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Background: Medulloblastoma is the common pediatric malignant tumor with poor
prognosis in cerebellum. However, MB is always with clinical heterogeneity. To provide
patients with more clinically beneficial treatment strategies, there is a pressing need to
develop a new prognostic prediction model as a supplement to the prediction outcomes
of clinical judgment.

Materials and Methods: Four datasets of mRNA expression and clinical data were
downloaded from gene expression omnibus (GEO) database. Differentially expressed
genes (DEGs) were identified and functionally enriched among GSE50161, GSE74195,
GSE86574. Then we used STRING and Cytoscape to constructed and analyze protein-
protein interaction network (PPI) and hub genes. Univariate cox regression analysis
was performed to identify overall survival-related hub genes in an unique dataset from
GSE85217 as train cohort. Lasso Cox regression model was used to construct the
prognostic gene signature. Time-dependent receiver operating characteristic (ROC),
Kaplan–Meier curve, univariate and multivariate Cox regression analysis were used to
assess the prognostic capacity of the twelve-gene signature. A unique dataset from
GSE85217 was downloaded to further validate the results. Finally, we established the
nomogram by using the gene signature and validated it with ROC curve. Gene set
enrichment analysis (GSEA) was carried out to further investigate its potential molecular
mechanism. Besides, the twelve genes expression at the mRNA and protein levels was
validated using external database such as Oncomine, cBioportal and HPA, respectively.

Results: A twelve-gene signature comprising FOXM1, NEK2, CCT2, ACTL6A, EIF4A3,
CCND2, ABL1, SYNCRIP, ITGB1, NRXN2, ENAH, and UMPS was established to
predict overall survival of medulloblastoma. The ROC curve showed good performance
in survival prediction in both the train cohort and the validation cohort. The twelve-
gene signature could stratify patients into a high risk and low risk group which had
significantly different survival. Univariate and multivariate Cox regression revealed that
the twelve-gene signature was an independent prognostic factor in medulloblastoma.
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Nomogram, which included twelve-gene signatures, was established and showed some
clinical benefit.

Conclusion: Our study identified a twelve-gene signature and established a
prognostic nomogram that reliably predicts overall survival in medulloblastoma. The
above results will help us to better analyze the pathogenesis and treatment of
medulloblastoma in the future.

Keywords: medulloblastoma, nomogram, GEO, overall survival, gene signature

INTRODUCTION

Medulloblastoma (MB), as one of the most common pediatric
malignant CNS and brain tumors, has already been classified as
a high-risk disease. Patients with MB do not respond well to
current treatment and are at increased risk of MB-related death
(MacDonald et al., 2014). Epidemiological studies suggested that
medulloblastoma is most common between 0 and 9 years of
age, and this kind of tumor can occur at any age (Louis et al.,
2007). According to the World Health Organization (WHO),
there are four major MB histology: classic, desmoplastic/nodular,
MB with extensive nodularity, and anaplastic/large-cell (Louis
et al., 2007; Polkinghorn and Tarbell, 2007). More recently
there are four major molecular subgroups: two associated with
pathogenic abnormalities in the wingless pathway (WNT) and
sonic hedgehog (SHH) developmental signaling pathways (the
WNT and SHH subgroups), and two that are less well molecularly
characterized and referred to as Group 3 and Group 4 tumors
(Taylor et al., 2012). In addition, Multiple genes expression
have been demonstrated to be independent prognostic factors
for medulloblastoma. As a member of cyclin-dependent kinases,
CDK4 inhibitor was found to inhibit retinoblastoma protein
phosphorylation and cause G1 arrest in patient-derived xenograft
models of MB (Cook Sangar et al., 2017). Besides, CDK6
amplification was among the most common genomic alterations
that alter core signaling pathways in SHH-driven MB (Tamayo
Orrego et al., 2016). Meanwhile, CDK6 is also one of the most
common recurrent amplifications in Group 3, and Group 4.
CDK6 overexpression had been proved to be an independent
prognostic indicator for poor overall survival in patients
(Mendrzyk et al., 2005). However, reliable biomarkers that guide
MB clinical treatment are few and far between. Therefore, We
cryingneed more biomarkers to reduce MB related-mortality and
improve MB prognosis. A conventional prognostic assessment
tool for MB patients was clinical molecular pathological staging.
However, MB is always with clinical heterogeneity. To provide
patients with more clinically beneficial treatment strategies, there
is a pressing need to develop a new prognostic prediction model
as a supplement to the prediction outcomes of clinical judgment.

In the last few years, bioinformatic analysis has been widely
used to predict and analyze the functional pathways and
genome levels to achieve more precise treatment. Thus, we
utilized 3 datasets of MB patients from the Gene Expression
Omnibus database (GEO) to identify MB hub genes. Then, we
established a gene signature for MB in another GEO dataset
and constructed an integrated nomogram by combining various

clinicopathological factors, including the twelve-gene signature.
Subsequently, the twelve-gene signature was verified in an
independent external MB cohort by using unique datasets.
Besides, the twelve genes expression in human MB tissues at
the mRNA and protein levels was explored using the external
database such as Oncomine, the Human Protein Atlas (HPA)
databases, and TIMER, respectively.

MATERIALS AND METHODS

Acquisition of Gene Expression and
Clinical Data
GEO1 is a public database that provides high throughout gene
expression data, chips and microarrays (Edgar et al., 2002).
Four gene expression datasets (GSE74195, GSE50161, GSE86574,
and GSE85217) (Table 1) were downloaded from GEO (de
Bont et al., 2008; Griesinger et al., 2013; Amani et al., 2017;
Florence et al., 2017). According to the annotation information
on the platform, the probes were converted into corresponding
gene symbols. After being excluded Patients without survival
information, GSE85217 contained 532 MB samples which had
clinical information and survival time. The gene expression and

1http://www.ncbi.nlm.nih.gov/geo

TABLE 1 | Details of the GEO datasets included in this study.

Datasets References Platform Sample size
(tumor/control)

Application

GSE74195 de Bont
et al., 2008

[HG-U133_Plus_2]
Affymetrix Human
Genome U133 Plus
2.0 Array

31 (26/5) Identification
of DEGs

GSE50161 Griesinger
et al., 2013

[HG-U133_Plus_2]
Affymetrix Human
Genome U133 Plus
2.0 Array

35 (22/13) Identification
of DEGs

GSE86574 Amani et al.,
2017

[HG-U133_Plus_2]
Affymetrix Human
Genome U133 Plus
2.0 Array

27 (17/10) Identification
of DEGs

GSE85217 Florence
et al., 2017

[HuGene-1_1-st]
Affymetrix Human
Gene 1.1 ST Array
[transcript (gene)
version]

532 (532/0) Construction
signature and
validation
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clinical information of 323 samples in GSE86217 were used to
construct the gene signature as train set. The validation dataset
with mRNA expression profile and clinical information used to
validate the gene signature was downloaded from the another 109
samples in GSE86217.

Identification of Differentially Expressed
Gene (DEGs) and Gene Enrichment
Analysis
The DEGs was calculated using the “limma” R package (Dalman
et al., 2012). After Benjamini–Hochberg (BH) multiple test
adjustment, DEGs with absolute log2 fold change (FC) > 1 and
ad P < 0.05 were considered to be included for subsequent
analysis. Enrichment analysis of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway for
DEGs were performed by using the “clusterProfiler” R packag e
(Yu et al., 2012).

PPI Network Construction and Module
Analysis
Search tool for the retrieval of interacting genes (STRING)2

online database was used to analyze the functional interactions
between proteins and provided insights into the pathogenesis and
development of diseases (Franceschini et al., 2013). In this study,
we used STRING database to construct PPI network. Cytoscape
(version 3.4.0), which is an open source bioinformatics software
platform for visualizing molecular interaction networks, was
performed to draw PPI network (Smoot et al., 2011). Molecular
Complex Detection (MCODE) (version 1.4.2), which is an app
plug-in Cytoscape, was performed to cluster a given network
based on topology to find densely connected regions and identify
most significant module (Bandettini et al., 2012). The criteria for
selection were as follows: MCODE scores > 5, degree cut-off = 2,
node score cut-off = 0.2, Max depth = 100, and k-score = 2.

Identification of Hub Genes and
Survival-Related Hub Genes
The Cytoscape plugin cytoHubba was used to identify hub genes
by degree. The hub genes were selected with degrees ≥ 10. The
GSE85217 dataset was used to identify hub genes associated
with overall survival (OS) by univariate cox regression analysis.
Hub genes associated with overall survival with P < 0.05 were
considered statistically significant and included in subsequent
analyses. The univariate analysis was performed using the R
packages “survival” and “surveminer” to identify OS-related hub
genes (Therneau and Grambsch, 2000).

Construction of the Gene Signature
Model and Validation
Lasso−penalized cox regression analysis was performed to
construct the prognostic gene signature. The optimal penalty
parameter was estimated by 10-fold cross-validation in the
training dataset (Tibshirani, 1997). The prognostic gene signature

2http://string-db.org

was presented as risk score = (CoefficientmRNA1 × expression
of mRNA1) + (CoefficientmRNA2 × expression of
mRNA2) + · · · + (CoefficientmRNAn × expression of
mRNAn). Talking the median risk score as a cutoff value,
323 patients were divided into high- and low-risk groups.
Kaplan Meier (KM) survival curves and time-dependent
receiver operational feature (ROC) curve analyses were made
to assess the predictive capacity of the model (Heagerty et al.,
2002). Besides, the prognostic model was validated in an
independent test cohort.

Prognostic Model Based on Gene
Signature as an Independent Predictor
for OS and Validation by Using Multiple
Databases
Univariate and multivariate cox regression analysis were used
to assess whether the prognostic model could be independent
of other clinicopathological factors (including age, gender,
histology, metastasis staging, molecular subgroup and risk
score) (Table 2) for MB patients. Clinical features were
selected as an independent variable, and OS was selected
as the dependent variable to calculate the hazard ratio
(HR) and the 95% confidence interval, two-sided P-value.
The prognostic genes expression in the gene signature was
further validated by using The Oncomine database3, TIMER

3https://www.oncomine.org/resource/main.html

TABLE 2 | Summary of clinical data.

Train cohort Validation cohort

Case included (n) 323 109

Age (mean ± SD) 5.4 (± 8.06) 8.6 (± 7.39)

Overall survival

Year (mean ± SD) 3.2 (± 5.13) 2.4 (± 3.31)

Status (alive/dead) 204/119 67/42

Gender

Male 205 73

Female 118 36

Histology

Classic 237 55

Des 40 29

LCA 38 19

MBEN 8 6

Subgroup

WNT 29 6

SHH 86 36

Group3 156 29

Group4 52 38

Metastasis

M0 222 81

M1 101 28

SD, standard deviation; Des, desmoplastic/nodular; LCA, large-cell anaplastic;
MBEN, medulloblastoma with extensive nodularity.
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database4 (Li et al., 2017) and The Human Protein Atlas
database5. cBioportal for Cancer Genomics was explored to
investigate the genetic alterations of the prognostic genes in
the gene signature.

Predictive Nomogram Construction and
Gene Set Enrichment Analysis
All independent prognostic parameters and corresponding
clinical data were included in the construction of a prognostic
nomogram via a stepwise Cox regression model to predict
1-, 3-, and 5-year overall survival of medulloblastoma patients
in the train set. Then the receiver operating characteristic
(ROC) (Heagerty et al., 2002) analysis construction was
performed in train set.

4https://cistrome.shinyapps.io/timer
5http://www.proteinatlas.org

Statistical Analysis
R software version 3.6.2 was used for all statistical analysis.
Univariate and multivariate cox regression analyses were
performed to evaluate survival situation. The hazard ratio (HR)
and 95% confidence interval (CI) were calculated to identify
genes related to overall survival. Except as otherwise noted,
P < 0.05 was considered statistically significant.

RESULTS

Identification of DGEs
The main flow of this study was shown in Figure 1 After
standardizing the microarray results, DEGs (1798 in GSE74195,
5437 in GSE50161 and 3568 in GSE86574) were identified. The
overlap of the three datasets contains 701 DEGs, as shown in
the venn diagram (Figure 2A), consisting of 430 downregulated

FIGURE 1 | Flowchart presenting the process of establishing gene signature and prognostic nomogram of medulloblastoma in this study.

FIGURE 2 | Identification of DEGs and gene enrichment analysis. (A) venn diagram of DEGs among the mRNA expression profiling sets GSE74195, GSE50161, and
GSE86574. (B) Top 5 enriched biological processes (BP), cellular components (CC), molecular functions (MF) of the DEGs. (C) KEGG analysis of the DEGs.
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genes and 271 upregulated genes between MB cancer tissues and
normal brain tissues.

Functional Enrichment and PPI Network
Analysis of the DEGs
GO and KEGG pathway enrichment analysis were utilized to
analyse the DEGs functions. GO analysis demonstrated that
DEGs were found to be significantly enriched in biological
processes, such as modulation of chemical synaptic transmission,
trans-synaptic signaling, membrane potential, vesicle-mediated
transport in synapse, and ion transmembrane transport;
cellular components, such as synaptic membrane, glutamatergic
synapse, presynapse, postsynaptic membrane, main axon; and
molecular functions, such as gated channel activity and
metal ion transmembrane transporter activity, ion channel
activity, cation channel activity and voltage-gated ion channel
activity (Figure 2B). KEGG analysis showed the key pathways
correlated with the MB samples: modulation of chemical
synaptic transmission, regulation of trans-synaptic signaling and
regulation of membrane potential, vesicle-mediated transport in
synapse, regulation of ion transmembrane transport (Figure 2C).
132 candidate hub genes (degree ≥ 10) that may play a central
role in this network were identified. Module analysis confirmed
the important cluster modules in PPI network. The most
significant module’ PPI network is with 29 nodes and 371 edges
(Figure 3A). Node degree was calculated by the MCC method to
obtain hub nodes. The three highest-scoring clustering modules
were obtained in Figures 3A–C. GO analysis of Module 1 showed
the most significant biological process, molecular function, and
cellular component were regulation of cell cycle phase transition,
spindle, and histone kinase activity, respectively (Figure 3A).
Module 2 with a score of 10.909 was correlated with RNA
splicing, spliceosomal complex and ribonucleoprotein complex
binding (Figure 3B). Module 3 had a score of 4 and was related to
protein localization to cell junction, zymogen granule and MAP
kinase activity (Figure 3C).

Identification of Survival-Related Hub
Genes and Establishment of the
Twelve-Gene Prognostic Signature
We selected a total of 132 genes as hub genes with degree ≥ 10.
Each hub gene was found in≥ 1 module indicating hub genes that
may represent key biological roles in PPI network. 323 patients
from the GEO dataset with a follow-up period ≥ 30 days were
included in following survival analysis. Based on the univariate
cox regression model, a total of 26 hub genes were identified
to be significantly associated with overall survival (Figure 4A).
Lasso penalized cox analysis identified 12 genes to construct the
prognostic model comprising FOXM1, NEK2, CCT2, ACTL6A,
EIF4A3, CCND2, ABL1, SYNCRIP, ITGB1, NRXN2, ENAH,
UMPS (Table 3). The downregulated NRXN2 was considered
as tumor suppressors. The remaining genes were regarded as
oncogenes. The risk score = 0.0487× Expression value of FOXM1
+ (−0.431 × Expression value of NEK2 + 0.228 × Expression
value of CCT2 + 0.0344 × Expression value
of ACTL6A + 0.1541 × Expression value

of EIF4A3 + 0.0239 × Expression value
of CCND2 + 0.2674 × Expression value
of ABL1 + 0.193 × Expression value of
SYNCRIP + 0.3548 × Expression value of
ITGB1 + (−0.0651) × Expression value
of NRNX2 + 0.44 × Expression value of
ENAH + 0.0066 × Expression value of UMPS. Then, we
proved findings in the training set by validating the prognostic
prediction function of the twelve-gene signature in an unique
dataset from GEO.

Kaplan–Meier and Time-Dependent ROC
Curves of Twelve-Gene Signature
We used the Kaplan-Meier survival curve to compare OS between
the two groups divided by the median risk score. In addition,
the prognostic prediction capability of the gene signatures was
evaluated by using the area under the curve (AUC) of the time-
dependent ROC curve. The higher the area under the curve, the
better the model performance. the results showed that there was
a significant difference on OS between the high- and low- risk
groups in train cohort (P < 0.0001) (Figure 4B). The AUCs of
the twelve-gene signature corresponding to 1-, 3-, and 5- year
survival were 0.878, 0.670 and 0.667 (Figure 4C). That means
that twelve-gene signature had high sensitivity and specificity
in prediction OS. As shown in Figure 4D, the high-risk group
prognosis was significantly worse than that of the low-risk group
in the independent validation cohort dataset (P = 0.0016). The
AUCs of the twelve-gene signature model in validation cohort
corresponding to 1-, 3-, and 5- year survival were 0.761, 0.631,
and 0.565 (Figure 4E), respectively, confirming that the twelve-
gene signature has high sensitivity and specificity and can be used
as a reliable OS prediction model in MB patients. By comparing
the survival status and the twelve-gene expressions of the between
high risk and low risk groups, we found that the high-risk group
was with poor prognosis (Figures 5A,B). Mean with higher
expression of the upregulated identified genes, patients often have
a worse prognosis (Figure 5C). In validation cohort, We found
the same result the higher the risk score, the worse the prognosis
(Figures 5D–F).

Independent Prognostic Role of the
Prognostic Gene Signature
As shown in Figure 6, the risk score can be used as an
independent factor in predicting OS (p < 0.05). Among the 323
patients included in train cohort, univariate and multivariate
cox regression analysis demonstrated that our prognostic model
was an independent prognostic factor for OS, while age, gender,
tumor metastasis, molecular subgroup were not associated with
OS (Figures 6A,B). Besides, multivariate cox regression analysis
showed that histology could be an independent prognostic
factor in train cohort (Figure 6B). In test cohort, univariate
and multivariate cox regression analysis demonstrated that
our prognostic model was also found to be an independent
prognostic factor for OS (Figures 6C,D). Meanwhile univariate
cox regression showed that tumor metastasis could be an
independent prognostic factor in train cohort (Figure 6C). These
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FIGURE 3 | PPI network analysis of the DEGs. (A) Clustering module 1 with a score of 48.615 and its top 5 most enriched BP, CC, MF. (B) Clustering module 2 with
a score of 10.909 and its top 5 most enriched BP, CC, MF. (C) Clustering module 3 with a score of 4 and its top 5 most enriched BP, CC, MF.

results further demonstrated that our prognostic model can
effectively predict OS of MB patients.

Validation of the Twelve Gene
Expressions
In train cohort, we found that FOXM1, NEK2, CCT2,
ACTL6A, EIF4A3, CCND2, ABL1, SYNCRIP, ITGB1, ENAH,
and UMPS were overexpressed in MB tissue, while NRXN2

was underexpressed in MB tissue. Then We tried to validate
the twelve genes expression in Oncomine database. Consistent
with our results in train cohort, the average expression levels
of FOXM1, NEK2, CCT2, ACTL6A, EIF4A3, CCND2, ABL1,
SYNCRIP, ITGB1, ENAH, and UMPS in CNS and brain tumor
tissues were significantly higher than those in normal tissues.
However, NRXN2 expression was significantly lower in in CNS
and brain tumor compared to normal tissues which was also
consistent with our results (Figure 7A). The results strongly
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FIGURE 4 | Survival analysis in train cohort and validation cohort. (A) Genes associated with OS in train cohort. (B) The Kaplan-Meier survival curves of the
twelve-gene signature in train cohort. (C) The time-dependent ROC curve of the twelve-gene signature in train cohort. (D) The Kaplan-Meier survival curves of the
twelve-gene signature in validation cohort. (E) The time-dependent ROC curve of the twelve-gene signature in validation cohort.
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TABLE 3 | Functional roles of twelve genes.

Gene
symbol

Full name Function

FOXM1 Forkhead box M1 A transcriptional activator involved in
cell proliferation.

NEK2 NIMA related kinase 2 A serine/threonine-protein kinase that
is involved in mitotic regulation

CCT2 Chaperonin containing TCP1
subunit 2

A molecular chaperone that is a
member of the chaperonin containing
TCP1 complex

ACTL6A Actin like 6A A family member of actin-related
proteins

E1F4A3 Eukaryotic translation initiation
factor 4A3

A member of the DEAD box protein
family

CCND2 Cyclin D2 A dramatic periodicity in protein
abundance through the cell cycle

ABL1 ABL proto-oncogene 1,
non-receptor tyrosine kinase

A protein tyrosine kinase involved in a
variety of cellular processes

SYNCRIP Synaptotagmin binding
cytoplasmic RNA interacting
protein

A member of the cellular
heterogeneous nuclear
ribonucleoprotein

ITGB1 Integrin subunit beta 1 This gene encodes a beta subunit

NRXN2 Neurexin 2 A member of the neurexin gene family

ENAH ENAH actin regulator Members of this gene family are
involved in actin-based motility.

UMPS Uridine monophosphate
synthetase

A uridine 5′-monophosphate
synthase

suggested that these twelve genes played an important role
in growth of CNS and brain tumor. In order to synthesize
multiple research results, we utilized meta-analysis for further
confirming the twelve genes expression in MB tissues. In current
ococmine meta-analysis, the expression of FOXM1 and ITGB1
in MB is highly overexpression, and the conclusion is well
supported by all the aforementioned studies (Figure 7B). Besides,
EIF4A3, CCND2 and ABL1 were also expressed in MB tissues
in meta-analysis. However, NEK2, CCT2, ACTL6A, SYNCRIP,
NRXN2, ENAH, and UMPS were not found on the website.
With the change of histology, the expression level of FOXM1,
NEK2, CCT2, EIF4A3, CCND2, ABL1, ITGB1, and UMPS were
significant difference (except EIF4A3, SYNCRIP, NRXN2, and
ENAH not included in the database) (Figure 8A). To validate
the genetic alterations of the twelve genes in MB tissue, We
used 4 MB studies in the cBioportal to investigate. Of the
MB patients included in the current study, 1.9% presented
with alterations in the twelve genes. ACTL6A, CCND2, ABL1
and ITGB1 possessed the missense mutation (0.3%) respectively
and truncating mutation in SYNCRIP was the most common
alteration (0.7%) (Figure 8B). To determine the clinical relevance
of these twelve genes expression, HPA clinical specimens were
used to analyze the proteins’ expression encoded by these twelve
genes (Figure 9). Relative to its expression level in normal
brain tissue, FOXM1, ACTL6A, EIF4A3, ENAH, and ITGB1
were strongly positive, while ABL1, CCT2, SYNCRIP, CCND2,
and UMPS were moderately positive in MB tissues. However,
NEK2 and NRXN2 were not found on the website. In the
field of immunology, the abundances of CD4 + T cell were

further estimated using the TIMER algorithm. Consistently,
the downregulated FOXM1, NEK2, CCT2, ACTL6A, EIF4A3,
CCND2, ABL1, SYNCRIP, ITGB1, NRXN2, ENAH, UMPS was
positively correlated with CD4 + T cell infiltration level
(Figure 10). However, our results on NRXN2 are contrary to the
database. Our team speculated that the main reason was that the
data from external databases came from CNS and brain tumors,
Hence the inconsistent results.

Building and Validating a Predictive
Nomogram
To establish a clinically applicable way for predicting the survival
probability of patients with MB, we developed a nomogram
to predict the OS probability in train cohort. All independent
prognostic parameters and relevant clinical parameters were
included in construction of a prognostic nomogram via a
stepwise Cox regression model to predict 1-, 3-, and 5- year
overall survival of MB patients in the train cohort (Figure 11A).
Time-dependent ROC curve analysis was used to evaluate the
prediction accuracy of the integrated nomogram. Although 1-
year AUC of the subgroup is the largest, the 1-year AUC of the
nomogram was above 0.889 (Figure 11B). Besides, 3 and 5 years
of AUCs of the integrated nomogram in Figures 11C,D were
the largest suggesting the our nomagram have high predictive
accuracy and sensitivity. Besides, we found that the 3 and 5 years
AUC of the model is lower than that of 1-year, suggesting that the
short-term prediction ability of nomogram may be stronger than
the long-term prediction ability.

Gene Set Enrichment Analysis (GSEA)
To elucidate the molecular mechanism of the twelve-gene
signature, 323 patients from train cohort were divided into high-
and low-risk groups. In train cohort, Top 5 KEGG pathways
enriched in regulation of autophagy, ecm receptor interaction,
cell adhesion molecules cams, calcium signaling pathway and
olfactory transduction (Figure 12). The Normalized Enrichment
Score (NES) in regulation of autophagy is −0.69112056, Besides
FDR q-value in in regulation of autophagy is 0.8572637. In ecm
receptor interaction, the NES and FDR q-value were 1.7462078
and 0.05238891, respectively. The NES and FDR q-value were
1.5948162 and 0.09338858 respectively in cell adhesion molecules
cams. In calcium signaling pathway, the NES and FDR q-value
were −1.5085816 and 0.22675242, respectively. The NES and
FDR q-value were −0.8284878 and 0.71028847, respectively,
in olfactory transduction. With enrichment score > 0, the
left side of the genes corresponding to the peak value of
the regulation of autophagy, ecm receptor interaction, cell
adhesion molecules cams, calcium signaling pathway are core
enrichment genes. With enrichment score < 0, the right side
of the genes corresponding to the peak value of olfactory
transduction pathway are core enrichment genes. The GSEA
results showed the correlation of risk level. Gene sets regulation of
autophagy, ecm receptor interaction and cell adhesion molecules
cams were enriched in high risk group. Gene sets calcium
signaling pathway and olfactory transduction were enriched
in low risk group.
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FIGURE 5 | Signature-based risk score in train and validation cohort. (A–C) Risk score distribution, survival overview, and heatmap in train cohort. (D–F) Risk score
distribution, survival overview, and heatmap in validation cohort.
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FIGURE 6 | Cox regression analysis of the association between clinical factors and OS. (A,B) Univariate and multivariate cox regression analysis in train cohort.
(C,D) Univariate and multivariate cox regression analysis in validation cohort.

DISCUSSION

Medulloblastoma is the common malignant tumor with
poor prognosis in children CNS system. The mechanism
of the medulloblastoma development is still controversial.
Medulloblastoma is histopathologically divided into four
subgroups, and the four subgroups have different mutated
genes. With the development of molecular subgroups, gene
detection plays an important role in classification and treatment
of medulloblastoma. In WNT subgroup, approximately 85–90%
of patients harbor somatic activating mutations in exon 3 of
CTNNB1 which lead to constitutively active WNT signaling
through stabilization of β-catenin (Waszak et al., 2018). WNT-
MB patients lacking somatic CTNNB1 mutations often carry
disease-causing constitutional mutation of the tumor suppressor
gene APC (Waszak et al., 2018). Several recurrently mutated
genes have been identified in WNT subgroup. Most notably,
DDX3X (in 36% of patients), SMARCA4 (19%), and TP53 (14%),
as well as clinically actionable mutations in CSNK2B (14%),
PIK3CA (11%), and EPHA7 (8%) (Northcott et al., 2017).

As another subgroup, genetically most SHH-MB patients have
germline or somatic mutations and copy number changes of

key genes in the SHH signaling pathway. Assessing the status
of TP53 mutations is important for patient stratification because
these mutations are associated with poor prognosis in SHH-
MB patients (Kool et al., 2014). It is generally recommended
that all patients with SHH-MB should be analyzed for minimal
mutations of PTCH1, SUFU, and TP53 in tumor and blood
(Waszak et al., 2018). Only a DNA-based methylation or
expression-based approach can reliably distinguish Group 3 MBs
from Group 4 MBs (Cho et al., 2011). The presence of MYC
or MYCN amplification may further increase the stratification
of patients in the Group 3 (Shih et al., 2014). Therefore,
treatments can be tailored to patients by different biomarker
to improve prognosis. Molecular prognostic markers that can
be quantified by standardized inspection technique vary with
tumor progression and may dynamically reflect the patient’s
prognosis. To conquer the hinder of heterogeneity, a group
of molecular markers may be more accurate in reflecting MB
prognosis than a sole one.

In present study, three mRNA microarray datasets were
analyzed to obtain DEGs between MB tissues and normal
brain tissues. By using a combined approach of microarray
data analysis-bioinformatics tools, the DEGs between MB tissue
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FIGURE 7 | Validation of expression and alteration of the twelve genes (1). (A) The expression profiles of the twelve genes in the Oncomine brain and CNS tumor
database. (B) Meta-analysis of five genes expression in the Oncomine medulloblastoma database. Data of NEK2, CCT2, ACTL6A, SYNCRIP, NRXN2, ENAH, and
UMPS in medulloblastoma were not found in the database.

and normal brain tissue were identified. Then we selected
132 DEGs as hub genes with degrees ≥ 10. Survival analysis
revealed 26 hub genes associated with overall survival. identified.
Univariate, LASSO, and multivariate cox analysis were used to
further narrow the marker range and establish a risk model
for predicting MB prognosis. Twelve-gene signature predicting

overall survival of MB was established by Lasso cox regression.
NRXN2 was downregulated and identified as protective genes
whereas FOXM1, NEK2, CCT2, ACTL6A, EIF4A3, CCND2,
ABL1, SYNCRIP, ITGB1, ENAH, and UMPS were upregulated
and associated with poor survival. We evaluated the model
performance using the ROC curve of the twelve-gene signature.
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FIGURE 8 | Validation of expression and alteration of the twelve genes (2). (A) The expression profiles of the in the Oncomine medulloblastoma database. Data of
ACTL6A, SYNCRIP, NRXN2, ENAH in medulloblastoma were not found in the database. (B) Genetic alterations of the twelve genes in cBioportal medulloblastoma
database.

The results showed that the AUCs of the ROC curves for 1-,
3-, and 5-year survival prediction models were 0.878, 0.670, and
0.667, respectively. That means that the gene signature had high
sensitivity and specificity. Besides, We further validate the model
in a separate data set.

Our results strongly convinced us that our model can predict
the MB patients prognosis better than traditional clinical factors.
Finally, we constructed a nomogram that can predict the OS
in MB patients. 1-, 3-, and 5- years of AUCs of the integrated
nomogram in were the largest suggesting the our nomogram have
high predictive accuracy and sensitivity.

To better demonstrate the molecular mechanism underlying
MB, we identified 701 DEGs and performed GO and KEGG
enrichment analysis for these genes. The results demonstrated
that the DEGs were significantly associated with modulation of
chemical synaptic transmission, synaptic membrane and gated
channel activity. All of these molecular biological processes
had been reported in medulloblastoma. A comparison of
mouse cerebellar development and medulloblastoma showed
that synaptic transmission and other brain-specific neural
processes were abnormally developed in medulloblastoma (Liu
and Kohane, 2009). Besides, a GO analysis revealed that these
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FIGURE 9 | The representative protein expression of the twelve genes in brain tumor and normal brain tissue. Data were from the Human Protein Atlas database.
NRXN2 was not found in the database.

DEGs were significantly enriched in gated channel activity.
Inhibition of K+ channels is an important mechanism by which
HO-1 enhances apoptosis resistance of medulloblastoma cells
(Al-Owais et al., 2012). Voltage-gated potassium channel also

controls mitotic entry and tumor growth in medulloblastoma
(Dorand et al., 2016). That is to say, gated channel activity
is a worthy target for research on medulloblastoma. Our
KEGG enrichment pathway also demonstrated cell and
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FIGURE 10 | The correlation of twelve genes expression with immune infiltration level in brain tumor.

synaptic transmission in medulloblastoma deserved further
study to verify.

Seven of the genes in the twelve-gene signature were
previously reported to be associated with medulloblastoma.
FOXM1, a proliferation specific oncogenic transcription factor,
is deregulated In a variety of solid tumors (Senfter et al., 2019).
FOXM1 is highly expressed in all medulloblastoma molecular
subgroups (Priller et al., 2011). Besides, FOXM1 expression level
significantly correlated with unfavorable clinical outcome in
univariate and multivariate analysis (Priller et al., 2011). NEK2
has been suggested in the regulation of centrosome separation
and microtubule organization (Xia et al., 2015). The testing of
the NEK2 as a top candidate showed a strong dependency of
medulloblastoma cells on the activity of this enzyme (Boulay
et al., 2017). Studies showed that NEK2, OTX2 target gene,
was knockdown and pharmacological inhibition decreased
medulloblastoma cell viability (Boulay et al., 2017). CCND2,
coding for the cyclin D2 protein, is a cell cycling central regulator.
Study showed CCND2 involved in the sonic hedgehog signaling

pathway, were indicted as associated with MB prognosis (Dahlin
et al., 2015). Alternative splicing mediated by mutant U1 snRNA
activates oncogene CCND2, and may be a potential therapeutic
biomarker (Suzuki et al., 2019). ABL1 is a ubiquitously expressed
non-receptor tyrosine kinase. ABL1 has various functions, and
cell proliferation can be negatively regulated by nuclear C-ABL
(Gourlay and Ayscough, 2005). ABL contraction mediated by
residues G302 and G325. Mutants of these residues, G302V and
G325E are associated with medulloblastoma biological process
(Epling et al., 2015). MYC amplification predict poor prognosis
in Group 3 MB. Highly expressed proteins associated with
MYC-amplified tumors were significantly related to glycolytic
metabolic pathways via SYNCRIPs (Staal et al., 2015). ITGB1
is mainly related to the ability of tumor metastasis to promote
primary tumor exosmosis, cell adhesion, intravenous injection
and tumor growth at metastatic sites (Sheldrake and Patterson,
2014). The reduced expression of miR-192 was confirmed in
the medulloblastoma cells. MiR-192 decreased cellular anchoring
via the repression of ITGB1 (Yang et al., 2015). CCT2 is

Frontiers in Genetics | www.frontiersin.org 14 September 2020 | Volume 11 | Article 563882

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-563882 September 1, 2020 Time: 19:23 # 15

Zhu et al. Twelve-Gene Prognostic Signature in Medulloblastoma

FIGURE 11 | Construction of a nomogram for survival prediction. (A) nomogram combing twelve-gene signature and clinical factors, (B–D) time-dependent ROC
curve analysis of nomogram. Des, desmoplastic/nodular; LCA, large-cell anaplastic; MBEN, medulloblastoma with extensive nodularity.

a molecular chaperone that is a member of the chaperonin
containing TCP1 complex. Although CCT2 has not been
reported in medulloblastoma, CCT2 is significantly enriched in
the WNT pathway which is closely related to the growth of
medulloblastoma (Yang et al., 2019).

The roles of ACTL6A, EIF4A3, ENAH, and UMPS in
medulloblastoma had not been reported. However, these genes
had also been reported to play a key role in tumors.
ACTL6A and P63 interact physically to synergistically control
transcriptional programs that promote tumor proliferation and

inhibit differentiation (Saladi et al., 2017). ACTL6A is vital
for embryogenesis and differentiation and is also critical for
metastasis in hepatocellular carcinoma (Zeng et al., 2018).
EIF4A3 is an RNA-binding protein that is a core component of
the exon junction complex. Besides, EIF4A3 is overexpressed at
the transcriptional level in common malignancies. These results
suggested that EIF4A3 may be a diagnostic marker or therapeutic
target for some types of cancer (Lin et al., 2018). ENAH gene
encoding activation/vasodilation to stimulate the phosphorylated
proteins (ENA/VASP) family proteins, involved in cell adhesion
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FIGURE 12 | Gene set enrichment analysis (GSEA).

and movement required for the assembly of actin filament.
Studies suggested that ENAH may play a promoting role in the
development of gastric cancer and may be a valuable prognostic
marker for patients with primary gastric adenocarcinoma (Wang
et al., 2017). BOK is a key enzyme positive regulator involved in
uridine biosynthesis; namely, uridine monophosphate synthetase
(UMPS). Studies had shown that BOK was of certain significance
as a biomarker of 5-FU resistance, and has the potential to
develop a BOK analog for 5-FU resistance tumor sensitization
(Srivastava et al., 2019). All the above reports indicated that
these four genes had potential in the study of medulloblastoma.
Our study was to validate the above genes in order to have
more targeted genes in medulloblastoma to improve patients
prognosis. The roles of NRXN2 in cancer development have not
yet been elucidated. NRXNs is a group of presynaptic single-
channel transmembrane proteins that act as synaptic organizers
in mammals. The neurexins consist of three genes NRXN1,
NRXN2, and NRXN3. Genomic alterations in NRXN genes have
been identified in a wide variety of neuropsychiatric disorders,
including autism spectrum disorders, schizophrenia, intellectual
disability (Kasem et al., 2017). The above reports fully proved the
significance of NRXN2 in the nervous system, which may have
direct or indirect effects on the growth of medulloblastoma.

Medulloblastoma is a high-grade malignant CNS and
brain tumor with a poor prognosis. Recent advances in

tumor immunology may provide better treatments for
medulloblastoma and reduce its side effects. Our study suggested
the downregulated FOXM1, NEK2, CCT2, ACTL6A, EIF4A3,
CCND2, ABL1, SYNCRIP, ITGB1, ENAH, UMPS was positively
correlated with CD4 + T cell infiltration level. This means
that with the high expression of 11 genes, CD4 + level in
patients decreases gradually, greatly reducing the patients
anti-tumor ability. In MB mouse models, disruption of
CDK5 expression led to strong tumor rejection mediated by
CD4 + T cells, highlighting an important role for CDK5 in
immune checkpoint regulation. Besides, in a mouse model
of spontaneous medulloblastoma, targeted STAT3 destruction
of bone marrow cells altered the presence of CD4 + cell
(Abad et al., 2014). The above report also showed these
twelve genes have the potential to be immune checkpoints
in future study.

Contrast to previous bioinformatics studies of
medulloblastoma, present study screened different genes as
biomarker of medulloblastoma. Then, based on the selection
of hub genes, study used the GEO database to select hub
genes associated with prognosis to better demonstrate the
relationship between genes and prognosis. Meanwhile, our
study performed Lasso−penalized cox regression analysis
to build the prognostic gene signature. Our nomogram
combined with twelve-gene prognostic signature and
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clinical parameters may enable clinicians to determine the
prognosis of individual patients. As far as we knew, twelve-gene
prognostic signature and nomograms based on them described
here had not been reported before.

However, there was still certain deficiency in our study.
First of all, Ethnic factors associated with sequencing samples
and some potential prognostic factors may not be included
in the model, limiting its predictive power. Secondly, tumor
size and resection extent which can predict medulloblastoma
prognosis had not been shown in GEO. Next, we will study the
medulloblastoma patients treated in our center, include more
clinical parameters for analysis, and set additional endpoints to
observe different events result.

CONCLUSION

The present study identified 701 DEGs and twelve genes
regarded as diagnostic biomarkers for medulloblastoma. The
mechanism of synaptic transmission and other brain-specific
neural processes associated with medulloblastoma growth is
currently considered as a promising anticancer strategy. We
have reviewed the literature and found that 7 hub genes have
been shown to play a role in the pathophysiological process
of medulloblastoma. Their insight mechanisms of action and
their use in targeted therapies remained to be scientifically
investigated. There are still 5 hub genes which were not widely
reported. Our present study offered a new perspective and further
studies are needed to elucidate the specific functions of these
genes in medulloblastoma.
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