changing the sample number of each candidate
gesture.

MATERIALS AND METHODS

Participants
The protocol of this study was approved by Institutional
Review Board of Shenzhen Institutes of Advanced Technol-
ogy, Chinese Academy of Sciences. Seven healthy subjects (aged
24.2± 1.2 years, sixmales and one female, all right handed, height:
1.71± 0.17m, and weight: 65.62± 8.1 kg) without neurological
or muscular disease participated in this study. Explanation of
the experiment and protocol were provided to all participants.
Written informed consents and permission for publication of pho-
tographs for scientific and educational purposes were obtained
before procedure.
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FIGURE 1 | Placement of disposable surface electrodes on the forearm for surface electromyogram (sEMG) collection: (A) ch1(FDS), ch2(PL), and ch3(MB);
(B) ch4(EPI), ch5(ED), and ch6(EPB); (C) sEMG recording during fist-grasping movement.

FIGURE 2 | Six hand gestures were assigned for two groups of similar gestures. Grasping group includes fist-, spherical-, and cylindrical-grasping gesture (A–C),
Pinch group includes finger-, key-, tape-pinch gesture (D–F).

Data Acquisition
The sEMG signals were recorded using a surface EMG system
(ME6000, Mega Electronics Ltd., Finland). Pairs of disposable
surface electrodes were placed on the six forearm hand muscles:
(1) the extensor pollicis brevis (EPB), (2) extensor indicis propirus
(EPI), (3) flexor digitorum sublimis (FDS), (4) palmaris longus
(PL), (5) musculus brachioradialis (MB), and (6) extensor dig-
itorum (ED) (Figures 1A,B). To minimize movement artifacts,
preamplified EMG sensor units are attached to the limbs using
elastic gauze. The recording system bandwidth is 15–500Hz, and
the sampling rate is 1 kHz for sEMG collection.

Experiment Protocol
Subjects are required to sits on a chair with their upper limbs
vertically relaxed in the sagittal plane and forearms flexed to
90◦, as shown in Figure 1C. To study desirable hand movements
in daily life (Windrich et al., 2016), two sets of similar hand

grasping gestures (i.e., fist, spherical, and cylindrical grasping) and
pinch gestures (finger, key, and tape pinch) are conducted with
the right hand (Figure 2). Verbal and visual cues are given to
the participants to perform the designed movements. Each task
is sustained for 4 s and followed by a 5-s rest interval to avoid
fatigue. The procedure is repeated 60 times for each task, and
each subject conducts a total of 180 trials for grasping and pinch
movements.

Data Analysis
Pre-process
We analyzed the data off-line with a customized Matlab pro-
gram (the Mathworks, Natick, MA, USA). The recorded sEMG
signals were bandpass filtered through a Butterworth digital fil-
ter (10–400Hz, fourth order and zero phase) and followed by
a 50-Hz digital notch filter for overcoming the power interfer-
ence. Furthermore, within a 256-ms sliding window, the average
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FIGURE 3 | The flow diagram for the surface electromyogram (sEMG) feature
vector construction.

IEMG (integrate sEMG) (Phinyomark et al., 2012) value was
calculated as

Xiemg =
1

256

255∑
i=0

|x(i)| (1)

where x(i) was the ith sampled sEMG signal, and Xiemg was
the IEMG value within 256-ms time window. Once that value
exceeded a predefined threshold, the muscle was activated for
grasping or pinchmovement. Then, the next 4-s sEMG signals was
segmented into 256-ms analysis windows with an overlap of 50ms
for further processing.

sEMG Feature Vector Construction
The segmented second sEMG signal of a grasping trial or pinch
trial was processed as following flow diagram (Figure 3) to con-
struct the feature vector for hand gesture recognition.

The empirical mode decomposition (EMD) (Shang et al., 2011;
Hong et al., 2016) was employed to extract multichannel-recorded
sEMG features for pattern recognition. In each trial, a 4-second-
recorded sEMG was extracted per channel, and the EMD was
used to decompose the sEMG into eight intrinsic mode functions
(IMFs) as

sEMG =
8∑

i=1
IMFi + r (2)

where r is the residual component, means the central tendency of
sEMG signal. An example of sEMG segment during a fist-grasping
trial and its first four IMFs is illustrated in Figure 4.

To quantify the sEMG intensity, zero crossing (ZC) (Jain et al.,
2000) and Wilson amplitude (WAMP) (Castro et al., 2014) were
computed for each IMF component with a window of 2 s, channel
by channel. The WAMP value for the resulted sEMG IMF within
2-s window was calculated as

WAMP =
2000∑
k=2

|sEMG (k) − sEMG (k − 1)| (3)

To reduce the dimension of the feature set, principle compo-
nent analysis method (Francini et al., 2017) was applied to select
the IMFs with more contributions. Here, the first four IMFs com-
ponents were selected as their contribution ratio was above 90%
(or the cumulative percent was 90%). As a result, the dimension of
the sEMG feature vector could be reduced to eight (2 features× 4

FIGURE 4 | Surface electromyogram (sEMG) activities recorded from right
FDS(Ch1), PL(Ch2), MB(Ch3), EPI(Ch4), ED(Ch5), and EPB(Ch6) during
fist-grasping or finger-pinch (A). sEMG signal segment collected from right
FDS(Ch1) and its first four intrinsic mode functions for a fist-grasping trial
(B) ED, extensor digitorum; MB, musculus brachioradialis; EPB, extensor
pollicis brevis; FDS, flexor digitorum sublimis; EPI, extensor indicis propirus.

IMFs) for one channel, and a total of 48 sEMG features were
extracted for each trial.

Aj = [ZC1j,WAMP1j, ZC2j,WAMP2j,ZC3j,WAMP3j,

ZC4j,WAMP4j] (4)
B = [A1,A2, . . . ,A6] (5)

where Aj is the feature vector of the jth channel (j= 1, . . . , 6),
and B is the myoelectric feature matrix of a gesture including a
six-channel sEMG feature.

Assessing the Recognition Efficiency with Different
Sample Proportions in the Training Set
As mentioned above, 60 samples of sEMG feature vector were
extracted for each hand gesture in grasping group or pinch group.
For every grasping gesture or pinch gesture, 70% of 60 samples
of sEMG feature (42 samples) have been randomly selected as
candidate training samples, whereas the rest 30% of 60 of sEMG
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TABLE 1 | Example of sample number and proportion assignment in the training set and testing set for the fist grasping.

Gesture Number of sample (sample proportion)

Training set Testing set

Fist grasping 6 (11.5%) 10 (19.2%) 16 (30.8%) 20 (38.5%) 26 (50%) 30 (57.7%) 36 (69.2%) 42 (80.1%) 18 (33.3%)
Spherical grasping 23 (44.2%) 21 (40.4%) 18 (34.6%) 16 (30.8%) 13 (25%) 11 (21.2%) 8 (15.4%) 5 (9.6%) 18 (33.3%)
Cylindrical grasping 23 (44.2%) 21 (40.4%) 18 (34.6%) 16 (30.8%) 13 (25%) 11 (21.2%) 8 (15.4%) 5 (9.6%) 18 (33.3%)
Total samples 52 52 52 52 52 52 52 52 54

feature samples (18 samples) constituted the testing set. A modi-
fied classifier combining the support vectormachine (SVM) (Alba
et al., 2007) and genetic algorithm (GA) (Li et al., 2017; Serdio
et al., 2017) was employed for its low computation cost (Marchetti
et al., 2013; Martins et al., 2014). In briefly, a GA-modified SVM
classifier used the sEMG feature vector (B= [A1, A2, … , A6]) as
training sample for hand gesture recognition. GA was employed
to filter and optimize SVM penalty coefficient (c) and kernel
parameter (g), with a maximum generation of 100. Thereafter, the
optimized SVM classifier with fivefold cross-validation is applied
to classify hand gestures and evaluate solutions.

To assess the effect of the sample proportion of similar hand
gestures on the recognition rate, we constructed a training set
with a constant size of 52 samples for the grasping group or pinch
group, while the sample number of each gesture was adjusted
to alter the sample proportion in training set. When studying
how the sample proportion of a grasping gesture or pinch gesture
affects the classification rate, we step by step increased the sample
number of this gesture and decreased the sample number of other
two gestures to maintain a constant size for the training set. As
an example shown in Table 1, when inspecting the fist-grasping
gesture, we increased the sample proportion of fist-grasping from
~10% (6 samples out of 52) to ~80% (42 sample) in the grasp-
ing group, and sample proportions of spherical and cylindrical
grasping decreased from ~45% (23 samples) to ~10% (5 samples).
Overall, the training set always maintained a constant size of 52
samples; meanwhile, the testing set maintained a size of 54 sam-
ples (18 samples for fist, spherical, or cylindrical grasping each).
The overall recognition rate of three gestures was also calculated
in the testing set of grasping group (fist, spherical, and cylindrical
grasping). A similar evaluation procedure was applied to spherical
or cylindrical grasping in grasping group, and finger, key, or tape
pinch in pinch gesture group.

Measurement of the Feature Space Distance among
Similar Hand Gestures
The Mahalanobis distance (Al-Angari et al., 2016) was used to
quantify the changes in the feature space between similar hand
gestures. The distance between classes (Dout) is defined tomeasure
the distance between classes of different motions by

Dout(i) =
1
3

3∑
i=1

(
minj = 1, 2, 3;

j ̸= i

1
2

×

√(
μi − μj

)T[1
2

(∑
i +
∑

j
)]−1

(μi − μj)


(6)

where μi is the centroid of motion i, μj is the centroid of motion j,
and Σi and Σj are their covariances. The equation is used to
calculate the minimum of the Mahalanobis distance between
different motions. A smaller Dout indicates a shorter distance
between classes of different motions. For each sample proportion
in grasping training set or pinch training set, we calculate the
Dout between the sEMG feature vectors of any two similar hand
gestures comparing the inter-class distance.

RESULTS

Recognition Rate of a Hand Gesture
Increased with Its Proportion in the
Training Set
In both task (grasping and pinch gesture) groups, we tested the
impact of sample proportion of specific hand gesture of interest
in training set on its corresponding classification performance.
The proportion of a gesture of interest increased from ~10 to
~80%, while the proportion of two other gestures decreased from
~45 to ~10% as the training set maintained a constant size of 52
samples (Table 1). As shown in Table 2 and Figure 5A, the recog-
nition rate or classification accuracy (Acc.) of the fist-grasping
gesture increased from 61.1 to 88.9% when its sample number
increased from 6 to 42. On other hand, when the sample number
for spherical- and cylindrical-grasping gestures decreased from
23 to 5, and the recognition rates for spherical and cylindrical
grasping decreased to 72.2 and 66.7%, respectively (Figure 5A,
lower part). Also, as illustrated in Figures 5B,C, the recognition
rate of spherical and cylindrical grasping exhibited similar trend
when the sample number was adjusted step by step.

For the pinch gesture group (see Figure 6), the impact of
the sample proportion for specific pinch gesture of interest on
its corresponding recognition rate was similar to that for the
grasping-gesture group. As listed in Table 3, when increasing the
sEMG feature sample number of the finger-pinch gesture from
6 to 42, the recognition rate or classification accuracy (Acc.) of
pinch increased from 50 to 94.4% (see Figure 6A). On other hand,
the sample number for key- and tape-pinching gestures decreased
from 23 to 5, and the corresponding recognition rates decreased
to 66.7 and 77.8%, respectively [(Figure 6A), lower part].

Optimizing the Sample Proportion in the
Training Set Improving Classification
Performance of Similar Hand Gestures
As illustrated in Figure 7A, with increasing the sample proportion
for fist-grasping from ~10 to ~80% and decreasing the sample
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TABLE 2 | The sample proportion for fist, spherical, and cylindrical grasping and the corresponding classification accuracies (mean±SD).

Fist grasping Spherical grasping Cylindrical grasping Overall Acc. (%)

Sample proportion Acc. (%) Sample proportion Acc. (%) Sample proportion Acc. (%)

6/52 61.1±1.5 23/52 83.3±1.5 23/52 88.9±1.7 77.8±2.8
10/52 72.2±0.8 21/52 83.3±1.3 21/52 83.3±1.8 79±2.1
16/52 77.8±1.4 18/52 83.3±1.4 18/52 83.3±2.1 79.6±1.7
20/52 83.3±0.7 16/52 83.3±1.2 16/52 83.3±2.4 83.3±2.2
26/52 83.3±1.4 13/52 77.9±0.8 13/52 77.8±1.9 81.4±2.5
30/52 83.3±1.2 11/52 72.2±1.9 11/52 77.8±1.5 78±1.9
36/52 88.9±1.3 8/52 66.7±1.3 8/52 77.8±2.1 77.5±2.2
42/52 88.9±1.9 5/52 66.7±1.9 5/52 72.2±2.5 76±2.6
17/51 79.3±2.5 17/51 80.2±1.6 17/51 82.3±1.9 80.8±2.5

FIGURE 5 | The classification accuracies (Acc.) of a grasping gesture increased with the sample proportion increasing and decreased with sample proportion
decreasing in the training set. (A) The Acc. of fist-grasping increased with its sample proportion increasing in training set (upper), and the Acc. of
spherical-/cylindrical-grasping decreased with their sample proportion decreasing in training set (lower); (B) The Acc. of spherical-grasping increased with its sample
proportion increasing in training set (upper), and the Acc. of fist-/cylindrical-grasping decreased with their sample proportion decreasing in training set (lower); (C) The
Acc. of cylindrical-grasping increased with its sample proportion increasing in training set (upper), and the Acc. of fist-/spherical-grasping decreased with their
sample proportion decreasing in training set (lower).

proportion for spherical or cylindrical grasping from~45 to~10%,
the overall recognition rate of three grasping gestures increased
at first and then decreased. The peak recognition rate reached
83.3% when the sample proportions for fist, spherical, and cylin-
drical grasping were ~40, ~30, and ~30%, respectively. Similarly,
when we adjusted the sample proportion for spherical-grasping
or cylindrical-grasping from ~10 to ~80%, the overall recognition
rate also increased first and then finally decreased. The peak
recognition rate (81.5%) occurred when the sample proportions
for fist, spherical, and cylindrical grasping are ~35, ~30, and~35%,
respectively (Figure 7B). Also, the overall recognition rate reached
a peak (81.5%) when the sample proportions for fist, spherical,
and cylindrical grasping were ~30, ~30, and ~40%, respectively
(Figure 7C). However, when the gesture sample in grasping train-
ing set was assigned uniformly (i.e., 17 sample for fist, spherical,

or cylindrical grasping), the overall recognition rate was 80.8%
(Table 2, last row).

For the pinch gesture group, similar trend of the overall recog-
nition rate was observed. When the sample proportion for finger
pinch varied from ~10 to ~80%, the peak overall recognition
rate (87%) was obtained when the sample proportion for finger-
pinch was ~60%, whereas the sample proportions for key, tape,
and finger pinch were ~20% (see Figure 8A). A peak in the
overall recognition rate (83.3%) also occurred when the training
sample proportions for finger, key, and tape pinch were ~30, ~40,
and ~30%, respectively (Figure 8B). Another peak in the overall
recognition rate (81.5%) occurred when the training sample pro-
portions for finger, key, and tape pinch were ~35, ~35, and ~30%,
respectively (Figure 8C). When we equally assigned the samples
of pinch gestures in training set (i.e., 17 sample for finger, key, or
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FIGURE 6 | The classification accuracies (Acc.) of pinch gesture increased with the enlarged sample proportion and decreased with the dropped sample proportion
in the training set. (A) The Acc. of finger-pinch increased with its sample proportion increasing in training set (upper), and the Acc. of key-/tape-pinch decreased with
their sample proportion decreasing in training set (lower); (B) The Acc. of key-pinch increased with its sample proportion increasing in training set (upper), and the
Acc. of finger-/tape-pinch decreased with their sample proportion decreasing in training set (lower); (C) The Acc. of tape-pinch increased with its sample proportion
increasing in training set (upper), and the Acc. of finger-/key-pinch decreased with their sample proportion decreasing in training set (lower).

FIGURE 7 | The total recognition rates of fist-, spherical-, and cylindrical-grasping gesture varied with the sample proportion. (A) The overall Acc. varied with the
sample proportion of fist grasping; (B) the overall Acc. varied with the sample proportion of spherical grasping; (C) the overall Acc. varied with the sample proportion
of cylindrical grasping; N indicating the Acc. when sample proportion of fist-, spherical-, and cylindrical-grasping gesture were one third; � indicating the peak Acc.
when sample proportion was optimized in grasping training set.

tape pinch) (Table 3, last row), the overall recognition rate was
only 79.8%.

Gesture Sample Proportion in the Training
Set Affects the Inter-Class Distance in
Feature Space
The sEMG feature vector of a gesture can be considered as a cluster
to be classified among candidate hand gestures (see Figure 9).
To determine how the sample proportion affects the recognition
rate of hand gestures, we assessed the discrimination of the sEMG

feature vector in feature space with the Mahalanobis distance
between hand gesture classes (Dout). We compared the Dout val-
ues of any two gestures in the grasping group (i.e., fist grasping
vs. cylindrical grasping, fist grasping vs. spherical grasping, and
cylindrical grasping vs. spherical grasping), and pinch group (i.e.,
finger pinch vs. key pinch, finger pinch vs. tape pinch, and key
pinch vs. tape pinch).

As shown in Figures 9C,F, sample proportion assignment
change in training set can significantly affect theMahalanobis dis-
tance between any two hand gestures (Dout). In the grasping group,
when the sample of fist-, cylindrical-, and spherical-grasping
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FIGURE 8 | The total recognition rates of finger-, key-, and tape-grasping gesture varied with the sample proportion. (A) The overall Acc. varied with the sample
proportion of finger pinch; (B) the overall Acc. varied with the sample proportion of key pinch; (C) the overall Acc. varied with the sample proportion of tape pinch,
N indicating the Acc. when sample proportion of finger-, key-, and tape-pinch gesture were one third, � indicating the peak Acc. when sample proportion was
optimized in grasping training set.

TABLE 3 | The sample proportion for finger, key, and tape-pinch and classification accuracies (mean±SD).

Finger pinch Key pinch Tape pinch Overall Acc. (%)

Sample proportion Acc. (%) Sample proportion Acc. (%) Sample proportion Acc. (%)

6/52 50±1.8 23/52 88.9±3.1 23/52 94.4±2.3 75.9±2.1
10/52 55.6±2.1 21/52 88.9±1.8 21/52 88.9±1.4 77.8±1.8
16/52 66.7±2.2 18/52 83.3±2.5 18/52 88.9±2.2 79.6±1.6
20/52 72.2±1.9 16/52 83.3±2.4 16/52 88.9±1.6 81.5±2.8
26/52 88.9±1.5 13/52 83.3±1.9 13/52 83.3±2.6 85.1±2.2
30/52 94.4±1.4 11/52 83.3±2.1 11/52 83.3±2.7 87±2.7
36/52 94.4±2.6 8/52 72.2±1.7 8/52 83.3±1.9 83.3±3.3
42/52 94.4±3 5/52 66.7±2.2 5/52 77.8±2.2 79.6±1.8
17/51 70.5±2.2 17/51 80.6±2.9 17/51 80.1±1.8 79.8±2.1

gestures was conventionally set as one third, the Dout values for
fist-cylindrical, fist-spherical, and cylindrical-spherical gestures
were 0.5601± 0.21, 0.7347± 0.18, and 0.9366± 0.15, respec-
tively. The corresponding overall recognition rate was 80.8%
(see Figure 7). However, if the samples of fist-, cylindrical-,
and spherical-grasping gestures were assigned as 40, 30, and
30%, the Dout values for the fist-cylindrical, fist-spherical, and
cylindrical-spherical gestures were extended to 0.8252± 0.19,
1.4374± 0.31, and 1.7255± 0.46, respectively. The correspond-
ing overall recognition rate was 83.3% (see Figure 7A). The
Mahalanobis distances of the fist-cylindrical gestures or spherical-
cylindrical gestures were nearly twofold enlarged. Similarly, in the
pinch group, when the sample of finger-, key-, and tape-pinch
gestures was conventionally set as one third, the Dout values for
finger-key, finger-tape, and key-tape gestures were 0.8753± 0.18,
1.8635± 0.21, and 1.0353± 0.32, respectively. If the samples of
finger-, key-, and tape-pinch gestures were assigned as 60, 20,
and 20%, the Dout values for finger-key, finger-tape, and key-tape
were extended to 1.5461± 0.19, 2.1367± 0.36, and 1.3468± 0.46,
respectively. The results of paired-samples t-test (SPSS for Win-
dows 13.0) indicated that, the Mahalanobis distance of finger-
key gestures was significantly (p< 0.05) improved near twofold
as much.

DISCUSSION

EMG-controlled robotic hand exoskeleton has been proposed to
train paretic hand after stroke (Leonardis et al., 2015). Evidences
indicate that the simultaneous movement of both non-paretic
hand and paretic hand improve the neuro-muscular system to
regain some stability and improve usage of the impaired limb
(McCombe Waller and Whitall, 2008). Grasping and pinch is
the most common hand movement with different finger coor-
dination patterns. This study recorded the sEMG signals from
forearm handmuscles through grasping or pinch tasks dominated
with similar muscle activities, and the gesture-related myoelectric
feature vector was set up with the ZC and WAMP of the IMF
components after the EMD decomposition of sEMG. The impact
of the gesture sample proportion in the training set on the gesture
recognition efficiency was assessed, and our preliminarily results
revealed that the recognition rate of alike hand gestures can be
improved by optimizing the sample proportion due to the weight
or impact of a gesture in a candidate gesture group.

Although the impact of sample size or constitution in training
set on recognition efficiency have been observed in hand pattern
recognition (Fratini et al., 2015), medical image classification
(Wigdahl et al., 2013b), and human limb gesture identification
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FIGURE 9 | The distance between classes in feature space of grasping-gesture group and pinch gesture; (A) cluster analysis plot when sample of fist-, cylindrical-
and spherical-grasping gestures was one third; (B) cluster analysis plot when sample of fist-, cylindrical- and spherical-grasping gestures was 40, 30, and 30%;
(C) the comparison of Dout values for grasping group gestures; (D) cluster analysis plot when sample of finger-, key-, and tape-pinch gestures was one third;
(E) cluster analysis plot when sample of finger-, key-, and tape-pinch gestures was 60, 20, and 20%; (F) the comparison of Dout values for pinch group gestures.

(Chen et al., 2016a), this is the first time to quantify how the
sample proportion of a candidate hand gesture influence its clas-
sification accuracy. Our results indicated that, for any grasping
gesture or pinch gesture, the recognition rate of a hand gesture

can be improved by increase the sample proportion of correspond-
ing gesture in the training set. As shown in Figures 5 and 6,
the recognition rate of a single gesture quickly improved when
corresponding sample proportion increased in the training set.
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In fact, increasing the sample proportion of a gesture in training
set implied enhancing the weight of this gesture in the training
stage, and the classifier learned much more from this gesture.
Therefore, as a result the improved recognition of interested ges-
ture can be obtained. On other hand, the recognition rate of a
gesture would decrease when the sample proportion reduced in
the training set as well (in Figures 5 and 6, lower part). Our results
revealed that the recognition of one gesture can be improved by
increasing the weight of this gesture in the training set.

Unlike the proportional allocation of sample for classifier train-
ing, the present work affirmed that non-uniform sample assign-
ment in training setmay significantly improves those similar hand
gestures recognition. In other words, each candidate grasping
gesture or pinch gestures has different impact on classifier, how-
ever, it is usually assumed that each class has an equal a priori
probability of occurrence and the same number of samples for
each class had been conventionally allocated in the training set. In
fact, as shown in Figures 5 and 6, although the classification accu-
racies of each grasping gesture or pinch gesture would increase
with its sample proportion improved and decrease with its sample
proportion dropped, our study also show the slope of the curve is
different for each gesture. For example, the classification accura-
cies of finger-pinch dropped faster than that of key pinch or tape
pinch when sample proportion decreased (Figures 6B,C). Then,
we can assume that the sample proportion of finger-pinch task
gave rise to more impact on the recognition of pinch gestures,
and more finger-pinch samples is help to get higher classification
accuracies. Thus, assigning more finger-pinch samples (60%) in
training set is expected for the higher recognition rate (87%) of
similar pinch gestures.

Although a classifier trained with equally assigned samples
is enough for recognition of hand gestures with distinguished
muscle activity patterns (Urwyler et al., 2015), there remain
obstacles for similar hand gestures recognition due to the sim-
ilar muscle activity patterns and similar sEMG features (Geng
et al., 2014). As the tasks tested in our study, grasping ges-
tures or pinch gestures requires similar muscular contraction
pattern, which makes it challenging to discriminate the charac-
teristic vector of similar gestures in the feature space. As illus-
trated in Figure 9A, the distance between classes for the ges-
tures in the grasping group are too short to be distinguished,
however, when the classifier has been trained with unequally
assigned samples of candidate grasping or pinch gestures, the
Mahalanobis distance for these similar gestures is significantly
enlarged. Then, the classification accuracy is improved as well.
Furthermore, many more factors should be considered when we
assess the overall recognition rate for candidate gestures, such as
the slope of ascending recognition rate with increasing sample
proportion and the slope of descending recognition rates with
decreasing sample proportion. For a training set with constant
sample size investigated in present study, the sample proportion
should be carefully selected. As shown in Figures 7 and 8, when an
appropriate assignment of the sample proportion in the training
set for grasping gestures and pinch gestures, the highest over-
all recognition rate was obtained for similar grasping or pinch
gestures.

To the best of our knowledge, the present work is the first to
evaluate the effect of the sample proportion in the training set
on the recognition rate of hand gestures, and the classification
accuracy of similar grasping or pinch gestures can be improved
by unequally assigning the samples in training set. Then, an alter-
native way improving the classification efficiency is to optimize
the sample proportion of candidate patterns in training set due
to corresponding impact of a pattern on the recognition rate. In
other words, we can assign more samples of the candidate gesture
with higher weight to obtain better recognition, however, these
preliminary results just give a clue that the weight of candidate
gesture may be different, and sample proportion in training set
should be optimized for improving classification. Further studies
are needed to explore how to set the optimal sample propor-
tion in training set, and the classifier will be improved as well
(Pratama et al., 2016; Lughofer et al., 2017; Rubio, 2017a,b).
On other hand, enlarging the sample number of one candidate
gesture may induce overfitting or overlearning in classifier, it
can be suggested to compare the slopes of sample proportion
vs. Acc. curve among the candidate gestures (see Figure 5 or
Figure 6), and focused on the sample proportion allocated, the
quickly ascending and descending part of sample proportion vs.
Acc. curves. For the bimanual rehabilitation after stroke with
robotic hand exoskeleton, both the gesture and force for hand
movement should be implemented to paretic hand training. Also,
muscle activation can be act as a good reference guide in bilateral
training (McCombe Waller et al., 2006), especially the grasping
or pinch force can be estimated with sEMG of non-paretic hand
and then replicated as robotic assistance for the paretic hand
(Leonardis et al., 2015). In addition to recognition of hand gesture,
the finger force or finger joint of non-paretic hand dominated
with similar muscle activities will be estimated by sEMG record-
ing next.
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