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Abstract

Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast for clinical diagnoses and research which underpin
many recent breakthroughs in medicine and biology. The post-processing of reconstructed MR images is often automated
for incorporation into MRI scanners by the manufacturers and increasingly plays a critical role in the final image quality
for clinical reporting and interpretation. For image enhancement and correction, the post-processing steps include noise
reduction, image artefact correction, and image resolution improvements. With the recent success of deep learning in many
research fields, there is great potential to apply deep learning for MR image enhancement, and recent publications have
demonstrated promising results. Motivated by the rapidly growing literature in this area, in this review paper, we provide
a comprehensive overview of deep learning-based methods for post-processing MR images to enhance image quality and
correct image artefacts. We aim to provide researchers in MRI or other research fields, including computer vision and image
processing, a literature survey of deep learning approaches for MR image enhancement. We discuss the current limitations of
the application of artificial intelligence in MRI and highlight possible directions for future developments. In the era of deep
learning, we highlight the importance of a critical appraisal of the explanatory information provided and the generalizability
of deep learning algorithms in medical imaging.

Keywords Magnetic resonance imaging - Post-processing - Image enhancement - Artefact correction - Noise - Super-
resolution

Introduction

Magnetic resonance imaging (MRI) is a non-invasive
in vivo biomedical imaging modality that underpins many
recent breakthroughs in biology and medicine. Compared
with other imaging modalities, MRI is superior in provid-
ing excellent soft-tissue contrast. MRI can be applied to a

< Zhaolin Chen
zhaolin.chen@monash.edu; zhaolin.chen@gmail.com

Monash Biomedical Imaging, Monash University,
Melbourne, VIC 3168, Australia

Department of Data Science and Al, Monash University,
Melbourne, VIC, Australia

Department of Electrical and Computer Systems
Engineering, Monash University, Melbourne, VIC, Australia

Turner Institute for Brain and Mental Health, Monash
University, Melbourne, VIC, Australia

National Imaging Facility, Brisbane, QLD, Australia

@ Springer

diverse range of clinical and research applications to visu-
alize anatomical structures, measure biophysical functions
and metabolism, as well as quantify perfusion and diffusion
weighted microstructures in soft tissues and organs.

With the ever-increasing demand for shorter imaging
time and higher image resolution, MRI increasingly suffers
from low signal to noise ratio (SNR) and is prone to image
artefacts arising from subject motion and image distortion.
These pose crucial challenges to accurately and efficiently
post-process MR images. Conventional image enhancement
and artefact correction techniques have proven to be useful
for improving image quality in MRI including denoising [1],
geometric distortion correction [2], and correction of subject
movement [3]. With the advent of artificial intelligence and
machine learning, especially deep learning algorithms, there
is great potential to further improve image quality in MRI,
and many early works have demonstrated significant gains
in image quality.

Deep learning has proven to be useful in various steps of
the clinical imaging workflow including patient scheduling,
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data acquisition and reconstruction, image enhancement and
correction, and interpretation of results (see Fig. 1). Signifi-
cant improvements in workflow efficiency, data quality, and
interpretation efficiency have been reported [4]. For exam-
ple, in the image reconstruction literature, several papers
have comprehensively reviewed the image reconstruction
algorithms using deep models for improved image recon-
struction accuracy [5, 6]. For accurate and robust image
interpretation, Cai and colleagues reviewed deep learning
for image classification and segmentation tasks [7]. Further-
more, McBee et al. have provided an overview of deep learn-
ing in radiology practice covering topics including disease
detection, classification, segmentation, and quantification
[8]. In this review, we particularly focus on post-processing
algorithms for image quality enhancement and artefact cor-
rection, as many existing research works have demonstrated
that deep learning models are well suited for image post-
processing tasks in MRI.

In this paper, we will first provide an overview of
the recent development of deep learning for MRI
post-processing including (i) image artefact reduc-
tion, (ii) denoising for different MRI contrasts, and
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(iii) improvement for image resolution. We aim to pro-
vide researchers with an overview of deep learning
approaches for post-processing MR images and discuss
future perspectives in these applications.

Overview of Deep Learning Models in MRI
Post-Processing

Many MR post-processing tasks can be formulated as
image-to-image transformation problems where deep
learning models are used to capture the nonlinear rela-
tionships between image inputs and outputs. In both rigid
and non-rigid motion correction tasks, motion-corrupted
images are fed into deep neural networks (DNNs) which
produce the corresponding motion-free images. To cor-
rect other artefacts, such as Gibbs ringing, image bias due
to BO inhomogeneity, ghosting, and distortion artefacts,
DNNSs take images with artefacts as the inputs and output
artefact-free images. Similarly, various neural networks are
implemented to reduce noise or enhance image resolution
in MRI images with supervised or unsupervised training.
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Fig. 1 Overview of the scope of the review paper which focuses on the post-processing steps after image reconstruction and includes MRI arte-

fact correction, noise reduction, and resolution enhancement
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Network Architectures

Among various types of deep neural networks, convolu-
tional neural networks (CNNs) are the most commonly
used neural network architecture in medical image pro-
cessing [9]. The convolution operations or kernels are
the major building blocks of any deep CNN architecture,
which are specialized linear operations that are capable
of detecting translation invariant features from images,
including 1D, 2D, and 3D Conv layers, while several
works use long short-term memory (LSTM) and multi-
level perception (MLP), as illustrated in Table 1.

CNN architectures, such as U-Net and its exten-
sions, are the widely used models for MR image quality
enhancement and artefact correction. Table 1 includes the
model architecture types covered in this survey and shows
that U-Net is one of the most popular network architec-
tures for mapping from source images to target images,
among a variety of customized CNN networks. The 2D
U-Net model was first designed for image segmentation
tasks [10] as a fully convolutional neural network (FCN)
architecture (Fig. 2a). It consists of an encoder that con-
tracts spatial information to latent feature maps with
convolution operations and a decoder that expansively
performs up-sampling step propagating spatial informa-
tion from the input to deep layers of the network, in order
to preserve spatial features from the input image that are
relevant to the output image. Since the first introduction
of the U-Net model, variations to the initial architecture
to handle fully 3D data [11-13] have also been imple-
mented (Table 1).

Similar to U-Net architecture, some works applied
autoencoders (AE) with residual connections to enhance
medical images [14, 15]. As shown in Fig. 2b, an autoen-
coder architecture is generally the composition of two
parts: an encoder which maps an input image to latent
space features in lower dimensions and a decoder which
predicts an output from the latent space. Dimensional-
ity reduction forces the neural network to give priority
to learning those features which most significantly con-
tribute to minimizing the loss, thus reducing undesirable
features such as noise and artefacts [16]. Variational
autoencoder (VAE) was applied for applications includ-
ing correcting motion artefacts [17] and normalizing
multi-site image data [18]. With the recent success in
self-attention-based transformers, there have been several
attempts to study the effectiveness of these networks on
MRI post-processing tasks, especially on noise reduction.
The transformers consist of fully connected layers and
operate on image patch embedding in order to exploit
long-range dependencies between visual MR features.

@ Springer

Network Training

Training a neural network is the process of optimizing its
parameters to minimize the loss between the predicted and
target images or patches. Loss functions determine which
image characteristics will be used by the neural network to
match with the ground truth data. In the scope of MR image
enhancement and artefact correction, the mean absolute
error (MAE) using L1 norm and mean square error (MSE)
using L2 norm are the two most widely used to compute
the pixel-wise residual component between neural network
outputs and ground truth images or patches [13, 19-21].
Some works incorporated multiple losses, e.g., MAE or
MSE, and Structural Similarity Index (SSIM) to improve
perceptual quality of output images [22-24], where the
SSIM loss measured the similarity of the output and tar-
get images [25]. Different from the above hand-crafted loss
functions, perceptual loss was proposed to measure the high-
level perceptual and semantic between the neural network
generated images and target image in feature space, instead
of computing the pixel differences [26]. It was originally
designed for image style transfer problems, later applied to
MRI image processing with pre-trained VGG networks as
the loss network, such as motion correction [17], contrast
synthesis [27], and noise reduction [28].

In the context of MRI image quality enhancement, the
process of optimizing model parameters is mostly formed
as a fully supervised or adversarial training framework. In a
fully supervised setup, the models are trained with explicitly
defined pairs of input and output. For example, to correct
artefacts, models are optimized by using the loss functions
between network outputs and artefact-free ground truth
images or patches as the supervisory signals, through the
process of gradient descent. The fully supervised learning
framework was widely used for motion correction [19, 29],
noise reduction [30-32], instrumental, and sequence arte-
fact correction [33-36]. For super-resolution tasks, similar
setups were adopted, where the target images or patches
were in high resolution and the inputs were low-resolution
counterparts.

In contrast to fully supervised learning frameworks, some
methods applied unsupervised learning techniques to train
neural network models without explicitly labelled training
pairs. Among those, generative models such as the generative
adversarial network (GAN) framework, as shown in Fig. 2c,
are popular techniques. GAN operates two networks, a genera-
tor and a discriminator, which are updated in an alternating
fashion and converged to a state where the generator output is
indistinguishable from the ground truth images according to
the discriminator. GANs have demonstrated good performance
in natural image processing tasks such as image synthesis [37,



207

Journal of Digital Imaging (2023) 36:204-230

lo¥] 1a-b-¥s

‘T6S1 NVDIS

‘[s7] ewmnpopdeag
H01d

‘ASINY “UNSd ‘WISS
0810} ‘ORIpIed ‘[B)9J

‘oouy] ‘9jeysod ‘urerg

so[dwes Sururen

uonn[OsAI-MO[

91eaId 0) dords-y

Surdwesiopun
£q uorenurg

sogewr uonN[OSAI-YSTH

soFewI UONN[OSAT-MO]

yored ¢
‘yored g ‘o3ewr (qg
SSO[
3o1d1n “ssof NISS ‘Sso]
[eLies1oApe ‘SN ‘HVIN
[eLIBSIOADR
‘pasiazadns AJng

[86] 1oNALS

‘vzl JINa

‘[LS] WLST-au0DAgE
‘l1€] NNoQ

ANSd ‘SN
‘ASIN ‘AVIN ‘INISS
Apoq
Jroym ‘aresoxd ‘urerg

sdojs Furssaoord-jsod
Suik[dde £q pajerouod
SI BJep 991J-9SION]

elep IMA
pajdwes K[y ‘TIIAY
pue soJewr 991J-3SION

elep IMd
pordwesiapun ‘[YINJ
pue soSewr ASION
elep
pay3rom-uorsnyip
‘SQLI0S QW) TYIAF
‘o8ewr (¢ ‘ofewr (g

Sso[

ISS ‘SN ‘AVIN
[eLIeSIoAPE

‘pastazadns AJng

[os] NaVA
‘8¥]1 NVOM-ATd
‘lssl y1ar

DdI “4INSd ‘WISS

Qouy ‘urerg

sodures Sururen Asiou

JJeIouds 0) a3ewr

UBa[d Y} 0} SASIOU
Surppe Aq uonenuIg

yojed
/o8I 991J-9SION

9SIOU URIONY/UOSSIO]
JUBISSNED) Paje[nuIs
yIm soyojed/seSew]

yored (qg ‘oFewr g

RNV |
remdoorad ‘GSIN “AVIN
[eLIesIoApE
‘pasiazadns A[ng

[£+] Auowregdaaq
‘[¥Sl veav

‘AOId ‘AVIN

urerg

suonisinboe
BYep 9)IS-NNIA

Jsa1)ul

Jo JSe) oy} J0§ S[eqe ]
s1ojowered
JUQIYIP YIIM JO
SIQUUEDS JUAIJIP

uo paxnboe seew]

a3ewr (qg

ssof remdaorad ‘GVIA
[eLIESIOADR

‘pasiazadns AJnyg
JONSOY

[¢S]139N-S

‘[z€] 00s1d-0quAS
uoneuLIOu[

[emnN “HSIN 4SO

urerg

sdais

Surssaooid-isod

Aq poyerouad are
SoZew 991-)0BJoIIY

soyored
/S93ewI 921-108)ay

UuonJo)sIp
pue Sunsoys
yim sayojed/seSew]

yored (qz ‘oewr qg

SSO[ JUQIPEIF ‘SSO[
NISS ‘ASIN ‘AVIN

[eLIBSIOADR
‘pasiazadns AJng

[p¢] dsaydaaq

‘(161 19NowoHuT

‘[0S NND-VID
4SO ‘NHAH

‘HSINY “ANSd ‘INISS
uornjendsar

‘oouy ‘urerg
KyrouaSowoyur
09 Sunernuwis 10§
SP[Y SBIq PajedId
‘@oedsy paddoio
M pAJe[nwls ore

syoejalIe JuruLl sqqIo

soyoyed
/soSew 9013-108JNY
s10119 9seyd
paje[nwIs Jo S)oejo)Ie
SqqQID peye[nuuls
Yim soyoyed/saewy

afewt (g

SSO[ [eLIBSIOAPE
‘ASIN ‘AVIN
[eLIesIoAPE

‘pastazadns AJng

[6v] JANVN
Ie1]
ueDPaJA ‘[61] IONOIOIA

NN ‘ISINY ‘INISS
stafad
‘uouIopqe “IOAI ‘urerg

Qoeds-y ur Jo11o oseyd
Surppe £q pojernwrs
QIe $)0BJOYIE UOHOIN

soyored
/S93ewI 991J-UOTIOJA]

sjoejoLIe
uonow paje[nuuIs
ym soyojed/seSew]

yored ¢
‘yoyed g ‘o3ewr (qg

SsO[

[eLESIoAPE ‘HSIN ‘HVIN
[eLIESIOADR

‘pasiazadns AJng

1NN

sordurexyg
SOLIOIN

SUOIZaI [eoTWOJRUY

90Inos ejep 3ururel],

sindinQ

sindug

sod£y indug

SSOT

sad£) Sururery,

Jowojsuern ‘HVA ‘Uonuape yim 0SI1ONSY ‘AVA ‘NDA 1ONSY
AV NN NND - ‘NNDA PN-N ‘NND AV ‘NND NND 7°N-N ‘NND BN-N AV PN-N ‘NND ‘uondaou] ‘NNO sadK) opoy
dTIN
dTN ‘NLST ‘Auo) g
‘AU0)) ¢ ‘Au0D g ‘AU0)) (I ‘Auo) 1 AUOD) ¢ ‘Au0D (2 AUOD (¢ ‘AuoD (7 AUOD ¢ ‘AuoD g AUOD) (J€ ‘AU0D (g AUOD (7 sad£) 1opoouyg
ordoosonoads ISV UOTIOISTP Kyrauagowoyur uonour
IMd ‘Tedrwojeuy  ‘uorsnyrad ‘T TIING [eOIWIOJRUY  UONBZITEULIOU )IS-NNIA pue 3unsoys [dq 09 ‘Surdurr sqqin) PISLI-UOU ‘UOTIOW PISTY sadoog
UOI)O31I0D UOT}OLI0D
uornnjosal-radng uononNpal ASION uondNPAI ASION  UONRZITRULIOU )IS-NNIA sjoeja)Ie oouanbag  sjorjAlIR [RIUSWNISUT UOT)O31I00 UOTIOA yseL,

syse} Sursseoo1d-1sod YA SNOLIEA JO UOTBULIOJUL ATewuwung | d|qeL

pringer

A's



208 Journal of Digital Imaging (2023) 36:204-230
(a) B
|‘—> (o] »C—> C —» 1 (b)
| |
o I o I»C»‘[i}—»c}—fif»c—»[u‘ c — 1
® >:‘[—-> cC —>Uu
|1 -
© E» c F|

¢ R
i‘}» . »I; |

Fig.2 (a) Unet consists of a fully convolutional encoder and decoder
interconnected by concatenating feature maps which assists in
propagating spatial information to deep network layers. (b) Autoen-
coder consists of an encoder which maps images to a latent space of
reduced dimensionality and a decoder which maps the latent space
vector to image space. The dimensionality reduction mitigates ran-
dom variations in the input while preserving image features necessary

o

38] and image enhancement [39, 40]. Other established meth-
ods include AE, VAE, or using self-supervised learning algo-
rithms which have also been applied for MRI post-processing
tasks. Furthermore, some works utilize the mutual information
between multi-modality contrasts for rigid motion correction
where a neural network is trained in an unsupervised way to
align T1, T2, and FLAIR images by minimizing the normal-
ized cross-correlation measurement [79] and correct suscep-
tibility artefacts in images acquired with echo planar imaging
(EPI) sequence with pairs of reversed phase-encoding images
without the need of artefact-free images [53]. Similarly, pseudo
labels can also be simulated to form as a self-supervision
framework [144, 166]. Moreover, instead of being formulated
as learning problems, deep image prior (DIP)-based methods
use CNNs as a regularizer and form as an optimization prob-
lem at inference time [190]. In MRI, DIP has been success-
fully applied to image denoising of structural images [103] and
diffusion-weighted images [130].

Performance Evaluation

To quantitatively evaluate the model performance, multi-
ple metrics are used to measure the similarity between the
enhanced images by the DNNs and the ground-truth ref-
erence images. Mean squared error (MSE) and root mean
square error (RMSE) measures the pixel-wise difference

@ Springer
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for image reconstruction. (c¢) Generative adversarial network consists
of a generator network which produces an estimate of a ground-truth
image and a discriminator which attempts to discern between synthe-
sized images and ground truth images. Parameters for each network
are updated in an alternating fashion resulting in generator outputs
which are indistinguishable from ground truth images from the per-
spective of the discriminator.

between the artefact-free reference images and the artefact-
corrected network output images [18, 24, 41] or between
the high-resolution ground-truth images and the synthesized
super-resolution images [42, 43], where lower values indicate
better model performance. Similarly, peak signal-to-noise
ratio (PSNR) is another objective metric which is inversely
proportional to the logarithm of the pixel-wise MSE between
the generated image and the reference image. SSIM is
a widely used metric for the level of similarity between
images, especially image edges. PSNR and SSIM are the two
most widely used metrics in validating MRI image quality
enhancement models [20, 44—46]. Besides, high frequency
error norm (HFEN) [33], dice coefficients [12, 47], percent
volume difference (PVD) [47], and ghost-to-signal ratio
(GSR) [34, 35] are also used by some researchers, as well
as mutual information-based metrics, including information
fidelity criterion (IFC) [48] and normalized mutual informa-
tion (NMI) [17].

MR Image Artefact and Bias Correction

Artefacts in MR images emerge from different sources such
as human physiology and instruments. In this section, we
have categorized common MR imaging artefacts as shown
in Fig. 1.
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Patient Motion Artefact

Patient motion during MRI acquisition frequently occurs
due to either involuntary motion of the patient or physio-
logically related tissue movements. Motion during the scan
has been a long-lasting issue in MR imaging [49, 50] and
can manifest as image artefacts including ringing, ghost-
ing, blurring, or a combination thereof [49, 50]. The type of
image artefact depends on both the severity of the motion
as well as the time point at which motion occurred during
the scan [19]. For instance, motion occurring during the
acquisition of high-frequency components will manifest as
ringing and blurring, while motion during the acquisition of
low-frequency components will result in ghosting. The two
broad approaches to correct motion artefacts apply either (i)
prospective or (ii) retrospective motion correction methods.
Prospective motion correction [51-55] involves detection of
patient motion in real-time and modification of the scanner
gradients to maintain the relative position of the patient in
the field of view (FOV). In principle, prospective motion
correction is an efficient method to correct motion artefacts
as it can compensate for a patient’s motion at the source.
However, in practice, it is difficult to accurately estimate a
patient’s motion in real time. Retrospective motion correc-
tion [56—58] methods do not compensate for patient motion
at source but instead correct the image artefacts that result
from the motion.

Motion types can be separated into rigid motion (e.g.,
head motion) and non-rigid motion (e.g., whole-body
motion).

Rigid Motion Correction

The use of deep learning to correct motion artefacts was first
explored by Sood et al. [59], Godenschweger et al. [60] and
Zaitsev [61]. Several methods [19, 23, 29, 41, 62-65] used sim-
ulated motion artefacts to generate paired datasets for training
DL models. Pawar et al. [19] and Sood et al. [59] simulated
motion artefact for 3D MPRAGE images using randomly gener-
ated motion parameters with six degrees of freedom and trained
an encoder-decoder Unet to map motion-corrupted images to
the motion-free images. The authors compared the DL motion
correction results with a method based on the entropy mini-
mization [66] technique and demonstrated that the DL-trained
model had superior performance in comparison to the entropy
motion correction method. Godenschweger et al. [60] simulated
motion for the 2D images using a patch-based CNN approach to
remove artefact from each small patch of image and assembled
the patches to generate a motion-corrected image. Gallichan
et al. [67] used an end-to-end training to generate a full 2D
image. Recently, Ghodrati et al. [68] used a conditional genera-
tive adversarial network which uses 3D patches instead of 2D
patches and demonstrated that the use of 3D patches improves

the motion correction accuracy compared to using 2D slices. In
a separate work, Johnson et al. [69] proposed MC2-Net, which
uses multi-contrast T1, T2, and flair images simultaneously to
first align the T1, T1, and flair images using an unsupervised
alignment DL network and subsequently process the aligned
multi-contrast images through a separate DL motion correction
encoder-decoder network. They demonstrated that using multi-
contrast MR images improves the reconstruction quality of the
images compared to using a single contrast image.

Motion simulation is an important aspect to develop DL
motion correction models. Pawar et al. [70] developed a
motion simulator that generates realistic motion trajecto-
ries and corresponding motion corrupted images. Although
acquiring in vivo pair training data is a complex experimen-
tal task, a study by Kiistner et al. [17] attempted to use the
paired data from 18 subjects, one acquired with the subject
moving and another with the subject still. They used the
motion paired data to compare two different motion correc-
tion DL models including autoencoders (AE) and generative
adversarial networks (GAN) for head, abdomen, and pelvis
imaging.

Bilgic et al. and Brown et al. [41, 62] further developed
the DL motion correction model to integrate data consistency
during the motion correction step to ensure that the motion-
corrected image was consistent with the acquired data. Motion
correction using iterative optimisation algorithms to estimate
both motion parameters and motion-corrected images has
been explored in [66] without the use of deep learning. How-
ever, a major limitation of methods that use iterative optimi-
sation algorithms is their computational complexity and their
failure to converge due to the large search space. Integration
of DL models [71] in order to regularize the iterative methods
has enabled minimization of the cost function in a reasonable
computing time.

Many works [19, 21, 23, 29, 31, 41, 49, 70-75] have dem-
onstrated that motion can be corrected using DL approaches
and simulated data, with some studies validating the proof
of concept using few volunteer scans. However, the per-
formance of these methods in the clinical setting has been
largely unexplored. Figure 3 shows an example of the motion
correction comparing two retrospective motion correction
methods, one DL-based (MocoNet) and another iterative
regularization-based entropy minimization method (taken
from [72]). The authors demonstrated improved image qual-
ity after motion correction using MocoNet.

Non-rigid Motion Correction

Modelling non-rigid motion such as respiratory- or cardiac-
related movements is more challenging than rigid motion.
Tamada et al. [23] developed a motion correction model
to correct for the respiratory artefacts in liver imaging.
Although the task was to model non-rigid motion, they

@ Springer
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Fig.3 Motion degraded (left-hand column) and motion-corrected (right-hand column) images highlighting the image quality improvement for a
case with a brain tumor. The ringing motion artefacts were removed from the images without degrading the diagnostic image quality [72]

approximated chest movement as rigid motion based on the
assumption that the chest moved in only one direction dur-
ing breathing. They modelled periodic motion with random
phase and frequency to simulate breathing and simulated
random motion to simulate a break in the breath-hold. A
patch-based approach was used to remove the motion arte-
fact using a seven-layer CNN without any downsampling
layers. In a separate study, Zhao et al. [57] approximated
respiratory motion as rigid motion to generate respiratory
motion corrupted cardiac cine data and then used an autoen-
coder network with adversarial training in an unsupervised
manner.

Evaluation of Deep Learning-Based Motion Correction

Although most of the current literature focuses on the devel-
opment of novel methods for motion correction in MRI, sev-
eral methods have evaluated the effect of DL motion correc-
tion in clinical and research applications.

Two studies [29, 72] validated the effect of motion correc-
tion in the clinical setting. In both studies, a visual grading
score (VGS) was assessed by multiple trained radiologists
for the quality of images. Johnson et al. [72] performed
5-point VGS on brain images for nine neuroanatomical
regions, while Kromrey et al. [29] performed a VGS study

@ Springer

on the liver using a 4-point scale. They both concluded that
the visual appearance of the motion-corrected images was
improved compared to the motion-corrupted images. Pawar
et al. also concluded that 13% of the repeated scans can
be avoided and 90% of the motion degraded scans can be
improved using motion correction.

To evaluate motion correction for segmentation tasks,
Maclaren et al. [64] compared two approaches for motion
correction, namely, (i) image motion corrected with a DL
model and then used in a segmentation algorithm and (ii)
motion-corrupted images included as training examples in a
DL segmentation model. They demonstrated that the second
approach that included motion corrupted images as training
examples for DL segmentation models outperformed mod-
els that corrected images corrupted with motion artefacts.
Johnson et al. [73] performed a similar study for neonatal
brain segmentation and demonstrated that DL. motion cor-
rection improved segmentation accuracy. Shaw et al. [74]
demonstrated that DL motion correction improved cortical
surface reconstruction of the brain and that quality control
failures were reduced from 61 to 38 by the use of a DL
motion correction algorithm in a Parkinson’s disease study
of 617 patients.

Diffusion parameter estimation can be affected by
misalignment of echo planar image (EPI) volumes.
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Conventionally, volumes with motion greater than a prede-
fined threshold are discarded retrospectively to avoid bias in
estimation of the diffusion parameters. Terpstra et al. [75]
proposed a 3D patch-based CNN to reduce variability asso-
ciated with residual EPI volume misalignment. The method
used a separate database to train a 3D patch CNN for each
subject during the correction stage and demonstrated that the
method could reduce the variability in diffusion parameter
estimation due to motion. Table 2 highlights the advantages
and limitations for popular DL-based motion correction
methods.

Instrument and Pulse Sequence-Related Artefacts

A major source of artefacts in MR images stem from the
choice of acquisition parameters at the MR hardware opera-
tional limit, including at high slew rates and high gradi-
ents, and because of the non-uniform BO and B1 fields. In
this section, we categories artefacts based on the hardware
limitations, choice of acquisition sequence, sequence param-
eters, and scanner non-uniformity.

BO, B1, and Truncation Artefact Correction

Truncation of the high-frequency k-space data is frequently
employed to reduce scan time and often results in Gibbs
ringing artefact. Loktyushin et al. [76] and Wang et al.
[33] proposed a deep learning-based network trained on
simulated Gibbs ringing data to remove such artefacts. The
model consisted of a four-layer CNN to reduce ringing arte-
fact in the image domain and ensure data consistency of
the acquired low-frequency components that successfully
reduced the ringing artefact for T1 and DWI images. Wang
et al. [33] developed a small CNN similar to [76] but without
data consistency for the acquired k-space points. Separately,
Muckley et al. [20] developed a CNN model-based solely
on non-MR images (ImageNet natural image dataset) to
remove Gibbs ringing arising from partial Fourier imaging
which demonstrated that ringing artefacts can be effectively
removed using a model trained on different input images.
Magnetic field BO inhomogeneity results in varying
Larmor frequency spatially and thus the artefacts. BO inho-
mogeneities can produce image biases, blurring, shading,
curved slice profiles, and banding artefacts. BO inhomoge-
neity artefacts are more pronounced in gradient echo and
echo planar imaging sequences due to lack of refocusing
RF pulses and long read out. Another aspect of BO inhomo-
geneity is poor fat saturation since the difference between
fat and water frequency is not fixed in the presence of BO
inhomogeneity. Non-uniform intensity biases can also be
caused by improper coupling of the receiver coils and non-
uniform B1 due to inhomogeneity of the radiofrequency
excitation and receive coils. Sommer et al. [77] proposed

Table 2 Advantages and limitations for deep learning methods in MRI motion correction

Limitations

Advantages

Literature

e Patch-based image to image translation networks and these methods are e Motion artefact is of global appearance, and the patch-based methods

Kustner et al. [17], Sommer et al. [71]

may not be the optimal solution

efficient in GPU memory and thus easier to implement in practice

e 3D Unet is used, but the field of view coverage in slice direction is only

e A full 3D motion simulation and 3D DL network for motion correction

Johnson et al. [73]

limited to 8 slices

e Multiple contrasts may not be available for all the studies, and the

e Using information from multi-contrast images to correct motion artefact

Leeetal. [79]

method is prone to image registration errors across multiple contrasts

e Processes only 2D slices that may result in slice to slice variations when

e Full 3D motion simulation, large dataset for training, validation on

Pawar et al. [19, 19]

viewed from the other orthogonal plane

simulated, as well as real motion degraded images in clinical setting

e A two-step approach where DL is used as a preprocessing step for an

e Provided estimates for both motion parameters and motion corrected

Bilgic et al. [41], Haskell et. al. [49]

iterative motion correction model, and potentially multiple sources of

errors may add together

images

e Small dataset used for training with proof of concept validation with

e Methods developed for dynamic MR imaging and can correct for

Ghodrati et al. [68], Terpstra et al.

limited clinical evaluation

non-rigid motion artefact including cardiac cine and DCE liver MRI

[75], Tamada et al. [23]
Khalili et al. [83], Duffy et al. [84],

e Actual motion corrected images are not compared with ground truth
images
surface reconstruction, and diffusion parameter estimation on motion

assessing the downstream tasks such as image segmentation, cortical
corrected images

e Focused on practical application of motion correction methods by

Gong et al. [85], Shaw et al. [74]
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a generative adversarial network with a 3D pixel and his-
togram loss function to remove non-uniform intensity (bias
field) from MR images. They trained the network on simu-
lated brain datasets and tested the algorithm on real brain
and abdomen images. Respiratory motion can also introduce
B0 inhomogeneity artefacts in T2*-weighted images due to
thoracic cage movement. An et al. [34] proposed DeepResp
to remove respiratory-induced BO inhomogeneity artefacts
that used artefact-free complex-valued images and respira-
tory motion curves to simulate phase errors in k-space. A DL
network was trained to estimate and remove the phase errors
in the phase encoding direction from corrupted k-space data
to recover artefact-free images.

EPI Ghosting and Distortion Artefacts

EPI is a fast-imaging sequence that acquires the whole slice
in one excitation by traversing the full k-space in a prede-
fined manner. For a rasterized zig-zag trajectory, each con-
secutive phase encode (PE) is acquired by traversing k-space
in the opposite frequency encoding direction. This can result
in two major artefacts in EPI images: (i) ghosting in the
reconstructed images due to eddy currents generated during
the reversal of frequency encoding direction and (ii) phase
errors arising from slight BO inhomogeneities that accumu-
late during the readout time and cause geometric distortions
in the reconstructed images.

Ghosting in the phase encoding direction can be corrected
using two readouts in the opposite frequency encoding direc-
tion that calculate the phase errors due to the fast switching
gradients. Lee et al. [35] proposed a deep learning-based
method in the k-space domain to simultaneously correct for
ghosting artefacts and reconstruct EPI images from under-
sampled data. In [36, 78—80] different DL approaches were
proposed to correct EPI geometric distortions. Ghaffari et al.
[78] proposed a 2D Unet approach that used a distorted BO
image along with a co-registered T1-weighted image to cor-
rect for distortion in the EPI images using only one EPI scan.
They further improved the method in [80] and implemented
a 3D Unet to correct for the EPI distortion (Fig. 4). Both
methods were compared with the TOPUP method from the
FSL toolkit [81, 82], a popular tool for distortion correction,
and demonstrated similar performance in distortion correc-
tion without using an extra scan in the opposite direction.
Separately, Hu et al. [36] proposed a 2D Unet for EPI distor-
tion correction in the context of diffusion MRI. The method
used distorted diffusion EPI images in seven diffusion direc-
tions and T2-weighted images as input to the patch-based 2D
Unet to correct for EPI distortion in all seven EPI images
simultaneously. Lee et al. [79] separately developed a DL
method for EPI distortion correction with the aim of reduc-
ing the processing time compared to the conventional meth-
ods including TOPUP [81, 82] and TISAC for susceptibility

@ Springer

Fig.4 EPI distortion artefact correction in [80] form three datasets.
D: distorted image, U: undistorted images formed using distorted and
T1 weighted as input to a 3D Unet

distortion correction [83]. They used a 3D Unet to estimate
the BO distortion field map using an unsupervised approach,
and the estimated distortion field maps were used to correct
the EPI distortion. This approach still required EPI scans
in two opposite PE directions that mimic the conventional
approach to remove distortion artefacts to reduce processing
time. They demonstrated a 369 X and 20 X processing speed
increase in comparison to TOPUP and TISAC, respectively.

Multi-site Data Normalization

Variations in scanner configuration and protocol make the
analysis of data from different imaging sites highly challeng-
ing. Images from a subject scanned at two different sites can
result in images with highly variable quality. Characteriza-
tion and removal of such variability is of critical clinical and
research importance that can be done using data normaliza-
tion methods.

Grigorescu et al. [12] proposed a DL method for data nor-
malization of T2-weighted images using an image domain
adaptation network to harmonize the input T2-weighted
image for gray/white matter and CSF segmentation. The
model consisted of two sequential networks, the first
being a normalization network which processed the input
image to suppress scanner specific variation, followed by a
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segmentation network. The model was trained end-to-end
with adversarial loss for the normalization network and dice
loss for the segmentation network and was tested on neonatal
brain segmentation data. Duffy et al. [84] proposed a similar
idea on T1-weighted images and used a single network with
adversarial loss to enforce learning of scanner independent
features. Gong et al. [85] used adversarial loss to normalize
data from different scanners and tested the CNN model for
multiple tasks including segmentation (gray, white, CSF),
regression (age prediction), and classification (gender pre-
diction). Dewey et al. [47] proposed a Unet-based model for
T1, T2, FLAIR, and proton density images to modify the
contrast of the source image to a predefined target image
contrast, with the target image used for further processing
such as segmentation.

In [86], Tong et al. proposed a 3D image-to-image trans-
lation network to transform images from multiple sites to
a reference site. The method required data from the same
patient at different sites to train such a 3D model and dem-
onstrated reduction in the inter-scanner variation of frac-
tional anisotropy measures. Moyer et al. [18] developed an
autoencoder DL method for normalization of diffusion MRI
data that used an autoencoder to extract a latent space rep-
resentation of the image that was independent of the scan-
ner. The encoder part of the network estimated an unbiased
scanner-independent representation of the input diffusion
image, while the decoder used the latent representation and
the scanner protocol representation as inputs to reconstruct
the diffusion image. The advantage of the autoencoder is
that it does not require data from the same subject to be
acquired at multiple sites. The method allows normalization
of diffusion images from one scanner to another using only
the representation from the second scanner. Unlike [86], the
method does not normalize the scans to a reference site but
converts data from one site to another site using the latent
representation and scanner representations.

Synthetic MRI is quantitative and free of vendor-specific
characteristics which is an ideal form of normalization. In
[27, 87], multiple dynamic multi-echo sequences (MDME)
were used to acquire raw data and multiple contrasts includ-
ing T1, T2, proton density, and T2-FLAIR images using MR
physics-based modelling. T2-FLAIR images generated using
the MDME method are often corrupted with hyperintensi-
ties in brain-CSF and granular hyperintensities in the CSF
region of the brain. Ryu et al. [27] proposed a supervised DL
network that used paired images acquired using MDME and
conventional T2-FLAIR sequences. The paired images were
first co-registered, contrast matched, and intensity normal-
ized before being processed through the network. Separately,
Jenkinson et al. [87] proposed a GAN network that used
multi-channel raw data as an input to the generator network
and a discriminator to differentiate between true and fake
T2-FLAIR images. They used adversarial training to obtain

a generator that could generate realistic T2-FLAIR images
from the raw data.

Noise Reduction in MRI

Image noise is a long-standing issue in MRI. Improving
SNR is increasingly challenging because of accelerated
data acquisition and ill-posed image reconstruction methods.
Noise in MR magnitude images is Rician distributed [88].
For accelerated data acquisitions, image noise can be spa-
tially dependent on the corresponding reconstruction algo-
rithms used, e.g., parallel imaging and compressed sensing.
This poses particular difficulties for post-processing tech-
niques to successfully denoise MR images.

Conventional post-processing-based denoising methods
are classified into filtering methods, transform domain meth-
ods, and statistical methods (for detailed reviews, refer to
[89, 90]). While spatial smoothing filters can be effective
to remove additive noise, they often blur images especially
small structures. Edge-preserving filters can mitigate image
smoothing to a certain degree, and nonlinear filters such
as anisotropic diffusion filters [91, 92] are useful to pre-
serve anatomical details. Anatomical boundaries can also
be preserved with non-local mean filters [93, 94] to exploit
non-local image intensity and structural information while
estimating and removing noise. The Block Matching 3D
Filtering (BM3D) method applied a sparse representation
for noise removal in a transformed domain [95, 96]. Awate
et al. applied a nonparametric empirical Bayesian approach
for Rician noise modelling and removal in MR images [97].

From the generic image processing perspective, CNNs
have been very effective in the reduction of image noise
(see [44] for an overview) with many MR image denois-
ing techniques influenced by standard CNN models and
variants. Deep learning denoising techniques for MR image
post-processing have particularly focused on anatomical
MRI applications, especially the brain, due to the fine ana-
tomical details. There has also been a considerable amount
of research on functional, perfusion-weighted, diffusion-
weighted, and flow MRI.

Noise in Anatomical MRI

Many studies have focused on noise removal in brain
images due to the fine anatomical detail and high resolu-
tion of brain MR images. Most of these studies utilize
CNNs and its variants for denoising. Several studies have
incorporated GAN s to learn the distributions of denoised
MR images using the inherent generator-discriminator
setup. With the recent invasion of transformers in com-
puter vision, there have been several studies incorporating
self-attention-based methods for denoising. Moreover, one
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of the recent focuses has been the quality enhancement of
low-field anatomical MRI due to its innate advantages in
accessibility and the higher vulnerability to noise.

Kidoh and colleagues reported an experimental study
of brain MRI scans from five healthy volunteers that com-
pared performance between three deep learning-based
denoising methods, namely, denoising convolutional
neural network (DnCNN), a shrinkage convolutional neu-
ral network (SCNN), and deep learning-based reduction
(dDLR) [98]. The performance of dDLR was higher com-
pared to DnCNN and SCNN with respect to Peak Signal
to Noise Ratio (PSNR) and Structural Similarity Index
(SSIM), and the image quality of dDLR was also supe-
rior to DnCNN and SCNN. Several groups have improved
MR image denoising using deep image priors [99-101]
and demonstrated improved performance compared with
conventional filtering methods. Aetesam and colleagues
proposed a deep CNN to remove Gaussian noise from
brain MR images [30]. The method was inspired by the
maximum a posteriori (MAP) with Gaussian noise and
deep residual learning. Chauhan and colleagues combined
a fuzzy logic approach with a CNN autoencoder to denoise
brain MR images that showed improved performance

Fig.5 Comparison of image
denoising on a T1-weighted
image [30]: (a) noise-free
image, (b) noisy image,

(¢) BM4D, (d) PRI-NLM3D,
(e) CNN3D, and (f) RED-
WGAN [48]

@ Springer

compared to stand-alone fuzzy logic methods [14]. Apart
from these, a ten-layer CNN [102], multi-channel residual
learning CNN [103], CNN-DMRI [104], HydraNet [105],
NNDnet [106], CMGDNet [107], 3D-Parallel-RicianNet
[108], and a patch-based CNN [109] have been developed
for accurate MRI denoising. Several other recent works
incorporated CNN-based solutions for brain MRI denois-
ing [110-115].

Furthermore, several works reported the incorporation
of peripheral deep learning concepts including adversarial
training and transfer learning to overcome noise in brain
MRI. Ran et al. used a residual encoder—decoder Wasserstein
GAN for simultaneous improvement of noise suppression
and preservation of anatomical details [48] and compared
deep learning-based and conventional methods (Fig. 5). Tian
et al. introduced a novel MRI image denoising method using
a conditional Generative Adversarial Networks (GAN) where
a CNN is used as the discriminator network [116]. The model
was trained by an adversarial loss function and tested on syn-
thetic T1-weighted brain MR images with 10% noise level
and outperformed several other methods in terms of denois-
ing level and preservation of the anatomical structures. Many
CNN-based methods for brain MRI denoising use squared
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Euclidean distance for training that produce overly smoothed
output images. As an alternative, Panda et al. [28] introduced
a perpetual loss which promoted restoration of visually desir-
able brain image features. This method surpassed the previ-
ous methods for the reduction of Rician noise.

Several groups have applied attention-based mechanisms
and leveraged long-range dependencies to improve brain
MR image denoising. Inspired by the attention-guided CNN
networks, Hong et al. proposed a model to incorporate fea-
ture fusion and attention mechanisms to separate noise from
observed MRI images [117] and produced competitive results.
To overcome the limitations of conventional convolution and
local attention in MR/PET denoising, Yang et al. [118] pro-
posed a self-attention-based transformer model called the
spatial-adaptive and transformer fusion network (STFNet).
The STFNet utilizes a Siamese encoder to promote extrac-
tion of more relative and long-range contextual features and a
transformer fusion encoder to establish local/global dependen-
cies between high-level visual embedding of PET and MRI. Li
et al. developed a progressively distribution-based neural net-
work [119]. Unlike the conventional MRI denoising methods
which utilize the spatial information around image patches,
the method learned the pixel-level distribution information
in a supervised manner. Through a series of experiments on
synthetic, complex-valued and clinical MR brain images,
the authors showed that the approach improved quantitative
measures including PSNR and SSIM, as well as visual inspec-
tion of edge-like details and anatomical structures. Xu et al.
aimed to simultaneously address long-range and hierarchical
information and utilize similarity in 3D brain MR images for
denoising [120]. They proposed a deep adaptive blending net-
work (DABN) characterized by large receptive field residual
dense blocks and an adaptive blending method. The overall
results showed superior performance of DABN over other
methods in terms of SSIM and PSNR.

In an application to imaging prostate, Hong et al.
presented a Bayes shrinkage-based fused wavelet trans-
form (BSbFWT) and Block-based autoencoder network
(BBAuto-Net) for removal of noise from prostate MR
images [121]. The method was tested on prostate mp-
MRI data obtained from 1.5-T general electric (GE) and
3.0-T Siemens scanners with promising results obtained
in comparison with conventional filters such as aniso-
tropic, bilateral, Gabor, Gaussian, mean, NLM, wave-
let, Wiener, autoencoders, and autoencoders with NLM
filters. Li et al. [122] carried out a study on clinical
abdominal MR images where their proposed method
was based on a cascaded multi-supervision convolu-
tional neural network named CMSNet. CMSNet showed
superior noise reduction capabilities not only on Rician
noise in MR images but also on low-dose perfusion
noise in CT images. Juneja et al. [123] utilized dDLR
in order to assess the image quality of conventional

respiratory-triggered 3D magnetic resonance cholan-
giopancreatography (Resp-MRCP) and breath-hold 3D
MRCP (BH-MRCP). Their experiments were done is
1.5-T setting using 42 patients, and two radiologists
rated the visibility of the proximal common bile duct
(CBD), pancreaticobiliary junction, distal main pancre-
atic duct, cystic duct, and right and left hepatic ducts
in the final images. The main conclusion of this study
indicated the feasibility of dDLR for BH-MRCP and
Resp-MRCP.

Low-field MRI, in particular, has many benefits includ-
ing affordability, compact footprint, and reduced shielding.
SNR is linearly proportional to the main magnetic field
(B0); hence, low-field MRI systems (< 1 T) inherently have
significantly low SNR compared to conventional 1.5-3 T
MRI scanners. Song et al. [124] proposed a CNN-based
auto encoder network with a transfer learning approach to
learn a data-driven transformation from high-field noisy
data with application to 0.35-T pelvic MR images. Tajima
et al. [125] studied the utility of a stacked U-Net method to
reduce noise from the system. Their experiments on phan-
tom as well as human MR images acquired on a 60-67mT
MR scanner demonstrated improved qualitative and quan-
titative denoising performance. Table 3 summarizes the
advantages and disadvantages of MRI denoising methods
in the literature.

Noise in Functional, Perfusion-Weighted,
Diffusion-Weighted, and Flow MRI

Functional MRI (fMRI) is a prominent imaging technique
for functional brain mapping and identification of func-
tional networks. fMRI data is normally acquired using
a fast EPI readout with T2*-weighted contrast to capture
blood oxygenation level-dependent (BOLD) signals. Both
spatial and temporal noise can hinder accurate identification
of functional brain maps and function networks. Yang and
colleagues applied a time-dependent deep neural network
(DeNN) to denoise fMRI time series in individual brain
regions [31]. The authors compared DeNN with several nui-
sance noise regression methods and validated the method
using the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. DeNN identified unbiased correlations
between a seed region in the posterior cingulate cortex and
the default mode network and task-positive networks. The
DeNN whole brain functional connectivity maps were three
times as homogeneous as the functional connectivity maps
obtained from the raw datasets. Zhao et al. introduced a data-
driven deep learning approach based on a 3D convolutional
long short-term memory (LSTM) network (3DConv-LSTM)
and an adversarial network to generate noise-free realistic
fMRI volumes [126]. They tested the method on both task
and resting-state fMRI (rs-fMRI) data, compared it with
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state-of-the-art alternative methods, and concluded that for
HCP and ABIDE datasets, the approach performed compara-
tively better using PSNR, SSIM, and MSE metrics. Le et al.
[127] proposed a framework to detect noise components for
rs-fMRI which involved several CNN models that jointly
learnt spatial and temporal features using a majority voting
strategy that constituted a faster noise detection process for
rs-fMRI. Kam et al. [128] proposed a CNN framework for
automatic rs-fMRI denoising which simultaneously learns
spatio-temporal features of noise. Their studies further
depicted visual explanations on how CNNs behave in the
presence of noise in rs-fMRI, and the proposed framework
illustrated high performance on multiple datasets including
infant cohorts.

Compared with anatomical MRI, diffusion-weighted
imaging suffers from low signal to noise ratio due to the
application of diffusion gradients and fast EPI data readout.
CNNs and deep image prior-based denoising methods have
been developed in order to improve SNR in diffusion MRI.
Lin et al. used a deep image prior (DIP) to simultaneously
denoise all diffusion-weighted images. The method demon-
strated superior performance when compared with the local
principal component analysis method using both simulated
and in vivo datasets [129]. Kawamura et al. evaluated the
application of CNN-based denoising for multi-shot EPI DWI
and compared the deep denoiser with other methods includ-
ing block-matching and 3D filtering [130]. Zormpas-Petridis
et al. developed a model to improve the image quality of
whole-body diffusion-weighted imaging [24]. The study
was conducted on both retrospective and prospective patient
cohorts to optimize a denoising image filter (DNIF) deep
learning model. Kaye and colleagues investigated the fea-
sibility of accelerating prostate diffusion-weighted imaging
using a novel guided denoising convolutional neural net-
work (guided DnCNN) [32]. They carried out experiments
on prostate DWI scans gathered from six single-vendor MRI
scanners and produced images guided by the DnCNN with
improved PSNR in comparison to the original DnCNN. The
conventional deep learning techniques often require addi-
tional high-SNR data for supervising training. However,
Tian et al. developed a self-supervised deep learning-based
method referred to as “SDnDTI” for denoising diffusion
tensor MRI data [131], which does not require additional
high-SNR data, and the experiments carried out on DWI
volumes provided by the Human Connectome Project (HCP)
illustrated results with image sharpness and textural details.

Perfusion-weighted MRI images acquired using the arte-
rial spin labelling (ASL) protocols are also based on an EPI
sequence and suffer from low SNR. Xie et al. applied CNN's
with dilated convolution kernels and wide activation residual
blocks to preserve image resolution while suppressing noise
[132]. The results suggested potentially 75% faster ASL
acquisition without sacrificing accuracy in the estimation of

@ Springer

cerebral blood flow. An unsupervised network to improve the
SNR in ASL images [13] used each subject’s corresponding
T1-weighted image as input to the network with noisy ASL
images as labels. Hales et al. evaluated the performance of a
denoising autoencoder (DAE) [15] for denoising ALS data-
sets. The work used 131 pediatric neuro-oncology patients to
train the network and test the model performance for eleven
healthy adult subjects. They compared the autoencoder with
both Gaussian and non-local filters and reported a 62% SNR
increase in the raw ASL images. The DAE denoised images
demonstrated best fit to the Buxton kinetic model with a 75%
reduction in the fit errors in comparison with the raw images.
Several other recent works have proposed deep learning
solutions for ASL MRI denoising [133-137].

MRI flow measurements are vulnerable to acquisition
noise, velocity aliasing, and phase offset artefacts in clinical
applications. These complications represent significant chal-
lenges for the analysis of small vascular structures including
identification of intracranial aneurysms and treatment for
near-wall regions. Several studies have attempted to use deep
learning to reduce noise in flow MRI. Sun and co-workers
proposed a physics-constrained deep learning approach
that effectively reduced the measurement noise [138]. The
method was verified using multiple test cases with synthetic
vascular flow data. Similar studies were conducted by Fathi
and colleagues who proposed a purely data-driven method
to denoise 4D-flow MRI data [139].

Image Resolution Enhancement

Spatial resolution is a key data acquisition parameter that
impacts diagnostic accuracy and decision of subsequent
clinical workflows. However, scans with higher spatial
resolution often leads to longer data acquisition time and
poorer signal to noise ratio and can be prone to motion arte-
facts. Post-processing resolution enhancement algorithms,
such as zero-padding to increase the matrix size of the final
image, have been widely applied in medical imaging. Fur-
ther, methods such as B-splines and cubic interpolation
can provide image resolution improvements without the
use of prior models. Van Reeth and colleagues reviewed a
general forward model for MR image resolution including
geometric transformation, instrument point spread function,
and downsampling during data acquisition [140] as well as
conventional image super-resolution algorithms to solve the
forward model, including iterative back-projection and regu-
larization methods using priors.

For the past decade, deep learning-based image resolu-
tion enhancement has been widely adopted in the computer
vision literature [141]. Dong et al. provided a detailed survey
of deep learning methods for image super-resolution applica-
tions in computer vision and noted limitations in real-world
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scenarios [142]. These advances have inspired deep learning
based super-resolution methods in MRI applications with
promising results.

Partial volume effect (PVE) is key consideration in MRI
super resolution, especially in volumetric and multi-slice
MRI acquisitions where multiple tissue types are present in a
single voxel. In such a scenario, the intensity of the resultant
image depends on the collective contribution of each tissue.
As aresult, with high section thickness (usually 2.5 to 4 mm)
and slice gaps, the risk of missing subtle anatomical features
and lesions is high. To overcome this, Chaudhari et al. [164]
proposed DeepResolve, a deep learning-based solution to
resolve high-resolution thin slices from considerably thicker
slices. The authors compared their deep learning solution
with other through-plane interpolation techniques such as
tricubic interpolation, Fourier interpolation, and sparse-
coding super-resolution; however, DeepResolve illustrated
significant superiority over other methods in terms of struc-
tural SSIM, PSNR, and RMS error scores.

Spatial Resolution in Anatomical MRI

Anatomical MR scans with high in-plane resolution and
minimal through-plane resolution can successfully reduce
imaging time and improve image SNR. However, the result-
ant images have poor through-plane resolution and large
partial volume errors. To address this problem, Zhao et al.
exploited a deep learning approach called Synthetic Multi-
Orientation Resolution Enhancement (SMORE) [143] for
both anti-aliasing and super-resolution imaging. The method
consists of a self-supervised anti-aliasing deep network fol-
lowed by a super-resolution deep network, with applica-
tion along different orientations within an image. SMORE
demonstrated improvement in visualization and quantifica-
tion for both brain and cardiac imaging applications. While
most deep learning-based MR super-resolution methods
report experiments using brain data, there is a considerable
literature also focused on cardiac, fetal, and knee imaging
applications.

Brain

The brain has fine anatomical structures and often suffers
from partial volume errors from low resolution data acquisi-
tions. Compared with conventional MRI resolution enhance-
ment methods, deep learning models have shown superior
performance.

Pham and colleagues studied multiscale trained 3D net-
works with knowledge transferred from different acquisition
protocols to improve spatial resolution of brain images [144].
Chen et al. proposed a lightweight CNN model which oper-
ates on 3D patches of single channel inputs [145], and Sui

et al. introduced a novel gradient-guided super-resolution
method for enhancing isotropic images from anisotropic
acquisitions [42]. Recently, Xue et al. developed a progres-
sive sub-band residual learning super-resolution network
(PSR-SRN) [146]. Li et al. used 305 paired brain MR images
to train a two-step learning architecture called DeepVolume
that combined CNNs with RNNs [45]. The two-step archi-
tecture consisted of a brain structure-aware network, in which
the axial and sagittal MR images were fused by a multitask
3D U-net, and a spatial connection-aware network in which
the resolution of the image was further enhanced by a LSTM
block on a 2D (slice by slice) basis. The incorporation of
RNNs enabled the DeepVolume architecture to achieve state
of the art results in MRI super resolution.

Using residual learning, Shi and colleagues developed two
algorithms for brain MR images. Their multi-scale residual
learning network for image super resolution combined both
multi-scale global residual learning (GRL) and shallow net-
work block-based local residual learning (LRL) [147]. The
LRL module effectively captured high-frequency details by
learning local residuals, while the conventional GRL module
enabled learning of high-resolution image details. They pro-
posed a progressive wide residual network with a fixed skip
connection (named FSCWRN) to combine global residual
learning and shallow network-based local residual learning
[148] and reported superior performance compared to the
SRCNN [141], SRF [149], and VDSR [150].

By leveraging high-resolution images from 7 T MRI,
Zhang et al. developed a parameter-efficient butterfly net-
work that employed a dual spatial and frequency domain DL
model for mapping between 3 and 7 T image pairs that pro-
duced improved image resolution at 3 T [151]. The results
demonstrated superior performance over conventional
methods both qualitatively and quantitatively. Several other
groups have also shown promising results using deep learn-
ing models for brain MRI [152, 153].

Since their introduction [154], GANSs have been utilized
in many applications related to natural image processing
as well as medical imaging applications including super-
resolution MRI [152, 155-157]. The application of GANs
in super-resolution MRI has generated high-resolution
output images that are barely distinguishable from the
original high-resolution images. Lyu et al. introduced the
GAN-CIRCLE (constrained by the identical, residual, cycle
learning ensemble) which realized super resolution in both
MRI and CT [158]. The model achieved two-fold resolu-
tion improvement on brain images. Chen et al. introduced
a 3D neural network design with a multi-level densely con-
nected super-resolution network (mDCSRN) with genera-
tive adversarial network (GAN)-guided training [159]. The
mDCSRN architecture outperformed other deep learning
methods with four times higher resolution for T1-weighted
images in a sixth of the computational time.

@ Springer
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Other Anatomical Regions

Localization of pathology is extremely challenging when
data acquisition is constrained due to physiological motion
and other practical limitations. Cardiac MRI is often
acquired with a small data matrix that results in low spatial
resolution. Masutani and co-workers evaluated the applica-
tion of a CNN to enhance anatomical detail in comparison
with zero padding and bicubic interpolation methods. In an
evaluation of 400 MRI scans, the DL model significantly
outperformed zero padding and bicubic interpolation meth-
ods in 99.2% of the image slices [160]. Mahapatra and col-
leagues developed a method using progressive adversarial
networks (P-GANs) to improve image resolution [161]. They
used a triplet loss function to optimize their model, and the
results on cardiac and retinal images demonstrated improved
quality.

The low resolution in knee MR scans adversely affects
the diagnosis of conditions such as knee osteoarthritis.
To address this problem, Qiu et al. [162] used an efficient
medical image super-resolution (EMISR) method by com-
bining SRCNN with an efficient sub-pixel CNN (ESPCN).
The authors demonstrated that EMISR outperformed both
SRCNN and ESPCN alone using knee images from the IDI
dataset, with the resultant images from the method having
clearer anatomical boundary details. Chaudhari et al. applied
a 3D CNN called DeepResolve to learn a model between
low-resolution and high-resolution image. The trained model
was applied to 17 knee patient datasets and compared with
existing methods including clinically utilized tricubic inter-
polation (TCI), Fourier interpolation (FI), as well as the
single image sparse-coding super-resolution (ScSR) method
(Fig. 6). The results demonstrated the superior performance
of DeepResolve with respect to SSIM, PSNR, and root-
mean-square-errors (RMSE) as well as radiology assess-
ment [163]. In a following study, Chaudhari and co-workers
quantitatively demonstrated that super resolution minimally
affects perceived global image blur and qualitatively that it
minimally biases cartilage and osteophyte biomarkers and
image quality. The study concluded that super resolution is
more effective than naive interpolation for accelerated image
acquisition [43] (Fig. 6).

Fetal MR images are generally acquired with low reso-
lution to avoid motion artefacts. McDonagh et al. applied
a context-sensitive super-resolution method on 145 fetal
MRI scans [164]. The model semantically adopted to
input data by learning organ-specific features and gen-
erated high-resolution images with sharp edges and fine
details that yielded an increased PSNR of 1.73 dB when
applied on motion corrupted fetal data. McDonagh et al.
[165] proposed a self-supervised super-resolution frame-
work dynamic fetal MRI where low- and high-resolution
samples are taken from simulated interleaved acquisitions.

@ Springer

Fig.6 Example of a horizontal tear in the body of the lateral menis-
cus can beidentified with the hyperintense double echo in steady-state
signal. Firstcolumn, high-resolution ground-truth; second column,
DeepResolve; and thirdcolumn, tricubic interpolation (TCI). Com-
pared with the Ground-Truth, theDeepResolve image shows consider-
ably less blurring to TCI images [163]

This framework also considers temporal information of the
scan data during the self-supervised training process and
is able to improve image quality and recover more image
visual details.

Park et al. [21] introduced an autoencoder-inspired con-
volutional network super-resolution (ACNS) method which
extrapolated missing spatial information using a nonlinear
mapping between low-resolution and high-resolution fea-
tures. The experiments were carried out on virtual phan-
tom images and thoracic MRIs from four volunteers. The
ACNS method produced results comparable with popular
SRCNN, FSRCNN, and DRCN methods but with compara-
tively shorter computational times enabling real-time resolu-
tion enhancement of 4D imaging in MRI-guided radiation
therapy.

Imaging the abdomen is important for many oncology
applications such as prostate cancer. Thus, SR in prostate
MR can facilitate early diagnosis and thereby influence the
commencement of early treatments. Xu et al. [166] proposed
an SR framework based on MSG-GAN and CapsGAN to
produce high-quality MR images. Their experiments were
based on the PROSTATEX database, and they were able to
achieve a PSNR of 19.77 for SR of 8X. Similarly, the works
of Molahasani et al. [167] applied an SRGAN to enhance
prostate MR images and improve the in-plane resolution by
a factor of 8. Table 4 summarizes the advantages and dis-
advantages of MRI resolution enhancement methods in the
literature.
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Resolution in Diffusion-Weighted, Flow,
and Spectroscopic MRI

While diffusion-weighted MRI allows high-resolution imag-
ing at high magnetic fields and high gradient strength for
long scan times, the image spatial resolution and number
of diffusion directions are restricted. Several deep learning
models have been developed to enhance the quality of diffu-
sion images. Qin et al. developed a super-resolution g-space
deep learning method [46] to estimate high-resolution tissue
microstructure based on under-sampled g-space signals. The
work extended the earlier g-space DL methods [168, 169]
that used super-resolution models. The authors evaluated the
methods using the two Human Connectome Project data-
sets [170, 171] to produce accurate tissue parameters. Albay
et al. presented a novel GAN-based deep neural network
model to obtain high-resolution images from low-resolution
diffusion images [172]. The work provided a proof of princi-
ple for the effectiveness of GAN to increase the spatial reso-
lution by twofold for diffusion MRI. Chatterjee et al. [173]
introduced the ShuffleUNet, a single image SR technique
which involved pixel shuffle operations for improved down-
and up-sampling capabilities. Their experiments on the IXI
dataset achieved very high SSIM values such up to 0.913.

Fathi and co-workers developed a DL approach for super
resolution and denoising of 4D-flow MRI. They used flow
physics to regularize a DNN model to improve its conver-
gence properties with limited training data [139]. Flow
velocities, pressure, and the MR image magnitude were
modelled as a patient-specific DNN. Experiments on numer-
ical phantoms demonstrated increased spatial resolution by
a factor of 100 and increased temporal resolution by a factor
of 5 in comparison to simulated 4D-Flow MRI.

MR spectroscopy (MRS) aims to quantify tissue metabo-
lism. However, due to the low concentration of most metabo-
lites, their identification in proton MR spectra is a difficult
task. Igbal et al. [174] proposed a densely connected UNet
(D-UNet) architecture capable of producing super-resolution
MRS images. The model was trained using inputs from both
T1-weighted images and low-resolution MRS images, and
the labelled output super-resolution MRS images were simu-
lated by combination with segmented white matter and gray
matter images [160].

Challenges and Future Perspectives

Deep learning models have shown promising results for the
reduction of image artefacts and noise and the improvement
of image resolution. Compared with conventional machine
learning methods, deep learning models show consist-
ently better performance in these post-processing tasks.

Furthermore, deep learning methods are also computation-
ally efficient during inference in comparison with many con-
ventional iterative algorithms. Significantly, the promising
initial results have motivated imaging device manufacturers
to increase the range of deep learning-based solutions in
their product portfolios [175]. However, while there is an
overall consensus that deep learning methods are playing
a critical role in the future of medical imaging, there are a
number of major challenges yet to be addressed.

Data Availability and Open Datasets

Most deep learning models require a large amount of train-
ing data to avoid model over-fitting. However, good quality
training sets of medical images in general are difficult to
obtain due to privacy or other availability issues. Further-
more, MR image quality and contrasts are varied and highly
dependent on anatomical regions, sequence parameters, and
hardware configurations [176]. These factors make it chal-
lenging to collect a large cohort of good quality datasets
with sufficiently diverse MRI contrast parameters and ana-
tomical regions. The lack of training data can lead to signifi-
cant bias in the performance of deep learning models [177].

Existing open MRI datasets that are available in the lit-
erature can add significant value in the development of deep
learning methods. Example datasets include the IXI dataset
(brain-development.org/ixi-dataset), fastMRI [178], mri-
data (mridata.org), AOMIC [179], OCMR (registry.open-
data.aws/ocmr_data), HCP (humanconnectomeproject.
org), and the UK Biobank (ukbiobank.ac.uk). There are a
number of open datasets hosted in OpenNeuro such as the
Monash fMRI-fPET data [180], and disease-specific datasets
including ADNI (adni.loni.usc.edu), and the ENIGMA study
data (enigma.ini.usc.edu). Bento et al. [181] have provided
a comprehensive review of multi-site structural brain MRI
datasets.

Simulated datasets can help to mitigate the lack of in vivo
training datasets. For example, simulated head motion data-
sets can be used to train a network for application in clinical
datasets with head motion [19, 182]. During the evolution of
MRI technology, physics-based MRI simulators have been
an active research area that has added significant value to the
development of deep learning models. For example, Xanthis
and colleagues developed a GPU-based realistic motion simu-
lation [183], JEMRIS is a widely used MRI simulator [184],
and the FSL toolkit includes the POSSUM MRI simulator
[185].

Generalizability
Out-of-distribution (OOD) data refers to inputs that are

drawn from a distribution different to that of the training
dataset. OOD data is to be expected in medical imaging
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applications of deep learning models due to limited train-
ing datasets, scanning protocol variation, and the potential
for an image to include uncommon or rare disease features.
The performance of a deep learning model to OOD input
is an important consideration for the assessment of its gen-
eralizability. To date, there is only a limited literature that
assesses the reliability of deep learning models on clinical
OOD data [186].

Modelling data and parameter uncertainties can provide
significant insight and assess risks for dealing with unseen
datasets. Tanno and colleagues investigated uncertainty
modelling for diffusion MRI super-resolution and sought
to provide a high-level explanation of deep learning models
with respect to variation in input datasets [187]. A number
of similar works applied explicit uncertainty models dur-
ing model training and inference in order to assess model
robustness and uncertainties associated with input data [46,
188, 189]. Hallucinations are false image features introduced
when an imperfect or inaccurate model prior is used during
image processing and typically occur when training and test-
ing have different data distributions. Hallucinations heavily
related to the stability of a model especially when model-
ling an inverse problem. An estimate of hallucinations is of
significant interest in image reconstruction as well as image
super-resolution.

Unsupervised training using unpaired datasets can learn
to disentangle data and artefact representations in a latent
space [190] to improve model generalizability to new data-
sets. Deep image prior is a self-learning technique for regu-
larized inverse problems without the need to pre-train the
model [191] that successfully demonstrated greater gener-
alizability to new inputs.

Clinical Validation

An important observation from the current literature is that
most current deep learning methods have only been demon-
strated in a small cohort of datasets at a single imaging site.
A thorough evaluation of Al algorithms is essential before
their full clinical utilization. In an opinion paper, Kelly
and colleagues argued that clinical validation of artificial
intelligence should be carefully considered in different test
scenarios to gain insight for potential biases and variations
[192]. Furthermore, the current medical device regulatory
processes are not designed for continuous evaluation of Al
algorithms capable of transfer learning and domain adapta-
tion. Improvement in these guidelines can provide clearer
pathways to enable the clinical utility of deep learning
models.

Prospective and multi-site evaluation of deep learn-
ing models is important to identify unknown variations
from datasets and models applied in real-world environ-
ments. In a prospective study, Rudie and colleagues have

@ Springer

evaluated DL-based brain MRI enhancement for increase
in SNR, anatomic conspicuity, overall image quality,
imaging artefacts, and diagnostic confidence, assessed by
four board-certified neuroradiologists [193]. Similarly,
Bash et al. [194] have conducted prospective evaluation
of DL-based denoising using five scanners across five
sites in 61 patients undergoing spinal MRI scans. They
have compared standard clinical care images with images
obtained from DL enhancement. In [195], Chaudhari et al.
have outlined the challenges for prospective deployment of
MRI in clinical practice and emphasized the importance
for reproducibility of research studies through the shar-
ing of datasets and software. Currently, most of validation
studies are still performed with carefully defined clinical
protocols using a limited number of subjects. We antici-
pate that increasingly more studies will be performed due
to the importance of validation of Al in the real world.

The drive to develop explainable deep learning models
is another important step for building trust in Al algo-
rithms. The instability issue demonstrated during imag-
ing and other potential bias during development are key
aspects to address during clinical validation. Domain
knowledge can be incorporated into deep learning models
to improve their overall performance and reliability [196].
Specifically, for MRI, domain knowledge can be derived
from either physics knowledge of MRI instruments, physi-
ological information from patient studies, and from gen-
eral clinical knowledge. Domain knowledge not only pro-
vides a way to augment deep learning models to improve
model performance, but also offers guidance to deep learn-
ing models when dealing with uncertain scenarios during
clinical evaluation and utilization.

Conclusion

In this review paper, we have provided an overview of deep
learning methods for post-processing MR images including
reduction of image artefacts, suppression of image noise,
and enhancement of image resolution. Throughout the lit-
erature, there is consistent evidence that improved image
quality can be achieved using deep learning methods in
comparison with conventional techniques. However, the
current challenges and future perspectives for data availabil-
ity, generalizability, and clinical validation of deep learning
algorithms highlight the requirement for a concerted and
ongoing research effort in this rapidly evolving discipline.
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