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A B S T R A C T   

The current ongoing pandemic of COVID-19 urges immediate treatment measures for controlling the highly 
contagious SARS-CoV-2 infections. The papain-like protease (PLpro), which is released from nsp3, is presently 
being evaluated as a significant anti-viral drug target for COVID-19 therapy development. Particularly, PLpro is 
implicated in the cleavage of viral polyproteins and antagonizes the host innate immune response through its 
deubiquitinating and deISGylating actions, thus making it a high-profile antiviral therapeutic target. The present 
study reports a few specific food compounds that can bind tightly with the SARS-CoV-2 PLpro protein identified 
through extensive computational screening techniques. Precisely, extensive advanced computational approaches 
combining target-based virtual screening, particularly employing sub-structure based similarity search, molec-
ular docking, molecular dynamics (MD) simulations, and MM-GBSA based binding free energy calculations have 
been employed for the identification of the most promising food compounds with substantial functional impli-
cations as SARS-CoV-2 PLpro protein inhibitors/modulators. Observations from the present research investiga-
tion also provide a deeper understanding of the binding modes of the proposed four food compounds with SARS- 
CoV-2 PLpro protein. In docking analyses, all compounds have established essential inter-molecular interaction 
profiles at the active site cavity of the SARS-CoV-2 PLpro protein. Similarly, the long-range 100 ns conventional 
MD simulation studies also provided an in-depth understanding of probable interactions and dynamic behaviour 
of the SARS-CoV-2 PLpro protein-food compound complexes. Binding free energies of all molecular systems 
revealed a strong interaction affinity of food compounds towards the SARS-CoV-2 PLpro protein. Moreover, 
clear-cut comparative analyses against the known standard inhibitor also suggest that proposed food compounds 
may act as potential active chemical entities for modulating the action of the SARS-CoV-2 PLpro protein.   

1. Introduction 

Among many attractive antiviral drug targets of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), the papain-like cysteine 
protease (PLpro) which is encoded within nsp3 represents to be a very 
promising and important drug target for the development of anti-
–COVID-19 drug therapeutics [1–5]. Due to similarity in the structural 
organization with other protease families including SARS-CoV-1 [6], 
targeting the SARS-CoV-2 PLpro can surely dictate some potential 

therapeutic value for the life-threatening COVID-19 pandemic man-
agement. A detailed understanding of the molecular function of 
SARS-CoV-2 PLpro demonstrated its involvement in virus replication 
mechanism through the processing of viral polyproteins and also in 
cleaving proteinaceous post-translational modifications on host proteins 
[6,7]. However, the ongoing pandemic of COVID-19 urges a much better 
understanding of viral pathogenesis mechanisms for efficiently devel-
oping safe and target selective drug therapeutic interventions. Impor-
tantly, the SARS-CoV-2 viral polyproteins are mostly processed by the 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: achintya_saha@yahoo.com (A. Saha), ataul.islam80@gmail.com (M.A. Islam).  

Contents lists available at ScienceDirect 

Journal of Molecular Graphics and Modelling 

journal homepage: www.elsevier.com/locate/jmgm 

https://doi.org/10.1016/j.jmgm.2021.108113 
Received 16 August 2021; Received in revised form 5 December 2021; Accepted 18 December 2021   

mailto:achintya_saha@yahoo.com
mailto:ataul.islam80@gmail.com
www.sciencedirect.com/science/journal/10933263
https://www.elsevier.com/locate/jmgm
https://doi.org/10.1016/j.jmgm.2021.108113
https://doi.org/10.1016/j.jmgm.2021.108113
https://doi.org/10.1016/j.jmgm.2021.108113
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmgm.2021.108113&domain=pdf


Journal of Molecular Graphics and Modelling 111 (2022) 108113

2

enzymes 3-chymotrypsin like protease (3CLpro) and PLpro. Due to the 
multifunctional biological activities as well as an important role in 
governing pathogenesis, targeting SARS-CoV-2 viral proteases or any 
proteolytic enzymes, either main protease (3CLpro or Mpro, encoded by 
nsp5) or PLpro protein has demonstrated an added advantage for ther-
apeutic development to treat COVID-19 [6,8,9]. Economic and health 
crisises have been extensively observed and encountered at the global 
level due to COVID-19 emergence in a much devastating way than the 
previous coronavirus outbreaks reported in 2002 and 2012, in China and 
in Saudi Arabia, respectively [10]. According to the World Health Or-
ganization’s (WHO) “Weekly Operational Update on COVID-19′′ pub-
lished on November 30, 2021, there were 260,493,573 confirmed 
SARS-CoV-2 infected patients and 5,195,354 deaths globally. The 
severity of this deadly infection is still active in some parts of the globe, 
including India, Brazil, and the United States of America, due to 
occurrence of 2nd or 3rd waves, however no active chemotherapeutic 
agents have been developed yet to tackle this pandemic. 

The tetrapeptide LXGG pattern present between viral proteins nsp1 
and nsp2, nsp2 and nsp3, and nsp3 and nsp4 (nsp1/2, nsp2/3, and nsp3/ 
4) is recognized by this PLpro enzyme. The release of nsp1, nsp2, and 
nsp3 proteins, which are required for viral replication, is caused by the 
hydrolysis of the peptide bond on the carboxyl side of glycine at the P1 
position [11]. Earlier, in vitro studies have revealed that SARS-CoV 
PLpro has two additional proteolytic activities: ubiquitin (Ub) and 
Ub-like (Ubl) protein ISG15 (interferon-induced gene 15) removal from 
cellular proteins [3,7]. SARS-CoV PLpro hydrolyzes ubiquitinated and 
ISGylated substrates more efficiently than small substrates bearing the 
C-terminal LRGG motif. Such an important discovery pointed to a more 
sophisticated method of substrate identification than only the contact of 
the enzyme’s S4–S1 pockets with the tetrapeptide fragment [12,13]. In 
general, SARS-CoV PLpro has two unique Ub binding subsites (SUb1 and 
SUb2) that identify Lys48-linked polyUb chains for polyUb chain editing 
and/or deubiquitination of polyubiquitinated proteins [13]. The struc-
tural and functional organization of SARS-CoV PLpro demonstrated that 
the active site of PLpro is made up of a catalytic trio of 
Cys111–His272–Asp286 residues [5]. Earlier, different CoVs PLpro were 
investigated widely, and found to be located at the intersection of the 
thumb and palm sub-domains [14,15]. Particularly, PLpro’s proteolytic 
actions are carried out through a catalytic cysteine-protease cycle in 
which Cys111 operates as a nucleophile, His272 as a general acid/base, 
and Asp286 is connected to the histidine to help it align and deprotonate 
Cys111 [16]. For the development of selective SARS-CoV-2 candidate 
drug compounds, targeting the catalytic pocket is desirable since it could 
allosterically inhibit the active site by causing loop closure. Antiviral 
small molecules identified based on the PLpro structure guided 
approach may have a benefit in not only inhibiting CoVs replication but 
also in limiting the dysregulation of signaling cascades in CoVs infected 
cells, resulting in the death of uninfected neighboring cells. Hence, 
PLpro is an important target for anti-COVID drug development. 

Several scientific communities or groups have employed different 
computational techniques to identify small molecule inhibitors of the 
SARS-CoV-2 PLpro protein [8,17–25], however identification of active 
food constituents-based modulators or inhibitors have yet to be 
deployed in a larger spectrum. Over the past decades, research studies 
conducted on bioactive food chemicals have been demonstrated to 
possess both, either deleterious or beneficial function in human health 
and many diseases including type 2 diabetes, neurological disorder, 
cancer, obesity, and cardiovascular problems, based on several physio-
pathological and clinical research [26–30]. According to scientific 
research and epidemiological data, intake of bioactive natural food 
products, such as fruits and vegetables, is linked to increased potential 
health advantages, including a lower risk of numerous chronic diseases 
[29,31,32]. Some commonly known bioactive compounds found in 
various sources of food products, viz. quercetin, ascorbic acid, curcumin, 
gallic acid, polyphenols, catechins, anthocyanins, oleuropein, resvera-
trol, epigallocatechin, capsaicin, caffeine, sulforaphane, ellagic acid, 

and other food containing biomolecules, may directly contribute to the 
prevention, treatment, or management of better health conditions [28, 
29,33,34]. Understanding the molecular impacts of various bioactive 
food components in the advancement of such disease-modifying impli-
cations, however, has remained a mystery. Specifically, a large number 
of clinical experiments in diverse human cell and tissue samples have 
shown that bioactive dietary components have a significant role in se-
lective gene expression by influencing phosphorylation and 
post-translational events as well as large scale epigenetic alteration 
modulation or many other proteomic modifications [33,35–38]. 
Furthermore, there is evidence to explore the anti-viral and immune 
system modulating properties of various traditional or specific food 
constituents, including prevention of coronavirus infection and appli-
cation in cancer [39–44]. Therefore, in the present study, an exhaustive 
computational approach including sub-structure based similarity search 
against available non-covalent inhibitor, molecular docking and dy-
namics simulations, and MM-GBSA based binding free energy estimation 
of protein-ligand complexes has been employed. According to the pre-
sent study findings, four food compounds, viz. FDB001395, FDB029219, 
FDB030757, and FDB031079, have been found with a significant 
binding affinity towards SARS-CoV-2 PLpro, and hence can be impli-
cated as strong modulators for PLpro protein. 

2. Materials and methods 

2.1. Selection and preparation of food compounds and SARS-CoV-2 
PLpro protein 

Approximately a total of 70477 food chemicals were collected from 
FooDB (available at www.fooddb.ca). All those FooDB database chem-
icals were downloaded in SMILE format and then converted into two- 
dimensional (2D) molecular structural data format (.sdf) files. 
Following that, in Discovery Studio, all 2D representations of trans-
formed molecules were prepared to remove redundancies, bad valency, 
and then transformed to a three-dimensional (3D) molecular format. 
With the help of Open Babel, an open-source software tool for molecular 
file format compatibility, the entire provided dataset was converted to 
pdbqt. The ‘.pdbqt’ is the mandatory format required in AutoDock Vina 
(ADV) tool [45]. Such a format is quite similar to the Protein Data Bank 
(PDB) representation but it includes partial charges and AutoDock 4 
atom types. Additionally, the attached non-covalent inhibitor was pre-
pared using the same protocol and considered as a control compound in 
the current study for the assessment of outcomes. 

On the other hand, the SARS-CoV-2 PLpro crystal structure was ob-
tained from the PDB repository (PDB ID: 7JIW) [14]. In order to prepare 
the protein structure, an appropriate number of polar hydrogen atoms 
and Gasteiger charges were added/adjusted to the SARS-CoV-2 PLpro 
crystal structure using AutoDock tool (ADT). The crystal structure was 
stripped of water (H2O) molecules and other tiny molecules linked to 
them. Finally, the atoms were assigned the AD4 type and saved as.pdbqt 
file. It has been reported that the catalytic trio of 
Cys111–His272–Asp286 amino acid residues are required to render 
pathogenicity inactive, decreased, and/or conceded. Therefore, the grid 
box for molecular docking was chosen around the catalytic triads as 
mentioned above. Along the X-, Y-, and Z-axes, the binding site’s center 
coordinates are 51.69, 31.29, and − 2.96 Å, respectively. The grid’s di-
mensions were set to 40 X 40 × 40 Å along with the X-, Y-, and Z-axes, 
respectively. The grid spacing was defined as 0.375 Å. 

2.2. Substructure search against known standard non-covalent inhibitors 
using ICM-Molsoft 

Fingerprint similarity (FPS) based substructure search was carried 
out using ICM-Molsoft (version 3.9-1b) [46]. In particular, in the 
ICM-Molsoft user interface, ‘search type’ was specified as ‘FP similarity’ 
search, and ‘Max distance’ was assigned as 0.8 against non-covalent 
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inhibitor VBY as the query molecule for generation of most similar 
compounds as outcomes from the similarity search. The rest of the 
parameter was kept as default during search execution. In particular, 
using this FP similarity search method, any fingerprint inside a structure 
may be searched against any given database (here the curated FooDB 
database was used). The searched out compounds were saved in .sdf 
format for use in further applications. 

2.3. Molecular docking using AutoDock Vina 

The molecular docking execution was carried out for all ligands 
using the ADV standard protocol [45,47]. Particularly, the information 
for the prepared SARS-CoV-2 PLpro protein (as a receptor), ligands, and 
grid file was saved in text format in the configuration file and further 
used in the widely accepted docking application program. The docking 
was carried out using the ADV application, which was installed on a 
Linux-based operating system. The binding affinity score was used as a 
screening criterion once the molecular docking was completed suc-
cessfully. As a result, a user defined binding affinity threshold score 
value of − 7.00 kcal/mol was used for further screening criteria. More 
details of the employed ADV protocol can be found in our previous 
studies [48,49]. 

2.4. Binding affinity prediction by KDeep – a neural network method 

The obtained screened molecules from the ADV tool were further 
subjected to relative binding affinity prediction by the KDeep tool [50] 
that followed a neural network method. Particularly, the KDEEP 
web-based application is a cutting-edge 3D convolutional neural 
network-based protein-ligand binding affinity prediction tool [50] that 
was used in this investigation to determine the binding affinity of each 
dietary food compound with SARS-CoV-2 PLpro protein. The KDEEP tool 
works based on the deep convolutional neural networks (DCNNs) model, 
which has already been pre-trained, tested, and verified with the 
PDBbind v.2016 database. Precisely, during execution, the KDEEP 
initially divides the binding site into 8 different pharmacophoric-like 
features/descriptors (such as hydrogen-bond donor or acceptor, aro-
matic, hydrophobic, metallic, positive, or negative ionizable, and total 
excluded volume) before using those descriptors for model generation 
and binding affinity prediction. The above mentioned web-application 
based programme is publicly accessible at https://www.playmolecule. 
com/Kdeep/. To run the KDEEP tool, all compounds were selected from 
ADV, having − 7.00 kcal/mol score given as input, and other features 
were left as default. 

2.5. Molecular dynamic simulations 

To understand the dynamic behaviour of the investigated SARS-CoV- 
2 PLpro protein and selected four food compounds under a time- 
dependent microcanonical ensemble, long range MD simulations were 
performed. Particularly, an all-atoms conventional MD simulation over 
a time duration of 100 ns was used to thoroughly reconnoitre the 
structural behaviour of dietary compounds attached to SARS-CoV-2 
PLpro protein in dynamic states. The Amber20 software package 
loaded on a Linux operating system environment with a system 
configuration of 10th Generation Intel Core i9-10885H and NVIDIA® 
GeForce RTXTM 2070 was used to run the entire MD simulation. Each 
SARS-CoV-2 PLpro protein and food compound-complex was submerged 
in the TIP3P water model’s truncated octahedron [51]. In addition, a 
suitable or required amount of Na+ and Cl− were added to the entire 
system in order to neutralise the complex system, and the system’s ionic 
strength was set to 0.1 M to maintain the physiological pH during 
simulation. The topology files for protein and small molecules were 
generated using the ff14SB and GAFF2 force fields, respectively [52,53]. 
Amber20’s pmemd.cuda module was used to run the simulation 
execution [54]. The entire protein-lignad system’s temperature was 

maintained at 300K using a Langevin thermostat. The collision fre-
quency was tuned to 2 ps− 1 at 1 atm using the Monte Carlo barostat. The 
SHAKE algorithm was used to limit the covalent bonds linked with 
hydrogen atoms. The short-range electrostatic interactions were 
addressed using an 8 Å threshold, whereas the long-range electrostatic 
interactions were addressed using the particle mesh Ewald technique. 
The solvent and ions were equilibrated over a 10 ns time period prior to 
the commencement of simulation production using NVT and NPT en-
sembles. After completion of the MD simulation run, to investigate the 
stability of all protein-ligand complexes, a number of trajectory 
analyzing parameters were estimated from the entire simulation tra-
jectories, including RMSD, root-mean-square fluctuation (RMSF), radius 
of gyration (RoG), solvent accessible surface area (SASA), and a com-
plete hydrogen bond interaction profiles. 

2.6. Binding free energy calculation through MM-GBSA approach 

The interaction affinity of any small molecule for a stable macro-
molecular complex formation can be explained by its binding free en-
ergy. Therefore, binding free energy derived using MD simulation 
trajectories is said to be more precise and reliable than binding energy 
derived through molecular docking. In the present study, the binding 
free energy was calculated using the molecular mechanics-generalized 
born surface area (MM-GBSA) method [55] using the last 10000 
frames of each system. The same approach was used in our previous 
published work [56]. In particular, the following mathematical deriva-
tion was followed for MM-GBSA based binding free energy estimation 
for the protein-ligand complexes. The ensemble of MD simulation tra-
jectories of PLpro bound with finally proposed dietary compounds were 
used to calculate the ΔGbind value for each complex. The following 
stepwise expressions were used for the ΔGbind calculation. 

ΔGbind =Gcom − (Grec +Glig) (1)  

ΔGbind = ΔH − TΔS (2)  

ΔGbind = ΔEMM + ΔGsol − TΔS (3)  

ΔEMM = ΔEint + ΔEele + ΔEvdw (4)  

ΔGsol = ΔGpol + ΔGnpol (5)  

where, the ΔGbind is achieved (equation (1)) through subtraction of 
added free energy of the receptor (ΔGrec) and ligand (ΔGlig) from the free 
energy of complex (ΔGcom). From the expression (2) it can be seen that 
the ΔGbind is the difference between two terms, enthalpy (ΔH) and en-
tropy (TΔS). The GBSA was used to get the enthalpy term, whereas, 
entropy was achieved from the normal mode analysis (NAM) and 
interaction entropy (IE) methods. It is important to note that the ΔH is 
signified by molecular mechanical energy (ΔEMM) and solvation free 
energy (ΔEsol). The ΔEMM is the combination of intra-molecular (ΔEint), 
electrostatic (ΔEele) and the van der Waals interaction (ΔEvdw) energies. 
Further, the free energy of solvation (ΔGsol) can be represented by the 
addition of polar (ΔGpol) and non-polar (ΔGnpol) energies. Finally, it 
worth to indicate that the modified Generalized Born (GB) [57] was 
applied to get the ΔGpol and ΔGnpol those were achieved from the LCPO 
algorithm [58] which is based on SASA. 

3. Results and discussion 

3.1. Virtual screening and sub-structure based similarity searching 

Structure-based virtual screening is a very promising computational 
drug discovery technique for finding out potential lead-like chemicals 
from any chemical database for a certain bio-macromolecular protein 
target. Because chemical databases contain a large number of chemical 
entities, they can be quickly analyzed for possible interactions 
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employing various advanced computational methods or algorithms. In 
the same context, a set of more than seventy thousand food constituents 
was retrieved from FooDB and was further manually curated the entire 
database and then screened against SARS-CoV-2 PLpro protein using 
several comprehensive computational methodologies. Initially, in the 
present study, a sub-structure based similarity search followed by mo-
lecular docking and conventional dynamics simulations based 

methodologies were utilized to find some prospective food chemical 
entities which may make stable interactions/contacts with SARS-CoV-2 
PLpro protein at the active site residues and so can modulate or suppress 
its biological activity. The illustration of the entire workflow is given in 
Fig. 1. 

Particularly, the entire FooDB database (containing ~ 70477 com-
pounds) was initially curated using a number of criteria like removal of 

Fig. 1. Virtual screening and sub-structure based similarity search workflow for identification of PLpro inhibitors/modulators.  
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too small molecules or molecules containing only atoms, valence error 
compounds, presence of salt ions, etc., and after data curation, ~29040 
molecules were found to be suitable for further screening. The non- 
covalent co-crystal inhibitor [5-(acryloylamino)-2-methyl-N-[(1R)-1- 
(naphthalen-1-yl)ethyl]benzamide] attached with selected SARS-CoV-2 
PLpro protein was used as the template for sub-structure based similarity 
search against the above curated set of molecules. The above-mentioned 
non-covalent co-crystal inhibitor is also known as VBY and in the current 
study, it will refer to the same, hereafter. 

A stringent fingerprint based sub-structure search was performed to 
dig out food chemical entities which probably have similar structural or 
chemical properties to the non-covalent inhibitor like VBY. Precisely, 
the molecular fingerprint based search was performed in Molsoft ICM- 
Pro and the maximum distance for similarity search was given as 0.8. 
The fingerprint based similarity search enables any fingerprint within a 
structure to be searched for the given database. Herein, the employed 
similarity serach method calculated the Tanimoto coefficient [59] index 
(specified as 0.8) using chemical fingerprints. The non-covalent inhibi-
tor VBY was searched against the curated FooDB database. Importantly, 
reason behind employing such fingerprint based similarity search was 
the similar property principle approach which states that molecules with 
similar structural similarities probably tend to show similar character-
istics [60]. In terms of drug development concept, fingerprints implies 
structural motifs, fragments, or functional groups which can be used as 
some suitable descriptors for predictive modeling. Based on such sig-
nificant similarity index, 3507 molecules were screened out from the 
similarity search analysis in Molsoft ICM-Pro. For further assessment, 
the above remaining molecules along with VBY were subjected to mo-
lecular docking study in the ADV. On successful docking execution of all 
compounds, the binding energy of each molecule was explored. The 
binding energy of the standard compound VBY was found to be − 7.00 
kcal/mol and it was considered as a threshold score to further reduce the 
chemical space of the docked molecules. On the otherhand, the binding 
energy of the docked dietary 3507 compounds was found to be within 
the range of − 3.20 to − 11.90 kcal/mol. While applying the threshold 
binding energy score (− 7.00 kcal/mol) for sequential filtration of most 
superior dietary compounds, a total of 169 food compounds were 
retained. Further, the KDeep module was used to calculate the 
protein-ligand absolute binding energy of the remaining compounds in 

the above step along with VBY. Similar to the above user defined cut-off 
score, the binding free of VBY was used as a threshold (− 26.69 kcal/-
mol) and found 49 food compounds to possess better binding affinity in 
comparison to VBY. The binding pose, orientation and binding inter-
action pattern of each of the above molecules were explored and 
compared with VBY. Particularly, absolute binding energy score, asso-
ciation of total number of intermolecular interactions with different 
amino acid residues of PLpro protein, and site of interactions were 
critically checked and compared against the standard compound VBY, 
for selection of potential dietary compounds as selecitive modu-
lators/inhibitors for SARS-CoV-2 PLpro protein. Finally, based on the 
above parameters, four molecules were found to be promising for 
modulation or inhibition of SARS-CoV-2 PLpro activity. Further, in-
teractions stability and binding affinity potential of each molecule to-
wards PLpro were explored through 100 ns MD simulation study. 
Two-dimensional (2D) representation of the final four molecules is 
given in Fig. 2. Precisely, the identified proposed compounds 
FDB001395, FDB029219, FDB030757, and FDB031079 are commonly 
known as Diosbulbinoside D, Estrone-2,3-quinone, cyanidin 
5-O-β-D-glucoside, and p-coumaroyltriacetic acid lactone. FDB001395 
(Diosbulbinoside D) belong to the class of organic compounds known as 
cholines and found in different food products such as fenugreeks, cala-
bash, barley, cauliflowers and eggs etc. Compounds FDB029219 and 
FDB030757 (Estrone-2,3-quinone and cyanidin 5-O-β-D-glucoside) 
belong to the classes of compounds such as catechol estrogens and 
flavonoid o-glycosides, respectively. Another compound FDB031079 
(p-coumaroyltriacetic acid lactone) belongs to the class of compound 
hydroxycinnamic acid and their derivatives. They usually found in foods 
like yellow zucchini, lowbush blueberry, fruits, and napa cabbage etc. 

3.2. Molecular docking and KDeep based binding interaction analyses of 
food compounds 

The binding interactions analysis of the final proposed four food 
compounds (Fig. 2) were critically explored using the protein-ligand 
interaction profiler (PLIP) web tool [61]. Both the binding interaction 
profile and the binding mode of all four molecules are given in Fig. 3. 
Molecular docking based binding affinity scores of finally selected pro-
posed food compounds FDB001395, FDB029219, FDB030757, 

Fig. 2. Two-dimensional (2D) structural representation of final SARS-CoV-2 PLpro inhibitors/modulators.  
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FDB031079, and standard inhibitor VBY were found to be − 7.30, − 7.30, 
− 7.00, − 7.40 and − 7.00 kcal/mol, respectively. Whereas the KDeep 
based binding energy was estimated as − 32.83, − 33.63, − 35.15, 
− 34.57, and − 26.69 kcal/mol for compounds FDB001395, FDB029219, 
FDB030757, FDB031079, and standard non-covalent inhibitor VBY, 
respectively. Binding interaction analyses revealed that all molecules 
were found to form a number of intermolecular interactions such as 
hydrogen bonds (HB), hydrophobic and pi(π)-stacking interactions, etc. 
Initially, to check the reproducibility of the employed docking protocol, 
the interactions and binding mode between the PLpro and 
co-crystallized non-covalent inhibitor VBY were explored by super-
imposing the originally attached ligand and re-docked VBY ligand poses 
and found their RMSD value of 1.61 Å. The superimposed re-dock pose 
of the standard ligand VBY and originally attached co-crystallized ligand 
VBY was derived from the re-docking protocol and depicted in Fig. S1 
(Supplementary file). It was truly interesting to observe the study 
finding that re-docking protocol was successfully able to reporduce a 
nearly identical binding orientation for the ligand VBY at the active site 
of the PLpro protein, and hence indicating true efficiency of the utilized 
docking protocol. The binding interaction profile of VBY was revealed 
by the HB interactions with amino acid residues Asp164, Glu167, 
Gln269, and Tyr273 of SARS-CoV-2 PLpro. Moreover, few other residues 
such as Asp164, Pro247, Pro248, Tyr264, Tyr268, and Thr301 were seen 
to connect with VBY through hydrophobic bonds. Beyond that residue 
Tyr268 also formed two pi-stacking interactions with VBY. Similar to 
co-crystal ligand VBY, Asp164 formed two HB interactions with two 
different hydroxyl groups attached to the pyran ring in FDB001395. One 
of the above hydroxyl groups was found to be crucial in forming two HB 
interactions with Arg166. Cyclohexene ring present in FDB001395 
successfully interacted with Tyr268 through three hydrophobic in-
teractions. Moreover, the seven membered ring present in the molecule 
was also connected with Pro248 via hydrophobic contact. One of the 

two oxo functional groups attached to the terminal cyclic ring in 
FDB029219 was formed one HB interaction with Tyr273. The same 
terminal hexacycle ring was critically formed one hydrophobic inter-
action with each of Pro248 and Tyr264. Beyond that, Tyr268 was seen to 
connect to FDB029219 through a hydrophobic and pi-stacking. Inter-
estingly, FDB029219 interacting with amino acids of PLpro were found 
to be common to interact with the co-crystal ligand, VBY. A number of 
HB and hydrophobic interactions were observed between FDB030757 
and ligand-binding amino residues of PLpro. One of the hydroxyl groups 
attached to the terminal phenyl ring was potentially formed two and one 
HB interactions with Asp166 and Glu167, respectively. Two out of three 
hydroxyl groups attached to the terminal hetero-cyclic ring formed one 
and two HB interactions with Asn267 and Gly266, respectively. Tyr268 
was seen to establish one HB interaction with an -oxo group present in 
between two fused rings and a terminal heterocyclic ring in FDB030757. 
Three important hydrophobic interactions were observed between the 
conserved amino acid Tyr268 and FDB030757. The hydroxyl group 
attached to the phenyl ring of FDB031079 was found to be very 
important for forming a strong HB interaction with residues Lys157 and 
Leu162 of SARS-CoV-2 PLpro protein. In addition, the -oxo group pre-
sent in the linear chain in between two rings was connected via HB 
interaction with Gln269. Both the rings and the linear chain present in 
FDB030757 were found important for forming one hydrophobic inter-
action with each of amino acid residues Asp164, Tyr264, Tyr268 and 
Gln269 of the SARS-CoV-2 PLpro protein. It was interesting to observe 
that residues Asp164, Tyr264, Tyr268 and Gln269 were found to be the 
common interacting amino acid residues as of the standard inhibitor 
VBY. 

3.3. Molecular dynamics simulation 

The dynamic behaviour and stability of PLpro protein bound with all 

Fig. 3. A) Molecular binding interactions of proposed food compounds bound with SARS-CoV-2 PLpro protein obtained in docking analyses, B) Binding mode of 
proposed food compounds (displayed in stick) inside the active site cavity of SARS-CoV-2 PLpro protein (displayed in surface view presentation). 
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potential dietary compounds as well as non-covalent inhibitor VBY were 
evaluated using an all-atoms 100 ns MD simulation study. Best docking 
poses of each food compound attached with PLpro protein were sub-
jected to conventional MD simulations study. The MD simulation tra-
jectories were assessed to determine different trajectories analyzing 
parameters such as protein backbone RMSD, root mean square fluctu-
ation (RMSF), the radius of gyration (RoG) and Solvent accessible sur-
face area (SASA), and binding free energy using the MM-GBSA 
technique. Values of each trajectory analyzing parameters in terms of 
maximum, minimum and average values for RMSD of both the PLpro 
backbone and ligand atoms, RMSF, RoG, and SASA profiles are given in 
Supplementary Table S1. 

3.4. RMSD analyses of the SARS-CoV-2 PLpro bound with food 
compounds 

The protein backbone RMSDs were calculated to assess the deviation 
of the SARS-CoV-2 PLpro protein backbone bound to all potential di-
etary food compounds. Fig. 4 shows the PLpro protein backbone RMSD 
values for each frame generated in the MD simulation study during 100 
ns run with all four food compounds. It was found that PLpro protein 
backbone bound with proposed food compounds viz. FDB001395, 
FDB029219, and FDB031079 had consistent RMSD values with very 
small deviations throughout the simulation run, indicating the strong 
interaction stability of the SARS-CoV-2 PLpro protein-food compound 
complexes. Only for the dietary compound FDB030757, very little 
oscillation was observed in RMSD values till ~63 ns. However, such 
fluctuations were not consistent during the entire time span of simula-
tion. Close observation reveals that such higher RMSD value (~4 Å) for 
dietary compound FDB030757 do not imply any conformational 
changes in protein backbone structure because the increased RMSD 
gradually started to maintain an equilibration state immediately after 
~64 ns time span until the end of simulation run period and maintained 
such enough consistency without further fluctuation in the protein 
backbone RMSD values. 

Likewise, the RMSDs of protein backbone atoms, ligand RMSDs were 
also calculated for all dietary compounds revealed similar RMSD profiles 
as three food compounds, viz. FDB001395, FDB029219, and FDB031079 
remained consistent throughout the simulation time span. However, for 

another dietary compound FDB030757, a slight fluctuation was 
observed for a certain time period (Fig. 5). Precisely, the convergence in 
RMSD values for dietary compound FDB030757 was found starting from 
the simulation run to ~22 ns, and thereafter little fluctuation was 
observed for a short time period (~23–37 and ~63–100 ns) with a 
highest average RMSD value of 1.604 Å among all compounds, 
throughout the simulation period. Moreover, Fig. S2 (Supplementary 
data) depicts the locations of all the dietary food compounds simulated 
complex structures during the entire MD simulation at a 20 ns interval 
time period (i.e. at 20, 40, 60, 80, and 100 ns), which suggests that all 
proposed dietary food compounds occupied their positional conforma-
tion tightly at the active site cavity of the SARS-CoV-2 PLpro protein till 
the end of the simulation run, and hence probably showed almost stable 
conformations for the protein-ligand complexes. Largely, the low RMSD 
values of the SARS-CoV-2 PLpro protein backbone atoms suggest that all 
of the molecular systems remained stable during the entire span of MD 
simulation bound with selected proposed food compounds. 

3.5. RMSF analyses of the SARS-CoV-2 PLpro bound with food 
compounds 

The SARS-CoV-2 PLpro protein backbone RMSF values calculated for 
each residue and plotted against time of simulations is portrayed in 
Fig. 6. Although very high RMSF values were observed for all com-
pounds bound with PLpro protein, however, fluctuations were not 
observed in a large scale. The RMSF plot indicates that all compounds 
attached with SARS-CoV-2 PLpro protein and each residue fluctuation 
have been measured within the range of 1.589–40.239 Å. Table S1 
shows the maximum, lowest, and average RMSF values computed from 
MD simulation trajectories for each compound bound state with SARS- 
CoV-2 PLpro protein. It was observed that amino acid residues approx-
imately extending from 14 to 26, 36 to 46, 181 to 196, and 219 to 234 
fluctuated on higher scales for food compounds FDB029219 and 
FDB030757 in comparison to other compounds. These major fluctua-
tions were observed probably due to protein structural conformations as 
the loop regions spanning form residues ~185–200 and 220–230, which 
are positioned away from the binding pocket. Moreover, these specific 
types of RMSF fluctuations in these amino acid residues were expected 
because no proposed compounds were found to be accompanied to form 

Fig. 4. RMSD values of SARS-CoV-2 PLpro protein backbone bound with proposed food compounds FDB001395, FDB029219, FDB030757, FDB031079 and non- 
covalent standard inhibitor (VBY). 
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any kind of molecular binding interaction at those regions of the studied 
protein. Not only the present study was reveal such an interesting 
observation, but also similar types of fluctuations in residues level at 
that region of SARS-CoV-2 PLpro protein was also noted in many other 
studies reported earlier [62–66]. Otherwise, overall, all SARS-CoV-2 
PLpro protein-ligands (i.e. complexes of FDB001395, FDB031079, and 
VBY) complexes disclosed a similar arrangement of RMSF values during 
the entire span of the simulation period. The degree of flexibility in 
terms of fluctuations found at the residue level at a lower scale likely 
indicates that there was no discernible triggering impact or local alter-
ations associated with SARS-CoV-2 PLpro protein amino acid residues 
during simulation. 

3.6. RoG analyses of the SARS-CoV-2 PLpro bounds with food 
compounds 

Another important MD simulation trajectory analyzing parameter, 
RoG was used to assess the compound bound state of SARS-CoV-2 PLpro 
protein structural compactness or folding organization in a dynamic 
environment for all complexes, including the standard compound VBY. 
The average RoG values of compounds FDB001395, FDB029219, 
FDB030757, FDB031079 and VBY were observed as 22.633, 22.698, 
22.734, 22.053, and 22.766 Å. The RoG values of each SARS-CoV-2 
PLpro protein frame bound with proposed food compounds is plotted 
against time and displayed in Fig. 7. As presented in Fig. 7, RoG values 
showed that all food compounds bound to the SARS-CoV-2 PLpro pro-
tein complex remained firmly folded throughout the simulation period 
with no visible changes in RoG plot, except for the standard compound. 
In particular, the SARS-CoV-2 PLpro protein structure showed a some-
what similar pattern of RoG values bound to all proposed food com-
pounds with a very less magnitude of fluctuations for the entire MD 
simulation span. However, for the non-covalent standard inhibitor VBY, 
little bit fluctuations were observed in RoG values indicating some 
changes during the protein folding state or less compactness attained for 
the SARS-CoV-2 PLpro protein structure with the bound state of VBY. 
Hence, observing such less variation in RoG values for the proposed food 
compounds might indicate that all compounds bound to the SARS-CoV-2 
PLpro protein structure were stably folded and remained compact 
throughout the simulation run period. The maximum, minimum, and 
average values of RoG were calculated for all compounds from MD 
simulated trajectories and presented in Table S1. 

3.7. H-bond interaction analyses of the SARS-CoV-2 PLpro bound with 
food compounds during MD simulation 

The distribution of H-bond interactions was calculated throughout 
the simulation run period for all compounds, including the standard 
compound VBY and is displayed in Fig. 8. It was revealed that food 
compounds FDB001395 and FDB030757 showed maximum numbers of 
H-bond interaction formation during simulation in turns of creation of 4 
numbers of H-bond interaction for the certain time period. The other 
two food compounds FDB029219 and FDB031079, also created H-bond 
interactions during MD simulation. However, a relatively less number of 

Fig. 5. Ligand RMSD bound with FDB001395, FDB029219, FDB030757, FDB031079 and standard (VBY).  

Fig. 6. RMSF values of SARS-CoV-2 PLpro backbone bound with food com-
pounds FDB001395, FDB029219, FDB030757, FDB031079 and non-covalent 
standard inhibitor (VBY). 
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H-bond interactions was observed i.e. 2 and 3, respectively. On the other 
hand, standard inhibitor VBY created two H-bond interactions with 
SARS-CoV-2 PLpro protein. Interestingly, in the present study docking 
based inter-molecular interactions analyses also revealed similar 
numbers of H-bond interactions with proposed food compounds. 
Moreover, in large ensembles of molecular structures, H-bonding plays 
an essential role in interactions of molecular structures, as well as 
monitoring and directing structural changes and kinetic processes. 
Therefore, it might be postulated that, in comparision to the standard 
compound VBY, all proposed food compounds can tightly hold their 
chemical conformity inside the catalytic site of SARS-CoV-2 PLpro 
protein through H-bond interaction, and therefore more suitable for 
implicating necessary modulating or inhibitory action for the studied 

protein. Furthermore, to understand the actual drug binding site at the 
SARS-CoV-2 PLpro protein, few key amino acid residues that sustained 
different types of intermolecular interactions profiles with identified 
bioactive food compounds for a longer run period were investigated. The 
observed key residue interactions with each identified compound is 
depicted in Fig. 9. Many close-proximity residues of the catalytic triad of 
PLpro protein was found to be capable of successfully maintaining a 
biologically relevant intermolecular interactions network for the ma-
jority of the proposed compounds. In particular, residues Tyr258, 
Tyr262 and Gln263 were found to be critically important for establish-
ing several types of intermolecular interaction in dynamic conditions. 
Such a diverse intermolecular interaction profile achieved through key 
residues’ involvement may certainly determine a stable complex 

Fig. 7. RoG values of SARS-CoV-2 PLpro backbone bound with food compounds FDB001395, FDB029219, FDB030757, FDB031079 and non-covalent standard 
inhibitor (VBY). 

Fig. 8. Distributions of H-bond interaction of bound food compounds FDB001395, FDB029219, FDB030757, FDB031079 and standard non-covalent inhibitor (VBY) 
with SARS-CoV-2 PLpro protein during 100 ns MD simulation. 
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structure to confirm binding poses obtained from MD simulations. 

3.8. SASA analyses of the SARS-CoV-2 PLpro bound with food 
compounds 

Fig. 10 shows the SASA traces during the MD simulation run period, 
which indicate that almost all compounds bound to the SARS-CoV-2 
PLpro protein displayed consistent SASA values, and hence proposing 
smooth structural relaxation with uniform solvent density around the 
protein. Precisely, SASA is defined as the space of the protein that is 
usually exposed enough to make possible interactions with the nearest 
or other neighboring solvent molecules. In terms of MD simulation- 
based SASA analyses, changes in the accessibility of protein to solvent 

were calculated versus time span and found to be similar for all proposed 
food compounds including the standard VBY. It was found that the 
maximum SASA values for all compounds ranged from 14979.651 to 
14655.385 Å2. The average SASA scores for compounds FDB001395, 
FDB029219, FDB030757, FDB031079 and VBY were observed to be 
13690.230, 13467.870, 13805.200, 13703.060 and 13715.010 Å2, 
respectively. Such observation confirmed that there was no such uneven 
distribution of solvent accessibility of the hydrophobic core of SARS- 
CoV-2 PLpro protein upon binding of selected food modulator/inhibi-
tor compounds. Moreover, the obtained consistent SASA profile for all 
compounds bound with SARS-CoV-2 PLpro protein alternatively also 
signifying folding of protein stably without any hindrances from sur-
rounding solvent exposers and/or any specific hydrophobic interactions 

Fig. 9. Key amino acid residues of SARS-CoV-2 PLpro protein participating in different types of intermolecular interactions (H-bond and hydrophobic contacts) 
formation during MD simulation of the proposed dietary bioactive compounds. 

Fig. 10. PLpro backbone SASA profile bound with FDB001395, FDB029219, FDB030757, FDB031079 and standard (VBY).  
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that probably occurred in a dynamic state. 

3.9. Importance of binding interactions of identified dietary compounds 
with SARS-CoV-2 PLpro protein and comparison with previously reported 
study outcomes 

There are a number of studies that have previously reported the 
significance of various intermolecular interactions between SARS-CoV-2 
PLpro protein and small molecular compounds identified through 
different experimental techniques, including in silico approaches like 
molecular docking and MD simulations. In the present study, similar and 
comparable forms of intermolecular interactions were also discovered at 
the active site region of SARS-CoV-2 PLpro protein residues and iden-
tified bioactive dietary compounds. A virtual screening study was con-
ducted by S. Rajpoot et al. [67], reported that some naturally occurring 
drugs, namely Naloxone, Fluoxetine, Benzenebutyric acid, and Ace-
tylsalicylic acid, exhibited docking based binding energy scores of − 7.8, 
− 7.5, − 6.5, and − 5.3 kcal/mol, respectively, against SARS-CoV-2 PLpro 
protein. A few amino acid residues like Pro248, Tyr264, Gly266, 
Tyr268, Gln269, and Tyr273 of SARS-CoV-2 PLpro were found to 
participate in formation of various intermolecular interactions with the 
reported naturally occurring drugs. In the present study, very similar 
residue involvement was found for most of the identified dietary com-
pounds in the docking study. The said study also explained a 50 ns MD 
simulation for Naloxone and Fluoxetine which revealed conformational 
stability of the complexes with a lower RMSD value in dynamic condi-
tions [67]. Earlier, screening of potential drug candidate from Azadir-
achta Indica (Neem) extracts against SARS-CoV-2 PLpro suggested that 
Desacetylgedunin as a potential compound exhibited a docking score of 
− 7.3 kcal/mol. Interestingly, the study reported a relatively less stable 
conformational integrity for the protein-ligand complex, as large fluc-
tuations were observed in RMSD values (~after 40 ns) studied in MD 
simulation. Such an observation might be due to the involvement of 
different amino acid residues of PLpro protein in various interaction 
formations [68]. Recetly, Y. Xu et al. [69], performed a high-throughput 
drug screening targeting SARS-CoV-2 PLpro resulting in the identifica-
tion of Tanshinone IIA sulfonate sodium and chloroxine as the potential 
inhibitors of SARS-CoV-2 PLpro exhibiting docking based binding af-
finities of − 8.6 and − 5.9 kcal/mol, respectively. In docking study, they 
discovered that Tanshinone IIA sulfonate sodium interacted through π-π 
stacking and cation-π interaction with residues Tyr268 and Arg166, 
respectively. On the other hand, another compound chloroxine, estab-
lishes a binding interaction with Arg65. However, a long range MD 
simulation study revealed persistent associations of important amino 
acid residues Tyr264, Tyr273, Tyr268, and Gln269 in various interac-
tion formations [69]. The present study also establishes a similar kind of 
binding interaction mechanism for the majority of the identified dietary 
compounds as exhibited in docking and MD simulation studies. Another 
study identified some structural analogues (e.g. Jun9-53-2, Jun9-72-2, 
and Jun9-75-4) of GRL0617 as potent inhibitor compounds for 
SARS-CoV-2 PLpro protein [70]. The docking study highlighted a few 
amino acid residues like Leu162, Asp164, Tyr268, and Gln269 as 
important residues involved in different types of intermolecular in-
teractions (such as H-bond, hydrophobic, and π− π stacking) identified 
for studied analogue of GRL0617 [70]. In addition, for all the com-
pounds, 100 ns MD simulation study also exhibited significantly smaller 
RMSD values for SARS-CoV-2 PLpro protein backbone atoms. In the 
present study, a very similar binding interaction profile and RMSD 
values were observed for all the studied dietary compounds which 
suggests that the proposed compounds may have better or comparable 
binding inhibition affinity than the standard compounds VBY or some 
previously reported PLpro inhibitors. In an another study by Chen et al. 
[71], investigated the binding interaction affinity of Ginkgolic acid as a 
specific potent covalent inhibitor of SARS-CoV-2 PLpro protein and 
highlighted a binding affinity score of − 4.9 kcal/mol in docking study 
which was relatively lower binding affinity score than the proposed 

dietary bioactive food compounds. In an earlier reported study, a very 
small set of chemical library consisting of only 176 phytochemicals from 
five West African antiviral culinary herbs were screened against 
SARS-CoV-2 proteases. The said in silico study represented the pytho-
chemical compound Vernonioside A4 as the most potent inhibitor for 
SARS-CoV-2 PLpro protein with a binding affinity score of − 7.2 kcal/-
mol [72]. The docking obtained interaction analysis of Vernonioside A4 
revealed that a few amino acid residues of the PLpro protein, such as 
Pro248, Gln250, and Try268 were found to participate in H-bond 
interaction. The said study also reported a 100 ns MD simulation study 
for the PLpro-Vernonioside A4 complex which turned out to be stable 
complex formation for a longer run period. The highlighted maximum 
RMSD value for PLpro protein backbone bound with Vernonioside A4 
compound found to be ~2.5 Å. In the similar fashion, the present study 
was also corroborated with the outcome of the various parameters 
including the binding interaction profiles, conformational arrangement 
of the protein bound with proposed bioactive food compounds, and 
stability of the studied SARS-CoV-2 PLpro protein-dietary complexes, 
which were found to be highly consistent and may have paved the way 
for being responsible for modulating the biological function of the 
SARS-CoV-2 PLpro protein. 

3.10. MM-GBSA based binding free energy estimation for protein-ligand 
complexes 

The binding energy estimated through the MM-GBSA approach from 
the MD simulation trajectories is considered to be more accurate and 
rigorous in nature. Hence, to assess the binding affinity of the final 
proposed molecules, the MM-GBSA approach was considered and 
binding energy recorded. Total binding free energy (ΔGbind) along with 
other components such as Electrostatic, van der Waal’s energies, and 
calculated standard deviation values are given in Table 1. All proposed 
dietary molecules including the standard compound were found to have 
a strong binding affinity towards the SARS-CoV-2 PLpro protein. 
Particularly, the binding free energy of compounds FDB029219, 
FDB001395, FDB030757, FDB031079 and VBY was found to be 
− 24.440, − 24.914, − 15.563, − 28.597 and − 27.263 kcal/mol, respec-
tively. Only the binding affinity of FDB030757 was found to be bit less 
than other proposed food compounds and VBY, and it showed a rela-
tively lower binding free energy score of − 15.563 kcal/mol. Moreover, 
it was found that three of the proposed food compounds (FDB029219, 
FDB001395, and FDB031079) have very similar or comparable binding 
free energies like the standard compound VBY. This could be due to the 
similar chemical sub-structure found in the different proposed food 
compounds and similarity in the nature of binding interaction charac-
teristics with several amino acid residues of SARS-CoV-2 PLpro protein. 
Particularly, numerous intermolecular interactions such as hydrogen 
bond, hydrophobic, electrostatics, and π-stacking interactions were 
formed among the various atoms of food compounds and the distinct 
sub-site residues of SARS-CoV-2 PLpro protein, which convey the 

Table 1 
Average binding free energy of FDB001395, FDB029219, FDB030757, 
FDB031079 and standard compound (VBY) estimated from the MD simulation 
trajectories.  

Food compounds Energy (kcal/mol)  
aElec. bvdW ΔGbind 

cStd. Dev. 

FDB029219 − 5.379 − 28.266 − 24.440 2.482 
FDB030757 24.678 − 22.002 − 15.563 4.814 
FDB001395 − 5.938 − 30.521 − 24.914 2.222 
FDB031079 − 14.659 − 34.925 − 28.597 2.631 
VBY − 3.166 − 30.541 − 27.263 4.511  

a Electrostatic; 
b van der Waal’s; 
c Standard deviation. 
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comparable binding free energies for the identified compounds. Overall, 
it can be illustrated that all proposed molecules possess significant 
binding interaction affinity towards the SARS-CoV-2 PLpro protein, as 
observed from the obtained binding free energy estimation from their 
simulated dynamic trajectories. 

4. Conclusion 

In the present study, to screen out potential food compounds from 
the FooDB database for effective inhibition or modulation of the SARS- 
CoV-2 PLpro protein, an exhaustive molecular docking and MD simu-
lation was used. Following the effective implementation of several 
pharmacoinformatics methods, four potential SARS-CoV-2 PLpro in-
hibitors or modulators (as FDB001395, FDB029219, FDB030757, and 
FDB031079) were identified. Molecular docking revealed several sig-
nificant inter-molecular binding contacts between the functional groups 
of the identified food compounds and the catalytic amino acids of SARS- 
CoV-2 PLpro protein, which were also confirmed by all-atom MD sim-
ulations studies in a dynamic state. The high binding free energy of each 
food compound was determined by KDeep – DCNNs based application, 
which categorically explains the proposed compounds’ better binding 
affinity for the SARS-CoV-2 PLpro than the standard compound VBY. 

Binding interaction analysis was also compared with the existing 
literatures and found to be comparable binding patterns as discovered in 
several situations. The MD simulation study was revealed different 
characteristics of both the protein backbone and the food compounds 
such as RMSD and RMSF, RoG, SASA, H-bond interaction profile, etc., 
and it was discovered that the backbone of SARS-CoV-2 PLpro remained 
very stable even after binding with the suggested molecules in com-
parison to the standard inhibitor data. Using the MM-GBSA method, 
10000 molecular trajectory frames from each MD simulation complex 
were utilized to determine the absolute binding free energy, which also 
demonstrated strong ΔG values for all complexes ranging from − 15.563 
to − 28.597 kcal/mol. Overall, the extensive computational study 
observation explained that all proposed food compounds might be 
acting as crucial SARS-CoV-2 PLpro inhibitors or modulators for suc-
cessful therapeutic application in COVID-19. 
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[53] J. Träg, D. Zahn, Improved GAFF2 parameters for fluorinated alkanes and mixed 
hydro- and fluorocarbons, J. Mol. Model. 25 (2019) 39. 

[54] D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., et al., 
The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005) 
1668–1688. 

[55] S. Genheden, U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand- 
binding affinities, Expet Opin. Drug Discov. 10 (2015) 449–461. 

[56] J.A. Abdullah, B.J.M. Aldahham, M.A. Rabeea, F.A. Asmary, H.M. Alhajri, M. 
A. Islam, Synthesis, characterization and in-silico assessment of novel 
thiazolidinone derivatives for cyclin-dependent kinases-2 inhibitors, J. Mol. Struct. 
1223 (2021), 129311. 

[57] A. Onufriev, D. Bashford, D.A. Case, Exploring protein native states and large-scale 
conformational changes with a modified generalized born model, Proteins: Struc. 
Func., and Bioinform. 55 (2004) 383–394. 

[58] J. Weiser, P.S. Shenkin, W.C. Still, Approximate atomic surfaces from linear 
combinations of pairwise overlaps (LCPO), J. Comput. Chem. 20 (1999) 217–230. 
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