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Abstract

Background: The adaptive response of bone cells to mechanical strain is a primary determinant
of skeletal architecture and bone mass. In vivo mechanical loading induces new bone formation and
increases bone mineral density whereas disuse, immobilisation and weightlessness induce bone
loss. The potency of mechanical strain is such that a single brief period of loading at physiological
strain magnitude is able to induce a long-lasting osteogenic response that lasts for days. Although
the process of mechanotransduction in bone is incompletely understood, observations that
responses to mechanical strain outlast the duration of stimulation necessitate the existence of a
form of cellular memory through which transient strain episodes are recorded, interpreted and
remembered by bone cells. Recent evidence supports the existence of a complex multicellular
glutamate-signalling network in bone that shares functional similarities to glutamatergic
neurotransmission in the central nervous system. In neurones, these signalling molecules
coordinate synaptic communication required to support learning and memory formation, through
a complex process of long-term potentiation.

Presentation of the hypothesis: We hypothesise that osteoblasts use a cellular mechanism
similar or identical to neuronal long-term potentiation in the central nervous system to mediate
long-lasting changes in osteogenesis following brief periods of mechanical strain.

Testing the hypothesis: N-methyl-D-aspartate (NMDA) receptor antagonism should inhibit the
saturating response of mechanical strain and reduce the enhanced osteogenicity of segregated
loading to that of an equivalent period of uninterrupted loading. Changes in c.-amino-3-hydroxy-5-
methyl-isoxazole propionate (AMPA) receptor expression, localisation and electrophysiological
responses should be induced by mechanical strain and inhibited by modulators of neuronal long-
term potentiation.

Implications of the hypothesis: If true, this hypothesis would provide a mechanism through
which the skeleton could be pharmacologically primed to enhance or retrieve the normal
osteogenic response to exercise. This would form a basis through which novel therapies could be
developed to target osteoporosis and other prevalent bone disorders associated with low bone
mass.
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Background

Numerous animal and human studies have demonstrated
that mechanical strain is an important determinant of
skeletal architecture and bone mass, although the precise
mechanotransductory events that direct this biological
phenomenon are unclear. Like neurones, bone cells
express complex glutamate signalling machinery includ-
ing functional ionotropic and metabotropic receptors that
share comparable basic pharmacological and electrophys-
iological properties to their neuronal counterparts [1-7].
Osteoblasts also spontaneously release glutamate and
express functional glutamate transporters, providing evi-
dence for endogenous receptor activation and agonist
recycling in the bone microenvironment [8-10]. Together
these data support the existence of a complex, highly
orchestrated and functionally significant multicellular
glutamate-signalling network in bone. But what role does
glutamate play in musculoskeletal physiology and bone
cell function? One possibility is the regulation of cell dif-
ferentiation. Glutamate receptor antagonism has been
reported to inhibit differentiation of osteoblasts and oste-
oclasts in vitro, although the in vivo significance of these
findings remains unclear [4,11].

Over recent years the excitatory amino-acid glutamate has
emerged as an important molecular determinant of plas-
ticity and synaptic enhancement in the central nervous
system responsible for the processes of learning and mem-
ory - the best studied of which is NMDA receptor-depend-
ent long-term potentiation (LTP). LTP can be crudely
defined as a long-lasting activity dependent change in syn-
aptic efficacy in which synaptic strength is persistently
increased in response to brief periods of repetitive electri-
cal stimulation lasting only seconds. At a molecular level,
LTP is initiated by NMDA receptor activation and calcium
influx, which mediates increased delivery to, and/or con-
ductance of existing AMPA-type glutamate receptors at the
postsynaptic membrane. Further episodes of signalling
are subsequently enhanced as a result of increased proba-
bility of receptor activation and glutamate mediated syn-
aptic conductivity. NMDA receptor mediated calcium
influx and activation of CaMKII plays a key role in the
expression of LTP [12,13]. Inhibition or knockout of
CaMKII has been reported to prevent LTP induction [14-
16] while constitutively activated CaMKII increases synap-
tic strength [17,18]. Studies have demonstrated that CaM-
KII activation occurs immediately after induction of LTP,
increasing single channel conductance of AMPA receptors
through serine phosphorylation of GluR1 and mediating
delivery and clustering of new AMPA receptors at synapses
through the regulation of PDZ interactions between
GluR1, Stargazin protein and PSD-95 [19-22].
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Presentation of the hypothesis

Long-term potentiation in osteoblasts, a cellular basis of
memory in bone?

Neuronal LTP has clear analogies to osteogenesis resulting
from brief periods of mechanical loading particularly in as
much as they are both long-lasting forms of use-depend-
ent potentiation. This prompted the hypothesis that
memory formation in bone and brain share a common
cellular pathway. Mechanical loading is arguably the most
potent environmental influence on the skeleton and pro-
motes new bone formation through modelling and
remodelling. In contrast, disuse, immobilisation and
weightlessness are associated with bone loss [23-26].
Mechanical influences on the skeleton and the adaptive
responses of bone cells to recent loading history have
been described as the primary functional determinant of
skeletal architecture [27]. In simple terms, dynamic alter-
ation in bone structure induced by loading serves to
improve its structural suitability to subsequent loading
events. Bone cells learn from changes in their loading
environment so that the activity of cells are precisely
orchestrated to control modelling and remodelling and
preserve optimum skeletal structure. This protective
mechanism of cause and effect acts to prevent skeletal
damage that would otherwise result from habitual physi-
cal activity. The osteogenic potency of mechanical strain
on bone cells is such that single brief periods of loading
are able to exert a long-lasting osteogenic response in vivo
[28]. The temporal nature of this response, transducing
mechanical stimuli into an appropriate level of consolida-
tory bone formation that outlasts the stimulus, necessi-
tates the existence of a form of cellular memory.

Evidence exists for conventional memory formation in
bone in which responses to mechanical loading are
affected by preceding episodes of loading, at least fulfill-
ing the conceptual requirement for LTP. For instance, it
has been demonstrated that mechanical loading is more
osteogenic when separated into discrete episodes, com-
pared to an equivalent period of uninterrupted loading.
Using a well-characterised model of loading induced
bone formation in vivo, several studies have demonstrated
that the osteogenic potential of mechanical loading is
enhanced in terms of bone formation and biomechanical
and structural properties, by separation of loading cycles
into discrete episodes with varying degrees of rest between
periods of stimulation [29-31]. In these studies, the order
of osteogenic potency was such that 6 periods of 60 cycles
> 4 periods of 90 cycles > 360 cycles at once. These data
were interpreted as bone cells becoming increasingly less
responsive or 'deaf' to prolonged periods of mechanical
stimulation, a form of depression or desensitisation to the
stimulus. Based on a hypothesis of LTP in bone described
here, in contrast to losing responsiveness, bone cells could
be considered primed by earlier periods of loading, so that
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further episodes are increasingly efficacious and subse-
quent responses potentiated. This would account for the
extrapolatory deduction that less total loading cycles
should be required to produce the equivalent level of oste-
ogenic response if loading is separated into discrete bouts
compared to a single sustained, and less effective period of
loading. Moreover, other studies have reported that the
osteogenic response of mechanical strain increases with
loading frequency [32], which has clear similarities to LTP
in central neurones, which is more effectively induced by
high frequency stimulation. Lower frequency stimulation
on the other hand is associated with short-term potentia-
tion (STP) or long-term depression (LTD). Perhaps most
significantly, LTP in bone would also account for the
observation that levels of osteogenic stimulus saturate
rapidly so that only a few loading cycles are required to
achieve the maximum osteogenic effect [33]. In support of
LTP-like mechanisms mediating the osteogenic response
of bone cells, key events involved in LTP are observed in
osteoblasts following mechanical stimulation in vitro,
including specific and rapid initiation of calcium tran-
sients and activation of neuronal CaMKII. Furthermore,
CaMKII activity appears to be required for normal osteob-
last differentiation, which temporally precedes new bone
formation post-loading [34,35]. In vivo evidence also
exists for the involvement of an LTP-like mechanism in
loading induced osteogenesis; potent inhibition of
AMPA/Kainate receptor activation with DNQX causes a
significant decrease in loading induced bone formation in
the 4-point bending rat ulnae model [36]. This could be
interpreted as functional antagonism of potentiated
AMPA receptor responses induced by LTP-like mechan-
otransduction in bone.

Testing the hypothesis

Our hypothesis could be tested using a combined in vitro
electrophysiological, and in vivo approach. One would
expect electrophysiological responses of bone cells to
glutamate receptor agonists to be potentiated following
mechanical strain in vitro coincident with an increase in
AMPA receptor number and/or conductance. The signal-
ling pathways responsible for mediating these effects
could be investigated using known agonists and antago-
nists of neuronal LTP. Similarly pharmacological inter-
vention could be used to investigate the in wvivo
significance of LTP in which antagonists of NMDA recep-
tors and CaMKII should diminish the potentiated osteo-
genic responses of segregated loading.

Implications of the hypothesis

Naturally this hypothesis raises the question as to why
bone cells would require such an exquisitely sensitive and
rapid signalling system as fast excitatory neurotransmis-
sion. The millisecond time-scale through which these
events are mediated may be required to detect and
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respond to the very rapid strain changes experienced dur-
ing forms of exercise with high osteogenic potential. Per-
haps the most significant implication of this would be the
ability to pharmacologically prime the skeleton to retrieve
or potentiate the osteogenic capacity of mechanical strain,
an effect desirable for the treatment of bone disorders
associated with low bone mass and architectural abnor-
malities such as osteoporosis.

Abbreviations

AMPA; a-amino-3-hydroxy-5-methyl-isoxazole propion-
ate, CaMKII; Calcium/calmodulin-dependent protein
kinase II, LTP; Long-term potentiation, NMDA; N-methyl-
D-aspartate.
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