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The field of fall risk testing using wearable sensors is bustling with activity. In this Letter, the authors review publications which incorporated
features extracted from sensor signals into statistical models intended to estimate fall risk or predict falls in older people. A review of these
studies raises concerns that this body of literature is presenting over-optimistic results in light of small sample sizes, questionable modelling
decisions and problematic validation methodologies (e.g. inherent problems with the overly-popular cross-validation technique, lack of
external validation). There seem to be substantial issues in the feature selection process, whereby researchers select features before
modelling begins based on their relation to the target, and either perform no validation or test the models on the same data used for their
training. This, together with potential issues related to the large number of features and their correlations, inevitably leads to models with
inflated accuracy that are unlikely to maintain their reported performance during everyday use in relevant populations. Indeed, the
availability of rich sensor data and many analytical options provides intellectual and creative freedom for researchers, but should be
treated with caution, and such pitfalls must be avoided if we desire to create generalisable prognostic tools of any clinical value.
1. Introduction: Falls experienced by older people lead to
substantial morbidity and mortality, and have been identified as a
significant public health issue worldwide [1]. As a result, and due
to global ageing trends [2], fall prevention is considered vital.
Various forms of fall prevention have been shown to be effective
in the community, from home/group exercise, to multi-faceted
programmes that address a range of fall risk factors [3]. These
costly interventions can handle only limited patient volumes, as is
also the case with dedicated fall clinics and their specialised
equipment and personnel. There is thus a need, across a range of
health care sectors, to correctly detect people at risk of falling in
the wider population, and identify their fall risk factors, in order
to allocate fall prevention measures in an accurate and timely
manner. Many clinical tools have been developed for this
purpose, from subjective, questionnaire- or observation-based
tools with limited and often irreproducible prognostic value [4];
to advanced, objective balance and mobility assessments. The
latter may be considered a gold standard measurement, but have
limited value due to their one-off performance and often time-
and resource-consuming nature [5]. There is a growing interest in
an accessible, inexpensive approach that is simple to use and
removes the subjectivity of many fall prediction or fall risk
assessment tools. Ideally, such an approach would also
accommodate regular repeat testing or even long-term monitoring.
2. Wearable sensors for fall risk testing: The use of miniature
body-worn sensors for mobility-related monitoring has been on
the rise, and has especially caught the public eye in relation to
fall detection alarms [6]. Another area of use for wearable
sensors, mostly accelerometers and/or gyroscopes, has been
sensor-based fall risk testing (SFRT), which refers to fall risk
screening or assessment [7]. These sensors are portable,
inexpensive, and can continuously measure the movement of the
wearer, both in a clinic or out in the real-world environment. The
real-world option is becoming increasingly sought after due to its
inherent flexibility and the avoidance of a potential Hawthorne
effect, though real-world implementation might entail some loss
of control over issues such as correct and consistent device
placement, as well as the exact type of movement recorded at
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every stage (e.g. walking on level surface against stair
negotiation) [8–10].

The signals recorded by a wearable sensor system supply a vast
number of movement-describing quantitative variables, or features.
This detailed quantification of movement would not have been
achievable without the use of such sensors; or at most, may have
been subjectively approximated through observation, thereby re-
quiring supervised testing by qualified personnel. Researchers cur-
rently use the signal-derived features to create algorithms and
mathematical models, with the aim of predicting future fall occur-
rence or classifying people into fall risk categories.

3. Current status of SFRT literature: The landscape of SFRT
literature involving modelling (Table 1) consists of a diverse
collection of quantitative models constructed on a myriad of
different features, trained on different subject cohorts, and
achieving different accuracy levels. In a review of 40 studies
published prior to 2013, Howcroft et al. [11] highlighted notable
sensor-based features, the model types considered, the validation
processes employed and overall model performance. The authors
stressed the problematic fact that most studies used fall history
(FH), clinical assessment tools, or a combination of both as their
standard (30, 32.5 and 22.5% of the studies, respectively),
whereas the preferable option of prospective fall (PF) data (i.e.
data of real falls occurring subsequent to the fall risk assessment)
was only utilised in 15% of the studies [11].

Recently, Palumbo et al. [12] conducted an insightful probability
modelling exercise, using analytical evidence to calculate theoretic-
al estimates for the maximal prognostic abilities of an ideal fall pre-
diction tool. This exercise was based on the use of actual fall data
from four different populations (all from Australia, New Zealand
and USA), accompanied by certain assumptions regarding fall
rates and their distribution. The results indicate that the maximal ac-
curacy of a fall prediction model, attempting to identify people with
at least one fall incident over the course of a year from the starting
point (i.e. from the time of the testing) would not exceed 0.81, with
a maximal area under the curve of 0.89. The results differ slightly
for shorter or longer follow-up periods and for models intended
to identify people who fall multiple times rather than those who
fall only once during the prediction period. This report is
79
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instrumental as it forces us to examine and question the boundaries
of what we should expect to achieve in the challenging task of pre-
dicting falls.
Returning to Howcroft’s review, which presented accuracy levels

ranging from 62 to 100%, one must ask how some of the models
achieved greater accuracy than Palumbo’s suggested upper limit.
Howcroft et al. touched upon the limited validity of models
where ‘validation’ was performed only on the training data,
thereby inflating the model’s accuracy. This is indeed an issue
that plagues the published SFRT literature. The aim of the current
work is to further elaborate on concerns involving the statistical
methodologies that have been employed across the SFRT literature,
and which carry the very probable risk of generating models that
will only ever work on the data used for their training.

4. Summary of Table 1: The past two decades have been witness
to a constant rise in SFRT research and relevant publications. In this
review, we chose to focus on important aspects which apply only in
studies that employed modelling analyses, and include, for
example, methods of feature selection, the types of models used
and validation strategies (or lack thereof in some cases). A choice
was made to include only a single performance parameter per
study in column H of Table 1 (maximum accuracy for the entire
study cohort). This was done for consistency between the studies
and for the reader’s convenience; however, it is acknowledged
that this could mask certain cases of unbalanced sensitivity and
specificity outcomes. Table 1 also does not include aspects such
as subject demographics, setting type (community, hospital, aged
care facility), cohort characteristics, movement type(s), recording
period, sensor(s) and their location in order to focus on matters
pertinent to modelling and validation.
Model types used in SFRT research have predominantly been

drawn from either the regression family (multiple linear regression
to model against a numerical fall risk score, logistic regression, dis-
criminant function analysis, negative binomial regression to model
fall incidence), or the pattern classification family (support vector
machines, artificial neural networks, decision trees). Feature extrac-
tion is a meticulous process, and as such, is often not sufficiently
detailed in published papers. The chosen features, or the manner
in which their extraction was achieved, often differ between
studies. The number of features incorporated into each model also
varied substantially between studies, as did the reported model per-
formance – with accuracy levels as low as 44% [15] to as high as
100% [33]. This range is larger than that reported by Howcroft
et al. (62–100%) [11], since it encompasses several studies that
were not included in their review. The remarkably successful per-
formance of several fall risk classifiers and estimator models in
the SFRT literature should raise concern, particularly in the case
of prognostic tools reporting expected near perfect accuracy. This
issue and others will be addressed in the following sections.

5. Issue 1: publication bias: First and foremost, the persistence of
publication bias is pervasive through all of scientific research [47].
In our context, better performing models may have a greater chance
of publication due to our eagerness to reward those efforts which
appear to have been successful in creating accurate prediction
models. Unfortunately, this universal problem in research still
lacks a solution, and remains an issue that we must be mindful of
while carrying on. It is especially exacerbated through the use of
small sample sizes, where confidence intervals are large and false
discoveries become more likely. Any bias on the part of the
researchers (intentional or not) amplifies the rate of false
discovery [47]; these biases often arise through the use of
inappropriate modelling approaches (discussed in detail later), or
selective or distorted reporting, which can easily go undetected.

6. Issue 2: inadequate sample size: The power of a study (the
probability of detecting an effect when one truly exists) is
Healthcare Technology Letters, 2015, Vol. 2, Iss. 4, pp. 79–88
doi: 10.1049/htl.2015.0019
dependent on both the effect size and the number of samples
acquired to detect that effect. The effect size in fall prediction
studies is relatively small. If we achieve Palumbo et al.’s
estimated theoretical maximum of 81% accuracy in fall
prediction, compared with 56% when guessing (assuming one in
three people fall, 56% = (33%)2 + (67%)2), we obtain a Cohen’s
kappa statistic of 0.57 = (0.81–0.56)/(1.0–0.56) as a theoretical
maximum, which is defined as only a moderate agreement, or we
could say, a moderate effect size. Therefore, the statistical effect
we are looking for which allows us to predict falls is not a large
one, so we should expect many research studies in this area to
report negative results, especially if the sample size is small.

As can be observed in Table 1, sample sizes in fall studies are
often unsatisfyingly small. While clinical trials in medicine com-
monly exceed thousands of patients, many SFRT studies included
fewer than a hundred participants, with further patient or data loss
due to premature termination (illness, death, withdrawn consent),
non-compliance during unsupervised recordings, inability to
perform certain movements, or technical reasons involving the
sensor systems or signals. One of the biggest hindrances for this re-
search area, which limits sample size, is the long and intensive
follow-up period. Currently, the ideal design is to record fall
events using self-reporting diaries over a 1-year period. This follow-
up can be an expensive undertaking when it involves research staff
persistently contacting hundreds of participants to request they
return their weekly/monthly fall diaries, as well as verify or elabor-
ate on the reported information in case of a fall.

However, it is not just total sample size that we need to be con-
cerned about to ensure sufficient study power. When a study is con-
ducted where the dependent variable is the number of falls
experienced by each subject, the raw number of events needs to
be sufficiently large to avoid small-sample bias [48]. Samples
where the number of positive events is very few relative to total
sample size may give rise to distorted models [49]. Falls may
prove to be a relatively rare event, especially for moderately
healthy older cohorts. Laessoe et al., for example, reported only
14 subjects out of 94 who experienced at least one fall during
follow-up, and only four subjects who reported recurrent falls [15].
7. Issue 3: misuse or lack of model validation: This section
discusses some issues related to model validation which are
common throughout all disciplines relying on learning algorithms
to infer the structure of experimental data.

Throughout this section, when the term ‘training’ is used, it
implies the entire model selection and fitting procedure. This is a
critically important point. Model selection relates to all steps
involved in training a model which is to be later evaluated, includ-
ing: (i) selecting which features should be included; (ii) choosing
which specific pattern recognition model should be used; (iii)
choosing the complexity/structure of the classifier model, if there
is such an option; and (iv) final tuning of the model hyperpara-
meters. In completing steps (i)–(iv), the test data should never be
used. There is more to say on this topic of feature and model selec-
tion later, but first we discuss various model validation procedures
and their relative advantages and disadvantages, assuming that
model specification and training is done correctly throughout.
7.1. Resubstitution: Possibly the worst type of validation which can
be performed is called resubstitution. The model is trained using all
of the data and then validated by resubstituting the same data as test
data. It is obvious that a sufficiently complex model could fit the
training data (and in this scenario also the test data) such that
perfect performance can be achieved. This method is never
recommended unless some strict regularisation methods are
applied to the model in order to constrain its flexibility and
reduce the likelihood of overfitting.
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7.2. Holdout: A common approach to model validation is to use a
holdout technique. The data is randomly split into training and
testing groups (often in the size ratio of 2/3 and 1/3,
respectively). If there is a known confounding issue, such as the
cohort consisting of both able and extremely frail individuals, this
information can be used to balance the groups through a process
known as stratification. The model is then trained with the
training data and validated using the testing data. This approach
has some very appealing statistical properties; the most important
of which stems from the fact that the test data is completely
independent and identically distributed (i.i.d.), allowing
confidence intervals to be calculated for many common
performance metrics, provided the trained model is the final
model to be used in the wild. If the model is then retrained
before deployment, using all of the available data, these
confidence intervals do not capture the sensitivity and the
stability of the algorithm to changes in the training data, and
could result in much worse generalised performance than was
estimated. This sensitivity of models to changes in training data
is an open area of research in the pattern recognition field [50].

A criticism of the holdout technique, particularly for small data-
sets, is that it is wasteful or inefficient. The holdout dataset used for
testing is small, resulting in large confidence intervals; the training
set is also relatively small resulting in weaker models (often referred
to as a ‘negative bias’ in the estimated results). The influence of ran-
domly partitioning the data into training and testing sets introduces
an additional variance into model training, which is exacerbated if
the learning algorithm is not stable, as discussed above. The ineffi-
ciencies of holdout methods have inspired the cross-validation (CV)
approach to model validation, but as we will discuss below, CV
estimates can have a very large variance which is difficult to esti-
mate [51], and it is still unknown under what conditions (sample
size, choice of learning algorithm etc.) CV can theoretically give
better estimates of future model performance compared with
simple holdout validation [50].
7.3. Cross-validation: CV involves partitioning the N data samples
into K non-overlapping subsets, often called folds. The model is
trained using K−1 of these folds, and tested with the remaining
fold. Training and testing is repeated K times, so that the data in
each fold is tested once. The final accuracy is reported as the
testing accuracy over the N test samples. The choice of K is
typically chosen to be K = 5 or K = 10 on purely empirical
grounds [52], although K = N, called leave-one-out CV, is
commonly used. There are other similar techniques, such as
bootstrapping or jackknifing, but they operate in a similar manner.

CV has become a pervasive technique through all of machine
learning for estimating generalised model performance, despite its
statistical properties being very poorly understood [50, 51]. This
is extremely worrying, given its use to inform decisions in biomed-
ical fields. More recently, deeper analyses of this validation method
have uncovered some unsavoury properties, particularly for smaller
datasets [53] and those with outliers [51], which raise questions
over whether there is benefit in using CV as a performance estima-
tor at all. In particular, we do not know yet how to estimate the vari-
ance of CV estimates and hence calculate confidence intervals [51].
The primary problem here is that the test results derived from each
test fold will at some point be part of K−1 other training data
subsets, and this interdependence precludes the use of the central
limit theorem to estimate confidence intervals, as the inter-fold
errors are not i.i.d. This result should be emphasised: the use of
CV is widespread in many disciplines, but we have no way to reli-
ably appraise the precision of the resulting performance estimates,
which can be very poor if the sample size is small. Occasionally,
authors list the variance of results between CV folds as a measure
of confidence in the mean result, but this has not been theoretically
shown to be a meaningful measure of the variance/precision of the
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mean CV result, and in practice can overestimate confidence in the
future performance of the model [51].

Furthermore, to repeat the important point stated earlier, it is not
theoretically known (for all learning algorithms) whether CV gives
a better estimate of future model performance than a simple holdout
validation method, especially for datasets with small sample sizes
[50, 51, 53]. This is somewhat ironic, since the unavailability of
additional validation data is the primary motivation for using CV
in the first place.

7.4. Repeated CV: As stated above, there is an additional variance
introduced in CV due to how the data are randomly partitioned into
training and testing sets, and some have tried to average this effect
away using repeated CV; that is, repeating the partitioning and CV
processes multiple times with the same data. However, it has been
shown that the more serious effects discussed above, of inter-fold
dependence of data and the negative bias introduced by only
training on K−1 folds (especially if the learning algorithm is
unstable), are more dominant confounders, and this repeated CV
approach is probably a waste of computational resources and time
[51, 54].

The point to be made in all of this is that we should be wary of the
results reported using CV, and perhaps even prefer results obtained
using a wasteful holdout method for which the margin of error is
easily calculable (assuming the trained model is the final model
to be used in the future), although this margin may be unacceptably
wide for small sample sizes. Independent external validation of the
final model in a separate study with a large sample size would be
ideal. One might argue that there is no distinction between using
a holdout method and performing an external validation (that is,
repeating the entire study), but this is not true for several reasons.
First, performing an external validation using different testers and
cohorts can uncover experimental biases. Second, as will be dis-
cussed later, the model training process is fraught with temptation
and opportunity to overfit the available data – how many reported
research results were the outcome of a single modelling attempt,
where the researcher has not tweaked the model parameters at
least once to improve the result? External validation removes this
temptation.

With this background in place, we can return to the discussion of
validation of specific fall prediction models reported in the litera-
ture. Many SFRT studies noted that their performance reports
were based on resubstitution, which could result in over-optimistic
estimates of model performance if the model training process is not
sufficiently constrained. Some papers did not mention model valid-
ation at all, which leads to the assumption that they also utilised
resubstitution, and hence were categorised as such in Table 1.
Other studies used various forms of CV, which carries a range of
implications, as discussed above. It seems that only Giansanti
et al. [16] and Liu et al. [44] employed testing and training on
clearly separate datasets. The very high accuracy of Giansanti’s
study [16] implies that the test data was possibly introduced
during the training phase, perhaps through reuse of the same
dataset across a series of publications [16, 55, 56], through addition-
al feature and model evaluation which was not reported, or simply
because the performance oriented mobility assessment (POMA)
score is easier to estimate than falls are to predict (falls are not
used in their modelling).

Very few authors provide any measure of confidence in their
results. The difficulties in calculating any confidence intervals for
the holdout method (when the model would be retrained before de-
ployment), or whenever CV is employed, have already been dis-
cussed above. Among the few articles which do report confidence
measures, Greene et al. [37, 38, 43] reported confidence intervals
from repeated CV; however, as discussed earlier, such measures
have not been shown to be reliable measures of the true variance
of CV. In general, estimating confidence intervals for CV results
is a difficult problem that has yet to be conclusively solved [50].
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To summarise this section, the main concern arising from this
review is the complete lack of external validation across the
SFRT literature. In order of preference, external validation is pre-
ferred first, followed by holdout validation (listing confidence inter-
vals for testing), then CV. Resubstitution validation or complete
omission of model testing is not helpful and should not be pub-
lished (this includes standard results of stepwise regression per-
formed by statistical packages). Researchers in the SFRT field
could learn from previous attempts to develop non-sensor-based
fall risk assessment tools, which have had their own trouble with
external validation, in that some have not been validated properly,
while others have performed poorly in external validation studies
(i.e. when conducted in a different subject group and/or a new
site, and sometimes also by authors other than the original tool
developers) [57, 58]. It would be best to establish early on
whether SFRT is also handicapped by this aspect, or whether the
greater measurement objectivity offered by the use of sensors
would be able to overcome certain differences between subject
cohorts, sites and experimenters, which seem to stand in the way
of establishing the generalisability of many prognostic fall risk
tools.
8. Issue 4: the curse of dimensionality: This section deals with the
problem of model selection. This problem can be further divided
into two issues which are distinct yet seemingly intertwined. The
first issue relates to the problem of selecting an appropriate model
(selecting features, choosing the model type and structure, setting
hyperparameters) when there is a finite pool of data available to
do so. The second issue relates to the (now all too common)
abuse and misuse of machine learning techniques, usually in an
attempt to guide model selection in the face of too few data from
which to learn the best choice of model.
Selecting a model involves deciding which raw data will be ana-

lysed, which features will be extracted from these data, which learn-
ing algorithm will be used, and specifying any options available
within this algorithm, such as setting and thresholds or hyperpara-
meters. The ‘curse of dimensionality’ is a phrase which captures the
sense that there are infinitely many ways to extract features from
signals and an endless list of learning algorithms, and that this glut-
tony of choice is unhelpful when there is only a finite pool of data
upon which to base a final decision, when the hope is that the model
will later perform well during everyday use in other relevant
cohorts.
To frame this in the context of SFRT, the richness of inertial

sensor data entices researchers into exploring as many feature sets
and processing techniques as we find interesting. Some researchers
combine signal features with other potential predictor or confound-
ing variables, such as demographics (age, gender, weight, height,
past falls) or results of other assessment tools. The consequence
of this is that the model building process begins with a very large
pool of features from which we must find the most potent of predic-
tors to construct the model(s), or equivalently, having a low ratio
between number of events and number of selectable features avail-
able at the model development stage [37]. Examples of this in the
literature include the considerable number of covariates, particular-
ly sensor features, in the studies reported by Narayanan et al. [24],
Liu et al. [26, 27, 44], Doheny et al. [40] and Greene et al. [37, 43].
Given a limited sample size, the first realistic solution is to try to

reduce the size of the feature pool prior to model building as sens-
ibly as possible. Ideally, knowledge from earlier research should
inform this cull, resulting in a smaller number of features that are
more likely predictive, but this approach is confounded by the
fact that earlier research is also affected by the same problems dis-
cussed throughout this Letter. Researchers certainly strive to derive
meaningful features from the sensor signals by incorporating a
priori information regarding the nature of gait, for example, in an
attempt to maintain clinical relevance [8, 42]. This approach
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should be encouraged as it could resolve some of the issues outlined
in this Letter.

All remaining methods used for model selection, different to
those that use external a priori knowledge, are driven solely by
an analysis of the available data. Echoing the previous section on
validation, in what follows the most important point to be made
is that the testing data (both features and targets) should never
be used to inform the model selection procedure. Notably, feature
selection is sometimes considered a procedure which is external
to model selection, but this is a fallacy; the act of feature selection
can simply be considered as setting binary model hyperparameters,
and therefore relates to model selection.

If a holdout validation method is used, only the training set
should be used for model selection, including feature selection.
This principle holds also for CV, except this entire model selection
process will be repeated K times, for each of the K folds. This will
result in K sets of model parameters (features, hyperparameters
etc.), making it difficult to report a single preferred model
without performing an additional final model selection using all
of the data once the usual CV process to estimate future perform-
ance is complete. Another consequence of using CV to estimate
future model performance is that it is often inconvenient for
authors to publish the full details of all the K feature subsets that
were chosen, which is understandable but undesirable as it limits
the extent to which future work can build on past advances. The
supply of such details in attached appendices or as histogram
plots where applicable may be beneficial for pre-selecting features
for future research, or understanding model stability.

It should also be noted here that CV is often used again as part of
the model selection process, as it provides a reasonably strict way to
evaluate the usefulness of a potential feature or model parameter.
This should not be confused with the use of CV to estimate general-
ised future performance of a specific selected model, discussed in
the previous section. This second CV loop, used to select features
and other model parameters, is nested within the outer validation
loop and operates only on the training data, subdividing it into a
further K folds. Should holdout validation be used instead of CV,
there is only one training set for this CV-based model selection pro-
cedure to operate on, so the picture is clearer, and a single selected
predictors set may be published; however, it may be difficult to
know how stable the algorithm will be if retrained by another re-
search group on new data.

An alternate approach to feature selection, called stepwise regres-
sion (linear, logistic, binary logistic etc.), is implemented by many
common statistics packages [59]. This stepwise feature selection
method performs t-tests on model coefficients after a potential
model is trained using a subset of selected features (often called pre-
dictors). The outcomes of these t-tests guide the inclusion or removal
of features until no further features meet the criteria for inclusion.
There are two potential pitfalls with the use of this method. First,
if a sufficient number of features are available for consideration,
chance agreement between the modelling target and the potential pre-
dictor may lead to its inclusion (this relates to the standard multiple
comparisons problem), prompting the use of stricter thresholds on the
t-test p-values for feature inclusion. The second pitfall relates to val-
idation. The classification results reported by many software
packages for the final model are the result of resubstitution-based val-
idation, and hence very likely overly-optimistic, as the test data has
not been held separate from the training data. If a statistics software
package has the option to perform CV, this should be done, or pref-
erably test data should be separated before modelling begins to allow
holdout validation later.

Note also, on the issue of separating training and test data, even if
a method similar to principal component analysis, which is ignorant
of the target values (e.g. classification sub-groups or fall counts), is
used to reduce the dimensionality of the feature pool prior to model
selection, the data transformation should only be learned from the
training set and then later applied to the testing set.
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For the interested reader, some common pitfalls of model selec-
tion and validation in pattern recognition were bemoaned in a very
clear way some 20 years ago by Chatfield [60], and again more re-
cently by Nowotny [61], indicating that the issue has not improved.

Given what is presented above, it should be obvious that (espe-
cially for the field of SFRT research, which has at most several
hundred learning examples) including a large number of features
at the outset, or a learning algorithm with great flexibility, or a
learning algorithm which is not stable, will result in a model
choice which is highly unlikely to generalise well. We now
discuss the SFRT literature in relation to these issues.

As can be seen in column F of Table 1, the SFRT literature dis-
plays varied approaches to the issue of feature pre-selection, prior to
their use in model construction and validation. The use of
approaches termed ‘exploratory analysis’ or ‘preliminary analysis’
which use all data to pre-select features for modelling should
raise our level of concern, as features should only be selected
from the training data and done so independent of the test data.
Pre-selection was sometimes done by omitting features that did
not achieve a desired level of statistical significance when compared
between the subject sub-groups or when mapped individually to the
dependent variable using all of the available data. As explained
above, this is advised against; moreover, making multiple compar-
isons between every potential predictor and the dependent variable
dramatically increases the chance of a type-I error occurring [62].
As mentioned earlier, this risk associated with performing multiple
comparisons is also true for stepwise regression methods if proper
correction of inclusion thresholds is not applied. Only very few
groups attempted to address the problem of multiple comparisons,
in general, by using lower p-values or known adjustments, such
as the Holm correction, the Hochberg technique or Bonferroni [8,
28, 31, 33].

Another approach to reducing the size of the feature pool
involves the removal of features that correlated with each other
by more than a certain percentage, under the assumption that high
inter-correlation suggests a degree of redundancy. Weiss et al. [8]
noted removing features with greater than 80% inter-correlation,
while others simply noted using features with low inter-correlation
[18], removing features that violated multicollinearity [28], using
correlation-based filtering [46], or removing ‘redundant gait para-
meters’ (without further clarification) [19]. In the absence of suffi-
cient amounts of data, this is a valid method to select potential
predictors with a much lessened risk of the selected model overfit-
ting the training data; although we now risk missing the effect if a
salient feature is erroneously discarded in this process which pur-
posely ignores modelling target values. Again, it is important that
only the correlations among the training data be used in this oper-
ation, and the test data must be kept safely separated. Another
method involved the removal of sensor features with low intra-class
correlations in reliability testing (test–retest) [63], an issue which is
worthy of a separate discussion. Most studies, however, did not
address or resolve possible feature correlations or their reliability.

Many groups did not attempt to reduce their initial feature pool at
all, and instead utilised various forms of stepwise selection or step-
wise regression in their model building processes. In some cases, it
was difficult or impossible to accurately deduce the number of fea-
tures, including sensor features that were introduced to the model.

In many cases, as itemised in column F of Table 1, proper separ-
ation of training and testing data appears not to have been main-
tained, or other potential violations in best modelling practice
have occurred (again, see [61] or [60] for recommendations),
most likely resulting in inflation of results.

Assuming that model selection is performed in a valid way, such
that no aspect of the testing data can influence the model choice, it is
still known to be a very difficult task to select a model which does
not overfit the training data, particularly if there are few training
examples available, and more so if there are many potential predic-
tors and model parameters to choose from. Overfitting often results
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in poor performance of the selected model during subsequent valid-
ation, and is clearly something to be avoided. As was stated earlier,
CV is often used to assess potential model options (using only the
training data) before a preferred model is selected for validation.
However, we know that CV can have a large variance, especially
if the model is unstable, so is it really a good way to guide our
model selections? Research into model stability and risk is still
ongoing in the machine learning field and to date there are no con-
crete guidelines to follow when sample sizes are small, as is com-
monly the case for SFRT. The approach used by stepwise
regression of performing t-tests on model coefficients appears a
more theoretically sound means of model selection, as an alternate
to the empirical CV-based evaluation of potential models.
However, stepwise regression is not immune from the curse of
dimensionality either, and a substantial ratio of training examples
to potential features must be maintained if modelling is to
succeed. Again, as for machine learning algorithms, how substan-
tial this ratio should be is not known with certainty.

Unsurprisingly, as the theoretical work continues, several heuris-
tics have been suggested to promote the generalisation capabilities
of multivariate models, such as limiting the number of predictors in
a model to one per ten target outcome events (which may be fall
incidents or number of individuals in the smaller sub-group being
classified) to minimise bias in the regression coefficients. Others
even suggest a stricter 1:20 ratio, though these recommendations
may differ according to the model type being used [43, 44]. For
example, it has been suggested that the 1:10 rule may actually be
relaxed in the case of logistic regression [64], which is noteworthy
given the prevalence of this model type in SFRT research.
Nevertheless, it is of interest to refer to columns D and E of
Table 1 and note that many studies were found to exceed the recom-
mended 1:10 ratio of features to target events (or individuals), sug-
gesting that overfitting is likely in many of the models presented.

9. Issue 5: nature of dependent variables: Finally, we discuss the
issue of what it is we want to estimate or predict. For the studies
reviewed here, modelling was performed in relation to past falls
(also called fall history) or PFs (i.e. falls that occurred before or
after the date of assessment, respectively); or clinical fall risk
assessment tools, such as the Tinetti score (POMA); or a
combination of these. Many of the presented studies did not
incorporate a prospective design; however, looking at Table 1, a
positive trend can be noticed towards more prospective studies in
recent years (rows highlighted in grey).

Most studies did not analyse the fall events directly; instead, sub-
jects were divided into groups, whether low risk against high risk,
non-fallers against fallers or fallers against multiple fallers (unfortu-
nately, using different definitions for these allocations across the
studies). Various classifiers and binary logistic regression were
then used for modelling. These methods reduce the potential reso-
lution offered by the raw data, and remove the element of fall risk in
relation to fall rate. One could argue, however, that classifying
people into risk groups is more than sufficient in the context of
fall risk screening, and that the use of raw fall counts may be
redundant.

An additional issue worth mentioning involves the accuracy of
the collected fall data. Fall records based on patient recollection
have been shown to lack reliability [65]. Fall diaries or carer
reports are currently the gold standard option for this type of
data, but these records might also exclude some falls for various
reasons (e.g. patients trying to hide problem severity, carers
worried about being held responsible, falls gone unnoticed).
Perhaps in the future, this aspect would improve via the continuous
use of wearable sensors for fall detection.

With regards to FH being used as the standard, we should note
that this might be associated with misleading results, stemming
from changes in gait patterns and other movement adaptations,
perhaps due to injury or a new-found fear of falling, which are
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directly linked to the past fall and manifested by the individual
during the assessment.
The involvement of clinical assessment tools in SFRT research

would remain valid, but not as targets for model training. Instead,
the performance of SFRT tools (that are shown to be valid)
should be compared with common clinical assessment tools to as-
certain which performs better, or whether it would be in our interest
to combine both approaches. This is related to the realisation that
SFRT by itself is unlikely to capture all risk factors for falling.

10. Suggested steps forward: In an ideal situation, models should
be built (or trained) on one sufficiently large dataset, then validated
on another dataset, then externally validated multiple times across
completely different samples of the same over-arching cohort of
interest, with each person only ever meeting the model once [60].
This is not easy to achieve, particularly in the context of
human-based fall research which carries many challenges.
However, we should not allow insufficient criticism of our own
analytical methodologies to become yet another major challenge
of SFRT research.
Two ways to minimise small-sample bias can be suggested: (i)

recruit a cohort large enough to ensure the number of fall incidents
is sufficient; or (ii) collect data strategically, specifically to man-
oeuvre around this issue (e.g. by initially focusing on high risk
cohorts such as patients with Parkinson’s disease). The latter is
only desirable when extremely large samples are infeasible to
achieve the first option. To complement power calculations, it
may be useful to consider the following when planning trial recruit-
ment – based on the generally recommended 1:10 ratio of features
to events [62], and the epidemiological finding that a third of all
people over 65 years of age will fall at least once per year [1], we
should recruit (at least) 30 individuals per planned predictor vari-
able for a 1-year prospective trial. Of course, there are never guar-
antees: the final fall rate may be more or less than the expected 0.33/
year, participants may drop out of the study, and some signal data
may prove unusable; hence, a degree of flexibility is warranted.
Clearly, it is vital to manage the curse of dimensionality, whether

by tightening the significance threshold, removing highly correlated
(potentially redundant) features, choosing correct statistical techni-
ques, performing appropriate validation where possible, or realistic-
ally, a combination of the above. Finding the right balance which
allows us to consider as many potentially useful predictors as pos-
sible without bloating the probability of false positives is a fine bal-
ancing act indeed. Feature extraction should be conducted
thoughtfully with full awareness of the limitations in whichever ap-
proach we take. Indeed, it is important to stay open-minded at the
exploratory stage in order to avoid false negatives or the removal
of features that could be predictive but were merely not detected
as such.
Specifically regarding the popularity of CV, this family of valid-

ation methods became popular out of computer science and
machine learning, as they appeared to enable model evaluation to
occur with less data, so clearly the attraction is understandable.
Their negative effects on the integrity of models pose an interesting
problem as the full severity and extent of these problems are currently
unknown. Thus, there is a gap here for both theoretical and evidence-
based research to evaluate and quantify the limitations of CV pro-
cesses in prediction analyses, from a statistical and mathematical
basis. The findings would clearly be of significant value, not only
to fall researchers but to the entire statistical modelling community.

11. Conclusion: The body of literature on sensor-based fall risk
assessment and fall prediction studies is likely presenting an
over-optimistic view of what is achievable in this field, given that
most publications suffer from at least one if not several
limitations, including small sample sizes, excessively large
feature pools, model overfitting and lack of model validation, or
misuse of modelling methods. The movement of research towards
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sensor-based fall prediction tools is important and encouraged,
and given the potential of these systems to offer a simple,
portable, inexpensive solution, it is likely to only increase in the
near future. Hence, we owe it to our study participants, future
patients and to ourselves to ensure that these fundamental issues
are addressed in our efforts going forward.
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