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Abstract
Gene function in stem cell maintenance is often tested by inducing deletion via the Cre-loxP
system. However, controls for Cre and other variables are frequently not included. Here we

show that when cultured in the presence of 4-OH tamoxifen, bone and marrow cells contain-

ing the CreERT2 construct have a reduced colony forming ability. Inactive CreERT2 recombi-

nase, however, has the opposite effect. Young female marrow cells containing the inactive

CreERT2 construct grew more colonies than cells lacking the construct altogether. Young

female control marrow cells (i.e., negative for CreERT2) also produced significantly greater

colony numbers when cultured with 4-OH tamoxifen, compared with the ethanol vehicle

control. In conclusion, we report that the use of the Cre-loxP system is inadvisable in combi-

nation with CFU-F assays, and that appropriate controls should be in place to extend the

future use of Cre-loxP in alternate assays.

Introduction
The colony forming unit-fibroblast (CFU-F) assay is frequently used to characterise stromal
marrow cells and assess the number of mesenchymal progenitors [1–3]. These assays are per-
formed using a population of flushed bone marrow in which the adherent stromal cells form
colonies originating from a single cell; the CFU-F [2,3,4–6]. There are several other methods of
obtaining material for CFU-F assays including the crushing of pre-flushed long bones followed
by enzymatic digestion [3]. Both methods are used in this study.

Blood in human bone marrow has an oxygen level of ~7%, with mathematical models deter-
mining oxygen levels of ~1% to ~5% in the bone marrow, from the inner bone surface to the
sinuses respectively [7–9]. It is therefore unsurprising that the low oxygen levels in the bone
marrow have been found to extend the lifespan of mesenchymal stromal/stem cells (MSCs)
and allow them to keep their stemness, i.e. proliferate without differentiating [10]. Compared
to the marrow with its raised O2 level, the numbers of MSCs found are 4-fold higher on the sur-
face of the trabecular bone, where the O2 levels are lower [10]. The MSCs have a significantly
increased proliferative lifespan when cultured at 3% O2 in vitro and when cultured at 20% O2

have reduced stemness and undergo differentiation [10].
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Typically, bone marrow studies (For example: [11,12]) are routinely carried out under stan-
dard culture incubator conditions of 5% CO2 and 95% air (20% O2). This does not reflect the
physiological conditions for most mammalian tissues, as 3% O2 is a more appropriate condi-
tion for studying primary bone and marrow derived MSCs [10].

Therefore, this study was conducted at both normoxic (20% O2) and the more physiologi-
cally accurate “hypoxic” (3% O2) conditions. There are various gender differences found within
stem cell groups, including MSCs, and so both sexes were also compared within this study [13].

Between 4 weeks and 12 weeks of age the murine femur length rapidly increases, after which
growth of the long bones appears to stop [14]. By 12 weeks of age the number of stem cells in
the murine bone and bone marrow has subsided [15]. Therefore to assess whether Cre is hav-
ing an effect on adult cells only or also during earlier postnatal stages two ages groups were
compared; adult mice (12–21 weeks old) and young mice (4 weeks old) which are still growing
and therefore the skeleton is still developing.

Deletion via the Cre-loxP recombination method occurs when Cre recombinase causes the
recombination of two 34bp loxP recognition sites [16]. It is frequently used for general and
conditional gene knockouts plus reporter strains in studies carried out across an array of organ-
isms e.g. animals [16–18], yeasts [19], and plants [20,21], but is known to have negative effects
on cell cycle and proliferation rates [22]. In most cases the Cre recombinase is driven by a spe-
cific promoter resulting in targeted gene knockout [17,18]. In this case, CreERT2 is driven by
the ubiquitous CAGG promoter in a tamoxifen dependent manner. Gene knockouts can con-
sequently affect CFU-F assay outcomes, but often are not validated by important controls for
Cre and other variables. Our results demonstrate the importance of Cre controls when using
bone and marrow stromal cells for CFU-F assays.

Results

CreERT2 activation by 4-OH tamoxifen in adult bone and marrow cells
reduces CFU-F colony numbers
CreERT2 recombinases are generated by fusing Cre to the estrogen receptor (ER), rendering the
CreERT2 recombinase inactive. It can then be activated by 4-OH tamoxifen; a synthetic ligand
for the estrogen receptor [23]. CAGG-CreERT2 positive (Cre+) mice were compared against
CAGG-CreERT2 negative (Cre-) mice to assess CreERT2 recombinase effects. CFU-F assays in
the presence of 4-OH tamoxifen showed a significant decrease in colonies originating from
Cre+ cells compared to Cre- cells, as well as compared to Cre+ cells cultured with the vehicle
control 100% ethanol (Representative colony images shown in Fig 1A). [Fig 1B: Cre+ vs. Cre-

(with tamoxifen): p<0.01 male normoxia marrow, p<0.001 male hypoxia marrow, male hyp-
oxia and normoxia bone, female hypoxia marrow and female normoxia and hypoxia bone].
[Fig 1B: Cre+ (ethanol) vs. Cre+(tamoxifen): p<0.05 female normoxia marrow, p<0.001 all
remaining comparisons].

CreERT2 activation by 4-OH tamoxifen in adult bone and marrow cells
reduces CFU-F colony numbers, irrespective of differentiation status
Chondrogenesis is one of various processes identified by staining with toluidine blue. Colonies
containing cartilage matrix will stain purple, while undifferentiated colonies will appear blue
[24]. Bone alkaline phosphatase (ALP) activity is found in maturing chondrocytes, cartilage
matrix, pre-osteoblasts, osteoblasts, osteocytes, and endosteal cells [25]. This expression profile
means that ALP staining is useful for observing bone formation [26]. (Representative toluidine
blue colony staining and ALP colony staining are shown in Fig 2A and 2C, respectively).
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Not all colonies will be generated from pure stem cells, some may be from committed pro-
genitors and so their level of stemness will be varied. Activated CreERT2 recombinase was seen
to exert a negative effect on the number of both toluidine blue and ALP stained colonies (Fig 2),
showing that this Cre effect occurred irrespective of differentiation status. This confirms and
validates the CFU-F results by an alternative means. The proportion of colonies positive for
ALP activity was not affected by CreERT2 recombinase presence, CreERT2 recombinase

Fig 1. Colony forming abilities are reduced when adult CreERT2 positive cells are cultured with 4-OH
tamoxifen. (A) Brightfield images of representative colonies frommale bone cells cultured under hypoxia. (B)
The colony forming assays were performed by culturing cells from central marrow and enzymatically digested
flushed long bone for 10 days following culture in media with 4-OH tamoxifen (1μM) or vehicle control ethanol.
Mean (±SEM) CFU-F assay colony numbers are reduced following CreERT2 activation with 4-OH tamoxifen
in all Cre+ marrow and bone cells, irrespective of sex or culture conditions, compared to culture with ethanol.
Mean (±SEM) CFU-F assay colony numbers are also reduced following CreERT2 activation with 4-OH
tamoxifen in Cre+ male marrow and bone cells, female bone cells, and female hypoxic marrow, compared to
Cre- culture with 4-OH tamoxifen. *p<0.05 **p<0.01 ***p<0.001. (Cre-: n = 3 experiments. Cre+: n = 4
experiments. All experiments were performed in technical triplicate). (y axis = mean number of colonies with
diameter greater than 1mm).

doi:10.1371/journal.pone.0148105.g001
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Fig 2. Colony forming abilities are reduced when adult CreERT2 positive cells are cultured with 4-OH
tamoxifen. (A) Brightfield images of representative colonies stained with Toluidine Blue frommale marrow
cells cultured under hypoxia. (B) The colony forming assays were performed by culturing male cells from
central marrow and enzymatically digested flushed long bone for 10 days following culture in media with
4-OH tamoxifen (1μM) or vehicle control ethanol. Colonies were then stained with Toluidine Blue to assess
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activation, ethanol presence or tamoxifen presence (Table A and B in S1 Table). [Fig 2B: Cre+

vs. Cre- (with tamoxifen): p<0.05 male normoxia bone. [Fig 2B: Cre+ (ethanol) vs. Cre+ (tamox-
ifen): p<0.05 male hypoxia bone and marrow, p<0.01 male normoxia bone]. [Fig 2D: Cre+ vs.
Cre- (with tamoxifen): p<0.05 male normoxia bone, male hypoxia marrow, p<0.01 male hyp-
oxia bone]. [Fig 2D: Cre+ (ethanol) vs. Cre+(tamoxifen): p<0.001 male hypoxia bone].

CreERT2 activation by 4-OH tamoxifen in young bone and marrow cells
reduces CFU-F colony numbers
CFU-F assays in the presence of 4-OH tamoxifen showed a significant decrease in colonies
originating from Cre+ cells compared to Cre- cells, as well as compared to Cre+ cells cultured
with the vehicle control ethanol (Representative colony images shown in Fig 3A). [Fig 3B: Cre+

vs. Cre- (with tamoxifen): p<0.05 male normoxia bone and marrow, female normoxia bone,
p<0.01 male hypoxia bone, p<0.001 male hypoxia marrow and female hypoxia bone]. [Fig 3B:
Cre+ (ethanol) vs. Cre+ (tamoxifen): p<0.05 male normoxia marrow, p<0.01 female normoxia
marrow, p<0.001 male hypoxia marrow, female hypoxia marrow, male normoxia and hypoxia
bone, and female normoxia and hypoxia bone].

Inactive CreERT2 in young female marrow cells increases CFU-F colony
numbers
100% ethanol was used as a vehicle for 4-OH tamoxifen and was included at the same concen-
tration in culture media as a control. When Cre+ and Cre- cells were cultured in this way a dra-
matic difference in female marrow colony numbers was observed (representative colony
images shown in Fig 3A). Cre+ young female marrow cells had a significantly higher number of
colonies compared to Cre- cells (Fig 3B: p<0.01 normoxia, p<0.001 hypoxia), with the young
male marrow and both female and male adult marrow cells showing a similar trend. As these
cells were of pure genetic background and only cultured with media containing ethanol this
suggests that the cause was the mere presence of inactive CreERT2 in the cytoplasm. This stim-
ulatory effect is opposite to that seen when cultured with 4-OH tamoxifen and activated in the
nucleus, suggesting that this is not a case of leaky Cre.

This study has also uncovered a fascinating gender dimorphism. In the young females only,
the Cre- mice showed significantly higher marrow colony numbers when cultured with 4-OH
tamoxifen compared with ethanol (Fig 3B: p<0.05), but not in the bone.

Discussion
The negative effects of activated CreERT2 recombinase on colony forming abilities are seen
here in both bone and marrow, suggesting it has wide spread relevance, potentially affecting

cartilaginous matrix content. Mean (±SEM) Toluidine Blue positive CFU-F assay colony numbers are
reduced following CreERT2 activation with 4-OH tamoxifen in all Cre+ normoxic and hypoxic bone cells and
hypoxic marrow cells, compared to culture with ethanol. Mean (±SEM) Toluidine Blue positive CFU-F assay
colony numbers are also reduced following CreERT2 activation with 4-OH tamoxifen in Cre+ normoxic bone
cells, compared with Cre- cells cultured with 4-OH tamoxifen. (C) Brightfield images of representative
colonies stained with Alkaline Phosphatase frommale marrow cells cultured under hypoxia. (D) Colonies
were then stained with ALP to assess the degree of bone formation. Mean (±SEM) ALP positive CFU-F assay
colony numbers are reduced following CreERT2 activation with 4-OH tamoxifen in Cre+ hypoxic bone cells,
compared to culture with ethanol. Mean (±SEM) ALP positive CFU-F assay colony numbers are also reduced
following CreERT2 activation with 4-OH tamoxifen in Cre+ normoxic and hypoxic bone cells and hypoxic
marrow cells, compared with Cre- cells cultured with 4-OH tamoxifen. *p<0.05 **p<0.01 ***p<0.001. (Cre-:
n = 3 experiments. Cre+: n = 4 experiments. All experiments were performed in technical triplicate). (y
axis = mean number of colonies with diameter greater than 1mm).

doi:10.1371/journal.pone.0148105.g002

Highlighting the Need for Appropriate Cre Controls

PLOS ONE | DOI:10.1371/journal.pone.0148105 February 1, 2016 5 / 12



Fig 3. Colony forming abilities are reduced when CreERT2 positive cells from youngmice are cultured
with 4-OH tamoxifen. Young female CreERT2 positive marrow cells formmore colonies than CreERT2

negative cells in the absense of 4-OH tamoxifen, and young female marrow CreERT2 negative cells
cultured with 4-OH tamoxifen give rise to more colonies than when cultured with the ethanol vehicle
control. (A) Brightfield images of representative colonies from female marrow cells cultured under hypoxia
(scale bar = 5mm). (B) The colony forming assays were performed by culturing cells from central marrow and
enzymatically digested flushed long bone for 10 days following culture in media with 4-OH tamoxifen (1μM) or
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other tissues. It is of note that there are a higher number of colonies forming in the bone
CFU-F assays compared to marrow, which is consistent with previous studies [5,27]. The tra-
becular bone is an enriched source of mesenchymal progenitors which corroborates with
higher numbers of bone colonies [3,28].

Here we show that the dramatic effect on the clonogenic ability is due to activated CreERT2

recombinase; a worrying finding for the scientific community as a whole. This raises questions
as to whether activated CreERT2 recombinase is the cause of some phenotypes seen in pub-
lished studies also using this construct. Very few studies control for CreERT2 toxicity effects
with respect to such colony forming assays and may be wrongly accrediting their findings to a
changed gene expression status.

It is interesting to speculate why activating CreERT2 recombinase is creating this phenotype
in vitro and there are two potential explanations: Firstly, the CreERT2 recombinase protein is
toxic. Secondly, the CreERT2 recombinase is acting on endogenous pseudo-loxP sites and is
causing off target effects. It is possible that the CreERT2 recombinase enzyme is cleaving the
DNA at endogenous pseudo lox sites which occur naturally in the genome and share some
homology with loxP sites [29].

Cells expressing CreERT2 recombinase and lacking loxP sites undergo cell cycle arrest at the
G2/M phase inhibiting cell growth and have chromosomal aberrations which lead to genetic
instability [22,30,31]. The use of Cre in the generation of knock-in animals means that phenotypes
associated with the knock-in allele may also be due, in part, to Cre-mediated mutations [31].

Mouse embryo fibroblasts with the CreERT2 knock-in allele driven by the endogenous
ROSA26 promoter, similar to the CAGG driven CreERT2 used in this study, were investigated
for toxicity effects [22]. These cells, which also lack loxP sites, were cultured with 4-OH tamoxi-
fen resulting in a severe reduction of proliferation rates causing inhibited growth [22]. These
data concur with the lack of colony growth seen by the CAGG-CreERT2 positive cells in the
present study, suggesting a toxic effect.

Young female CreERT2 positive marrow cells formed significantly more colonies than
CreERT2 negative cells. These cells were cultured in media with control ethanol, meaning the
CreERT2 is not dissociated and therefore inactivate, suggesting that the mere presence of the
CreERT2 construct is the only difference between these cells. This was only observed in the
young female bone marrow cells, not adult.

It has been shown that CreERT2 can be leaky by still exerting an effect in the nucleus without
the presence of 4-OH tamoxifen as well as via spontaneous loxP site recombination due to
tamoxifen contamination between animals in vivo [32,33]. However, in this study CreERT2

positive cells plus 4-OH tamoxifen results in a reduction of colonies, whereas the opposite is
seen with the vehicle control ethanol dismissing a leaking effect. Female marrow cells are the
only case in which the negative CreERT2 and tamoxifen effect is not seen to be significant. This
may possibly be due to the positive effect that CreERT2 alone seems to be having in these cells
and therefore masking any negative effects.

vehicle control ethanol. Mean (±SEM) CFU-F assay colony numbers are reduced following CreERT2

activation with 4-OH tamoxifen in all Cre+ marrow and bone cells, irrespective of sex or culture conditions,
compared to culture with ethanol. Mean (±SEM) CFU-F assay colony numbers are also reduced following
CreERT2 activation with 4-OH tamoxifen in Cre+ male marrow and bone cells, and female bone cells,
compared to Cre- culture with 4-OH tamoxifen. Mean (±SEM) CFU-F assay colony numbers are higher from
female Cre+ marrow cells cultured under both normoxia and hypoxia with ethanol, compared to Cre- marrow
cells with ethanol. Mean (±SEM) CFU-F assay colony numbers are increased in female Cre- marrow cells
cultured with 4-OH tamoxifen compared to ethanol, when cultured under both normoxia and hypoxia.
*p<0.05 **p<0.01 ***p<0.001. (n = 3 experiments. All experiments were performed in technical triplicate). (y
axis = mean number of colonies with diameter greater than 1mm).

doi:10.1371/journal.pone.0148105.g003
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Various gender differences are found within stem cell groups, including MSCs [13]. Osteo-
genic properties of MSCs are greater in cells cultured with 17β-estradiol, which show increased
BMP, osteocalcin, calcium deposits, plus ALP, Collagen I, and TGFβ1 gene expression [13].
Tamoxifen has estrogen agonistic effects on human bone tissues increasing bone cell numbers,
as well as the number of S phase cells [34]. Tamoxifen is also known to inhibit bone resorption
and osteoclast formation in an estrogen receptor dependent manner [35].

These links between tamoxifen, the estrogen receptor, and bone growth make this gender
dimorphism an interesting observation and concur nicely with our young female bone marrow
CreERT2 negative cells producing higher colony numbers when cultured with 4-OH tamoxifen
than with ethanol. Again, this was only observed in the young bone marrow cells and not in
the adult. This may be due to the higher number of stem cells in younger mice, compared to
mature adults when the bone has finished growing [15].

In summary, this study demonstrates that, at least for colony forming capabilities, marrow
and bone cells are affected by activated CreERT2 recombinase, rather than the deletion of a tar-
get gene. This raises concerns as to whether activated CreERT2 recombinase is the cause of
other phenotypes seen in published studies using this construct. It also seems that the inacti-
vated CreERT2 recombinase construct as well as gender and 4-OH tamoxifen are having effects
on CFU-F assay outcomes.

In conclusion, these observations determine use of the Cre-loxP system inadvisable in com-
bination with CFU-F assays. This study should also act as a warning to ensure appropriate con-
trols are in place in order to extend the use of the Cre-loxP system in alternate assays.

Experimental Procedures

Animal models
Mice were sacrificed by Schedule One in this study. The work was performed under the appro-
priate Project License viewed by the Animal Welfare and Ethical Review Body (AWERB) of the
University of Edinburgh and has been authorised by the Home Office in the United Kingdom.

CAGG-CreERT2 mice were obtained from Sue Monkley at Leicester University (http://www.
informatics.jax.org/allele/key/7468?page = alleleDetail&key=7468). Mice were housed and bred
in the University of Edinburgh/MRC IGMM animal facilities. All animal experiments were per-
formed in accordance to approved personal and project Home Office licences and regulations.

Isolation of murine bone marrow and bone mesenchymal progenitors
Mice were euthanized by cervical dislocation. Both the bilateral femur and tibia were dissected
out. Each end of the long bones was removed and bone marrow flushed from the bone using
DMEMmedia (containing 10% fetal calf serum (FCS), 1% penicillin/streptomycin, 0.5% gluta-
mine and 0.5% sodium pyruvate) and a 25 gauge needle. Flushed marrow cells were dissociated
using a 21 gauge needle.

To obtain the bone mesenchymal progenitors, pre-flushed long bones were crushed by pes-
tle and mortar, and then digested with 3 mg/ml collagenase B (Roche) for 90 minutes at 37°C
in constant motion. Cells were passed through a 70 micron cell strainer, washed and resus-
pended in DMEMmedia (containing 10% FCS, 1% penicillin/streptomycin, 0.5% glutamine
and 0.5% sodium pyruvate).

CFU-F assay
Three mice were used for each experiment, with three assays per mouse (i.e. technical tripli-
cate). Adult CAGG-CreERT2 mice were 12–21 weeks old and young CAGG-CreERT2 mice
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were 4 weeks old. Cells were plated in 6-well culture plates at a density of 5x105 cells in 2ml of
MesenCult1 (StemCell Technologies) media per well. After 48 hours, adhered cells were
washed with PBS, and then cultured in MesenCult1 media plus 1 μM 4-hydroxy(4-OH)
tamoxifen (Sigma) or the same concentration of 100% ethanol vehicle (EtOH) for 72 hours.
Colonies were then grown in MesenCult1 for 10 days before staining with 0.5% Cresyl Violet
Acetate in methanol. Colonies of more than 1mm diameter were counted [36–38].

Toluidine Blue Staining
Colonies were washed with pre-warmed PBS and fixed for 20 minutes with 10% neutral buff-
ered formalin at room temperature. Colonies were stained in 0.1% toluidine blue (in 1% para-
formaldehyde in PBS) for 1 hour, and then washed in distilled water.

Alkaline Phosphatase Staining
Colonies were washed with PBS and fixed for 60 seconds with 10% neutral buffered formalin.
Colonies were then washed with wash buffer (0.05% Tween 20 in PBS). Alkaline phosphatase
activity was identified using BCIP/NBT substrate (1 BCIP/NBT tablet (Sigma) in 10 ml distilled
water, stored in the dark). Colonies were incubated at room temperature in the dark for up to
10 minutes. Staining was checked every 2–3 minutes to assess progress. Cells stained blue-vio-
let in the presence of alkaline phosphatase. Colonies were then washed with wash buffer and
left in PBS.

Genotyping PCR
Genomic DNA was extracted using FlexiGene DNA Kit (QIAGEN) and amplified with gene-
specific primers (Sigma) with an annealing temperature of 58°C. Primers used for detecting
Cre are: Cre/F (5’ gcattaccggtcgatgcaacgagtgatgag 3’) and Cre/R (5’ gagtga
acgaacctggtcgaaatcagtgcg 3’). DNA fragments were separated by electrophoresis on
a 2% agarose gel to assess whether Cre was present or not. Cre presence shows a band at ~400
BP under UV illumination. The animals used in this study were heterozygotes, i.e. only con-
tained one copy of the CreER recombinase construct.

Statistical Analysis
Results are reported as mean ± standard error of the mean (SEM). The significance of two
groups was analysed using the unpaired t test (p values are denoted by an asterisk. �p< 0.05;
��p< 0.01; ���p< 0.001).

Supporting Information
S1 Table. A. Percentage of total colonies positive for ALP activity were not affected by
CreERT2 presence, CreERT2 activation, ethanol presence, or 4-OH tamoxifen presence. Col-
onies were stained with ALP to assess the degree of bone formation. The mean percentage of
total colonies (±SEM) which were ALP positive were not affected in male bone or male marrow
cultures. [Table A: Normoxia Cre+ vs. Cre- (with ethanol): p = 0.28, Hypoxia Cre+ vs. Cre-

(with ethanol): p = 0.32, Normoxia Cre+ vs. Cre- (with tamoxifen): p = 0.61, Hypoxia Cre+ vs.
Cre- (with tamoxifen): p = 0.40. Normoxia Cre- (ethanol) vs. Cre- (tamoxifen): p = 0.75, Nor-
moxia Cre+ (ethanol) vs. Cre+ (tamoxifen): p = 0.88, Hypoxia Cre- (ethanol) vs. Cre- (tamoxi-
fen): p = 0.52, Normoxia Cre+ (ethanol) vs. Cre+ (tamoxifen): p = 0.53. Table B: Normoxia
Cre+ vs. Cre- (with ethanol): p = 0.37, Hypoxia Cre+ vs. Cre- (with ethanol): p = 0.78, Normoxia
Cre+ vs. Cre- (with tamoxifen): p = 0.36, Hypoxia Cre+ vs. Cre- (with tamoxifen): p = 0.35.

Highlighting the Need for Appropriate Cre Controls

PLOS ONE | DOI:10.1371/journal.pone.0148105 February 1, 2016 9 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0148105.s001


Normoxia Cre- (ethanol) vs. Cre- (tamoxifen): p = 0.71, Normoxia Cre+ (ethanol) vs. Cre+

(tamoxifen): p = 0.61, Hypoxia Cre- (ethanol) vs. Cre- (tamoxifen): p = 0.88, Normoxia Cre+

(ethanol) vs. Cre+ (tamoxifen): p = 0.32.] (Cre-: n = 3 experiments. Cre+: n = 3 experiments. All
experiments were performed in technical triplicate).
(DOCX)
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