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Abstract

Directional cell migration is a critical process underlying morpho-
genesis and post-natal tissue regeneration. During embryonic
myogenesis, migration of skeletal myogenic progenitors is essential
to generate the anlagen of limbs, diaphragm and tongue, whereas
in post-natal skeletal muscles, migration of muscle satellite (stem)
cells towards regions of injury is necessary for repair and regenera-
tion of muscle fibres. Additionally, safe and efficient migration of
transplanted cells is critical in cell therapies, both allogeneic and
autologous. Although various myogenic cell types have been admi-
nistered intramuscularly or intravascularly, functional restoration
has not been achieved yet in patients with degenerative diseases
affecting multiple large muscles. One of the key reasons for this
negative outcome is the limited migration of donor cells, which
hinders the overall cell engraftment potential. Here, we review
mechanisms of myogenic stem/progenitor cell migration during
skeletal muscle development and post-natal regeneration. Further-
more, strategies utilised to improve migratory capacity of
myogenic cells are examined in order to identify potential treat-
ments that may be applied to future transplantation protocols.
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Introduction

Cell migration is a fundamental process for embryogenesis, repair

and regeneration of skeletal muscle, the most abundant human

tissue. During development, skeletal myogenic progenitors migrate

towards prospective skeletal muscles of the trunk and limbs, where

they also give rise to stem cells responsible for post-natal repair and

regeneration of skeletal muscles: the muscle satellite cells (MuSCs).

MuSCs represent the key skeletal muscle stem cell population, resid-

ing between the sarcolemma and the endomysium of muscle fibres

(Mauro, 1961). Upon activation, MuSCs give rise to committed prolif-

erating progenitors termed myoblasts, which migrate and fuse either

amongst themselves or with pre-existing myofibres to (re)generate

and repair skeletal muscle (Watt et al, 1987; Morgan et al, 1987; Phil-

lips et al, 1990; Siegel et al, 2009; Ishido & Kasuga, 2011; Baghdadi

et al, 2018). Although processes that drive activation, proliferation

and differentiation of muscle stem cells are well-studied, the molecu-

lar mechanisms responsible for the migratory properties of myogenic

cells have not been the focus of extensive investigation.

Migration has implications in cell therapies of muscle diseases

such as muscular dystrophies, heterogenous myopathies charac-

terised by progressive muscle wasting (Mercuri et al, 2019). Duch-

enne muscular dystrophy (DMD), the most common form of

paediatric muscular dystrophy occurring in 1/3,500–5,000 boys, is

caused by mutations in the DMD gene encoding dystrophin

(Hoffman et al, 1987). Dystrophin functions as a shock absorber to

stabilise the sarcolemma and DMD mutations lead to contraction-

induced degeneration of skeletal myofibres and impaired muscle

function (Muntoni et al, 2003). DMD patients experience early loss

of ambulation and mortality as a result of cardiorespiratory compli-

cations, often within the first three decades of life (Mercuri et al,

2019). Standardised pharmacological interventions for DMD include

administration of corticosteroids (Matthews et al, 2016) and in some

cases mutation-specific drugs such as Ataluren and Eteplirsen which

have recently been approved in Europe and the USA, respectively

(Mendell et al, 2013; McDonald et al, 2017). Several experimental

therapeutic strategies have been investigated for DMD and other

muscular dystrophies, including gene therapy and stem cell trans-

plantation (Benedetti et al, 2013).

MuSCs possess extensive self-renewal capacity and efficiently

engraft into mouse muscles upon transplantation (Sacco et al,

2008). Therefore, a promising strategy to restore dystrophin expres-

sion is cell therapy: a procedure based upon transplantation of

1 Department of Cell and Developmental Biology, University College London, London, UK
2 The Francis Crick Institute, London, UK
3 Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK

*Corresponding author. Tel: +44 2031082383; E-mail: f.s.tedesco@ucl.ac.uk

ª 2020 The Authors. Published under the terms of the CC BY 4.0 license EMBO Molecular Medicine 12: e12357 | 2020 1 of 18

https://orcid.org/0000-0001-5321-7682
https://orcid.org/0000-0001-5321-7682
https://orcid.org/0000-0001-5321-7682


healthy donor or autologous (genetically corrected) cells which then

fuse with existing multinucleated myofibres or form new fibres, re-

establishing tissue function. Cell-based approaches to treat DMD

have been explored since the 1980s, when transplantation studies of

healthy donor myoblasts in the muscles of mdx mice, a mouse

model of DMD, displayed robust engraftment and rescue of dystro-

phin expression (Partridge et al, 1989). However, the subsequent

early phase clinical trials in DMD patients exhibited limited dystro-

phin restoration and functional amelioration (reviewed in (Tedesco

et al, 2010)). Major efforts have since been made to circumvent

Glossary

Amoeboid migration
Amoeboid migration is a type of cell motility (often faster than
mesenchymal migration) characterised by cycles of expansion and
contraction, which allow cells to squeeze through gaps in the extracellular
matrix adopting round or irregular shapes. Leucocytes and cancer cells are
two examples of cells which are capable of amoeboid migration.

Angiopellosis
An alternative mechanism to leucocyte diapedesis proposed for cells that
are not native to the blood circulation to extravasate. During angiopellosis,
endothelial cells play a key role in enabling the extravasation of multiple
cells during a single event.

Cell migration
The process by which translocation of the cell occurs. At the molecular
level, cell migration is an orchestrated process and it is performed in a
sequential manner.

Cell therapy
Treatment strategy based upon delivery of cells as medicine. Can be
autologous (i.e. patient’s own cells) or allogenic (i.e. from donors); if
autologous, cells can be genetically corrected prior to delivery (i.e. gene and
cell therapy). The transplanted cells can be stem cells, committed progenitors
or differentiated cells. Cells are usually delivered to regenerate a diseased
tissue but can also be delivered to kill a specific target (e.g. tumour).

Endomysium
Thin layer of connective tissue ensheathing each individual skeletal muscle
fibre.

Extracellular matrix
Three-dimensional structure that comprises part of interstitial spaces of
tissues, derived from secreted macromolecules. The extracellular matrix
plays crucial roles in providing biophysical and biochemical cues as well as
structural support to nearby cells.

Extravasation (transmigration)
The process by which (white blood) cells migrate through endothelial cell
layers to exit the circulatory system towards inflamed tissues in which
they are required.

Fibrosis
Excessive accumulation of extracellular matrix components, found upon
abnormal wound healing, often resulting in tissue dysfunction.

Filopodia
Slim cellular protrusions containing 10–30 actin filaments in parallel arrays,
often found at the leading edge of lamellipodia during cell migration.

Focal adhesion
Relatively stable sites of interaction between the cell and the surrounding
extracellular matrix. Focal adhesions are multiprotein assemblies essential
for functions such as generation of tension/traction forces for cell
migration and mechanotransduction.

Lamellipodia
Broad, “fan-shaped”, actin-based, protrusions generated at the leading
edge of cells undergoing mesenchymal migration.

Mesenchymal migration
A mode of motility in which polarisation of the cell results in generation of
actin-based structures such as lamellipodia. This allows the formation of
adhesions generating traction forces. Actomyosin contractions at the rear
of the cell subsequently propel the cell in a directional manner.

Mesoangioblasts
In vitro progeny of perivascular cells able to give rise to blood vessel
lineages (mostly smooth muscle) and mesodermal lineages of the
surrounding tissue. Skeletal muscle pericyte-derived mesoangioblasts have
been delivered intra-arterially in pre-clinical animal models of muscle
diseases and in patients with Duchenne muscular dystrophy.

Muscular dystrophy
A heterogeneous group of primary genetic diseases of skeletal muscle,
characterised by progressive muscle degeneration, wasting and premature
death in the most severe forms.

Myoblasts (adult skeletal myoblasts)
Committed progeny of satellite stem cells most of which expand and fuse
with nearby muscle fibres.

Pseudopodia
Temporary cytoplasmic processes of eukaryotic cells.

Sarcopenia
A pathological condition characterised by age-related loss of skeletal
muscle mass, strength and function.

Satellite cell
Skeletal muscle stem cells (also known as MuSCs) residing between the
myofibre’s plasmalemma and the surrounding endomysium. Upon
activation, satellite cells give rise to committed progenitors called
myoblasts (see above) most of which fuse with surrounding fibres (for
repair or regeneration); a minority return to quiescence to replenish the
self-renewing stem cell pool of satellite cells.

Somite
Sphere of paraxial mesoderm paired bilaterally along the neural tube
during embryonic development. Somites give rise to cells which in turn
will generate different mesodermal derivatives such as cartilage, bone,
muscle and tendons.
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some of the main issues associated with muscle cell therapy such as

the host immune response, poor cell survival and limited cell migra-

tion post-injection (Gussoni et al, 1992; Karpati et al, 1993; Vilquin

et al, 1994; Bouchentouf et al, 2007). Myoblast transplantations

were carried out under immunosuppressive regimens (Vilquin et al,

1994), and protocols entailing high-density injections were also

implemented (Skuk et al, 2007); nonetheless, results remain subop-

timal (Skuk & Tremblay, 2015).

Efforts have since been made to overcome the loss of self-

renewal and engraftment potential during MuSC in vitro expan-

sion, leading to protocols capable of preserving their regenera-

tive capacity ex vivo (i.e. via pharmacological modulation or by

application of biomimetic platforms; reviewed in (Judson &

Rossi, 2020)). However, the field still looks for highly migra-

tory myogenic cells or methods that mediate improved cell

dispersal and dissemination in vivo, thereby facilitating the

development of treatments for degenerative diseases affecting

multiple large muscles or for severe volumetric muscle loss.

There are two predominant methods of cell transplantation into

skeletal muscles: the intramuscular route and the systemic/intravas-

cular route. Both modalities are constrained by insufficient migra-

tion of donor cells which limits the efficacy of treatments.

Intramuscular injections have mostly been performed with skeletal

myoblasts. A common observation of this mode of delivery is the

formation of chimeric myofibres limited to the trajectory of injec-

tion, as opposed to dispersal throughout muscle tissue. This issue

limits intramuscular administration to highly localised myopathies

such as oculopharyngeal muscular dystrophy (OPMD), for which

clinical improvement has been achieved (Périé et al, 2014). On the

other hand, intra-arterial delivery of donor cells into major arteries

can simultaneously target multiple muscle groups downstream of

the injection site and may be better suited for muscular dystro-

phies with widespread muscle involvement, particularly when

affecting skeletal muscles otherwise difficult to access (e.g.

diaphragm). However, MuSCs do not efficiently cross endothelial

cell layers, and therefore, investigations on systemic delivery have

largely focused on alternative myogenic cell types. Nonetheless,

rare reports describe intra-arterial infusion of unpurified myoblasts

in rats and non-human primates resulting in the occasional incor-

poration of some donor cells into host myofibres (Neumeyer et al,

1992; Skuk & Tremblay, 2014). Mesoangioblasts, myogenic cells

derived from expansion of a subpopulation of skeletal muscle

perivascular cells, exhibit a higher migratory capacity than MuSCs

towards skeletal muscles upon intra-arterial delivery and have

proved efficacious in animal models of muscular dystrophy (re-

viewed in (Benedetti et al, 2013)) as well as relatively safe in a

first-in-human clinical trial (Cossu et al, 2016). Nonetheless,

myogenic differentiation and overall homing/engraftment of

human mesoangioblasts require significant enhancement to reach

clinical efficacy.

More recently, significant progress has been made to generate

skeletal myogenic cells from induced pluripotent stem cells (iPSCs),

which could provide an unlimited source of myogenic cells for cell

therapy. However, no defined protocols are currently available for

the generation of highly migratory human iPSC myogenic deriva-

tives. Although the rapidly expanding iPSC field is now deriving

potent myogenic progenitors increasingly comparable to native

MuSCs (e.g. (Chal et al, 2015)), the latter are not capable of extrava-

sation upon intravascular delivery.

It is, therefore, critical to develop strategies to enhance the

migratory capacity of skeletal myogenic cells. To this aim,

we review key studies on dynamics and mechanisms of skeletal

myogenic cell migration in the embryo, adult and upon

transplantation. Approaches previously applied to boost the trans-

plantation efficacy of MuSCs have been reviewed, as well as mecha-

nisms of trans-endothelial migration such as those utilised by

leucocytes (diapedesis) and cancer cells. We believe that under-

standing these mechanisms will be critical to engineer or derive

populations of myogenic progenitors with enhanced migration

capacity for efficacious skeletal muscle cell therapies.

Essential molecular machinery for myogenic cell motility
and migration

Directional migration requires integration and coordination of vari-

ous molecular and mechanical stimuli. The general dynamics of

directional migration can be reduced to repetition of four basic

steps: (1) generation of cellular protrusions, (2) adhesion to

substrate, (3) contraction and (4) retraction of the cell rear (Vicente-

Manzanares et al, 2005). Specific mechanisms vary depending on

cell type and context: limited substrate adhesion is required for

amoeboid-based migration, and shifts between modes of migration

can occur rapidly in 3D environments in response to changes in

levels of confinement and adhesion (Lautscham et al, 2015; Winkler

et al, 2019). Additionally, spatiotemporal regulation is crucial for

execution of the aforementioned steps in a sequential manner. This

role is often mediated by Rho GTPases, which modulate migration

in response to biochemical and biophysical cues by reorganising the

actin cytoskeleton (Binamé et al, 2010; Ridley, 2015). The two

primary modalities of migration are classified as mesenchymal or

amoeboid migration. Mesenchymal migration of myoblasts has been

relatively well-studied in comparison with amoeboid migration, as

the latter is difficult to observe on bidimensional surfaces (Yamada

& Sixt, 2019).

Mesenchymal migration
Myoblasts display mesenchymal migration on bidimensional mono-

layers in vitro (Kawamura et al, 2004). Mesenchymal migration

involves generation of protrusions, pseudopodia, at the leading

front of the cell, such as the fan-shaped lamellipodia consisting of

branched actin filaments, as well as filopodia comprised of parallel,

bundled filamentous actin (F-actin) (Fletcher & Mullins, 2010).

Distinct actin regulators are involved in generation of lamellipodia

and filopodia. Lamellipodia formation is primarily dictated by

polarised activity of Rho GTPase Rac1 and its downstream effectors

such as actin-related protein 2/3 (Arp2/3) and the WASP-family

verprolin-homologous protein regulatory complex (WAVE complex)

which increase the rate of actin nucleation and subsequently actin

polymerisation (Fig 1) (Kawamura et al, 2004; Takenawa & Suet-

sugu, 2007). Filopodia generation, on the other hand, is canonically

driven by the Rho GTPase CDC42 with diaphanous formins playing

a role in nucleation of actin polymerisation at the migration front

(Fig 1) (Mellor, 2010).
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Adhesion occurs simultaneously with the extension of cellular

protrusions, which are crucial for the generation of traction forces.

Binding of integrin receptors (transmembrane heterodimers

capable of binding extracellular matrix (ECM) components) facili-

tates assembly of adhesion complexes which give rise to focal

adhesions (FAs) (Harburger & Calderwood, 2009). FAs are multi-

protein complexes involved in mechanotransduction as well as cell

signalling and are found at the ends of stress fibres. Most FAs

possess a laminar arrangement, with integrin cytoplasmic tails,

focal adhesion kinase (FAK) and paxillin comprising the signalling

module; talin and vinculin making up the intermediate force trans-

duction layer and the innermost actin regulatory layer (Kanchana-

wong et al, 2010). FAs are frequent downstream targets of growth

factor-mediated migration of myogenic cells, and components of

FAs are disrupted in some myopathies, resulting in impaired stem

cell migration (Leloup et al, 2006; Bricceno et al, 2014).

Directional migration requires contractile forces for directed cell

propulsion. Non-muscle myosin II-mediated contractions provide

propulsive forces that facilitate directional movement and are

crucial for maturation and disassembly of FAs (Schwartz & Horwitz,

2006; Parsons et al, 2010). Localisation of contractile activity is facil-

itated by RhoA, which accumulates at the rear of the cell. RhoA

recruits its effector rho-associated protein kinase (ROCK), capable of

myosin light chain phosphorylation, to drive actomyosin contraction

at stress fibres. Mechanical forces induced by rear-end contraction

are chiefly responsible for disassembly of FAs and, subsequently,

retraction of the rear as the cell body translocates (Crowley &

Horwitz, 1995; Chrzanowska-Wodnicka & Burridge, 1996). Calcium-

dependent proteases such as calpains also play an important role in

regulation of adhesion dynamics by cleavage of key FA proteins

such as FAK and talin (Chan et al, 2010).

Amoeboid migration of MuSCs
Amoeboid migration involves generation of membrane protrusions

(Charras & Paluch, 2008). In contrast to mesenchymal migration,

amoeboid migration requires minimal cell-substrate interactions and

can occur under conditions of high confinement (Liu et al, 2015).

Skeletal muscle injury stimulates activation and proliferation of

MuSCs (Yin et al, 2013), which subsequently migrate towards sites

of injury above the basal lamina (Siegel et al, 2009). Although

precise mechanisms underlying migration of MuSCs in vivo have

not been extensively studied, observations of MuSC migration on

isolated myofibres indicate employment of an amoeboid mechanism

dependent on nitric oxide (NO) and planar cell polarity (PCP)

signalling (Otto et al, 2011). Other studies with similar experimental

approaches indicated the presence of pseudopods on migrating

MuSCs (Siegel et al, 2009). More recently, live intravital imaging of

MuSC migration has similarly shown generation of long protrusions
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Figure 1. Schematic representation of cytoskeletal elements involved in mesenchymal migration.
(A) Pathways involved in generation of lamellipodia are outlined. (B) Graphical presentation of a single filopodia, spike-like protrusions at the leading edge of migration.
These structures contain parallel F-actin bundles crosslinked by fascin (yellow) with polymerisation of actin occurring at the + end of actin filaments, facilitated by
diaphanous formins (orange).
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upon activation, suggesting that, in vivo, mesenchymal migration is

primarily utilised (Baghdadi et al, 2018). However, the possibility

that MuSCs could interchange between different modalities of

migration in a context-dependent manner remains, although this

will require further investigation.

Mechanisms of skeletal myogenic cell migration
during development

During embryonic development, myogenic precursors are required

to undergo relatively long-range migration to give rise to muscles of

the developing limbs, tongue and diaphragm (Birchmeier & Broh-

mann, 2000). Skeletal muscles of the body (trunk and limbs) are

derived from the somites: epithelial spheres of compacted paraxial

mesoderm which form in pairs alongside the neural tube (Bucking-

ham et al, 2003). The paraxial mesoderm segments into somites

sequentially in a rostral-caudal manner and is specified along the

dorsoventral axis to form the epithelial dermomyotome dorsally and

the mesenchymal sclerotome ventrally, eventually giving rise to

cells of the cartilage, connective tissue, muscle, dermis and endothe-

lial lineages (Thorsteinsdottir et al, 2011). The dorsomedial lip of

the dermomyotome then gives rise to the myotome and subse-

quently to precursor cells which will generate skeletal myoblasts

(Tajbakhsh, 2009). A highly orchestrated migratory event occurs

when somitic muscle precursors undergo epithelial-to-mesenchymal

transition, delaminate and migrate to generate the limb buds,

diaphragm and tongue anlagen (Hollway & Currie, 2005; Parada

et al, 2012; Merrell & Kardon, 2013). These migrating myogenic

progenitors are directed by diffusible and cell surface signals, as

well as by interactions with the surrounding ECM (Yin et al, 2013).

As developmental programmes are partially activated during muscle

regeneration, understanding migration and homing of myogenic

precursors towards muscle anlagen is critical, as these mechanisms

may be recapitulated during regeneration or could be exploited for

cell transplantation (Fig 2).

Specific transcription factors have been shown to be pivotal for

migration of early myogenic precursors, in particular, Ladybird

homeobox 1 (Lbx1) and paired box gene 3 (Pax3). Lbx1, a homeobox

gene, is expressed in migrating myogenic progenitors and plays a role

in directing migratory routes. Lbx1-null mice demonstrated abnormal

limb muscles due to defective migration of muscle precursors

(Schäfer & Braun, 1999; Brohmann et al, 2000). However, muscle

precursors lacking Lbx1 were still able to give rise to the tongue,

diaphragm and some limb muscles, indicating that Lbx1 is necessary

for the lateral, but not ventral, migration of embryonic muscle

precursors (Gross et al, 2000). Another key player is Pax3, a home-

odomain-containing transcription factor and an early myogenic cell

marker necessary for determining cell fate as well as muscle precur-

sor migration (Williams & Ordahl, 1994; Daston et al, 1996; Kassar-

Duchossoy et al, 2005; Relaix et al, 2005). Several studies performed

on Splotch mutant mice, carrying a mutation within the home-

odomain of Pax3, demonstrated impaired development of limbs due

to a loss of the migrating myogenic precursor population, which

implies that Pax3 is vital for muscle precursor migration to distal

regions of the embryo (Franz et al, 1993; Bober et al, 1994; Goulding

et al, 1994; Tajbakhsh et al, 1997). Additionally, Splotch mutants

display decreased expression of Lbx1 and c-Met, which encodes the

canonical hepatocyte growth factor receptor. It has been suggested

that defects of Lbx1 and c-Met may be due to direct Pax3-mediated

regulation of c-Met expression (Epstein et al, 1996; Mennerich et al,

1998). Another homeobox gene, Pitx2, is expressed within prospec-

tive limb fields and skeletal muscle anlagen throughout all stages of

myogenic development (Shih et al, 2007). Abrogation of Pitx2 expres-

sion resulted in anomalies of distal forelimbs. This has been attrib-

uted to impaired motility arising from defects in focal adhesions, as

numerous regulators of the actin and microtubule cytoskeleton, as

well as FA components, displayed changes in expression upon

perturbation of Pitx2 (Campbell et al, 2012).

Certain chemokines and their respective receptors are also

crucial for homing and maintenance of migratory capacity of muscle

progenitors during development. Hepatocyte growth factor (HGF) is

present in injured muscles and necessary for migration of myogenic

precursors towards developing limb buds (Bladt et al, 1995; Tatsumi

et al, 1998; Lee et al, 1999; Dietrich et al, 1999). Homozygous null

mouse mutants for c-Met show abrogation of myogenic precursor

migration to limb buds, diaphragm and tongue and are embryonic

lethal (Bladt et al, 1995; Amano et al, 2002). Additionally, knock-

out (KO) of GRB-2-associated binding protein 1 (Gab-1), a HGF

receptor adaptor protein, results in a similar phenotype with loss of

extensor muscles, reduced flexor muscle migration and significant

disorganisation of hindlimb muscles (Sachs et al, 2000; Vasyutina

et al, 2005). HGF-c-Met-mediated limb precursor migration may

involve more than one mechanism. Limb myogenic precursor-speci-

fic KO of B-Raf, a serine/threonine kinase which acts downstream

of c-Met, has been shown to partially mimic the phenotype of c-Met-

null mutants. B-Raf has been suggested to promote migration of

myogenic cells by direct phosphorylation of Pax3 at serine 205 (Shin

et al, 2016). On the other hand, myogenic migration towards the

developing tongue relies more on PI3K signalling and matrix metal-

loprotease-9 (MMP9) (Bandow et al, 2004). However, myogenic

precursors do not migrate towards ectopic sources of HGF within

interlimb regions of the avian embryo, indicating that HGF may not

necessarily play a role as a chemoattractant despite its expression

along the route of delamination of the prospective limb field and

branchial arches (Mennerich et al, 1998; Dietrich et al, 1999; Birch-

meier & Brohmann, 2000). The stromal-derived factor-1 (SDF-1)

receptor, CXCR4, is also essential for myogenic progenitor migra-

tion, as CXCR4�/� mice display lower numbers of muscle precursors

migrating towards prospective limb buds (Vasyutina et al, 2005).

However, loss of CXCR4 alone did not affect development of the

tongue (Huang et al, 1999). In CXCR4�/�/Gab-1�/� double KO

mutant mice, in addition to a reduced number of migrating limb

precursors, a small fragment of the tongue anlagen was present.

Ectopic application of SDF-1 was sufficient to direct migration of

CXCR4+/Pax3+ cells but endogenous migration patterns of myogenic

precursors do not completely correlate with SDF-1 expression

patterns, suggesting that alternative factors are involved in the spec-

ification of migratory routes (Vasyutina et al, 2005). Fibroblast

growth factors (FGFs) are also crucial in directing limb myogenic

precursors. Avian embryonic myoblasts transfected with dominant-

negative isoforms of FGF receptor 1 (FGFR1) were unable to migrate

towards the prospective limb (Itoh et al, 1996), whereas FGF2 (also

known as basic FGF) and 4 have been shown to induce chemokine-

sis and chemotaxis of mouse embryonic myoblasts (Webb et al,

1997). Interestingly, novel microfluidic tools have revealed that
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within primary human myoblasts, chemokinesis, rather than

chemotaxis, appears to be the main effect exerted by FGF2 (Ferreira

et al, 2015). A candidate for further specification of migratory routes

is ephrin A5 and its receptor EphA4. EphA4 is expressed within the

Pax7+ population of lateral dermomyotome and ephrin A5 within

the ventral dermomyotome. Ectopic application of ephrin A5 led to

a reduction of migration towards the proximal limb bud as well as

aberrant accumulation of muscle progenitors within the lateral

dermomyotome indicating a role for Ephs and ephrins in migration

during limb bud formation (Swartz et al, 2001; Stark et al, 2011).

Post-natal migration of myogenic progenitors

The regenerative capacity of adult skeletal muscle can be observed

in both acute injuries and (to some extent) in chronic myopathies

(Hardy et al, 2016). The endogenous regenerative response is medi-

ated primarily by MuSCs (Relaix & Zammit, 2012). Upon injury,

MuSCs are activated and undergo a process of asymmetric division

to generate committed progenitors and self-renewing stem cells (re-

viewed in (Tedesco et al, 2010)). Upon activation in post-natal

skeletal muscles, myoblasts emerge above the basal lamina to

migrate towards regions in which they are required to differentiate

and fuse with damaged myofibres or with other differentiating

myoblasts to generate new fibres. Myoblast migration requires

precise modulation of the cytoskeleton, with signalling pathways

such as PI3K/Akt and MAPK/ERK pathways chiefly responsible for

regulating migration in vitro (Kowalski et al, 2017; González et al,

2017). Additionally, FA regulation is involved in muscle regenera-

tion and disease (Bricceno et al, 2014). Several approaches have

been explored to enhance the migratory capacity of myogenic cells

upon intramuscular transplantation, most of which involve activa-

tion of specific signalling pathways and modulation of cell–ECM

interactions.

Signalling pathways in adult myoblast migration
SDF-1 drives an important signalling pathway in adult myoblast

migration. Treating myoblasts with SDF-1 leads to upregulation of

the Rho GTPases CDC42 and Rac-1, followed by formation of stress

fibres and filopodia, whereas silencing of its receptor Cxcr4, but not

Cxcr7, did not increase Rho GTPase expression or cell migration,

suggesting direct actin regulation by the SDF-1/Cxcr4 axis (Kowalski

et al, 2017). Furthermore, SDF-1 was shown to regulate the expres-

sion of several migration-associated transcripts, including MMP9, a-
actinin and CAPSN1 (Kowalski et al, 2017).

Many other studies assessing migration of myogenic progenitors

indicate that promotion of motility occurs frequently via upregula-

tion of MAPK/ERK and PI3K/Akt signalling pathways. HGF-
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Figure 2. Schematic representation of key transcription factors, surface receptors and guidance factors involved in skeletal myogenic cell migration
during development.
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associated migration is stunted when cells are treated with a MAPK

inhibitor, and lamellipodia formation, a crucial step for motility on a

monolayer, is abrogated upon PI3K inhibition in C2C12 myoblasts

(Kawamura et al, 2004; Ishido & Kasuga, 2011; González et al,

2017). This decrease in migration is associated with downstream

disruption of CDC42- and Rac-1-mediated actin polymerisation via

N-WASP and WAVE2, as LY294002 treatment also disrupts N-

WASP/WAVE2 localisation at the leading edge of lamellipodia

(Kawamura et al, 2004; Takenawa & Suetsugu, 2007). Moreover,

bisperoxovanadium (BpV), an inhibitor of phosphatase and tensin

homolog (PTEN) which negatively regulates PI3K signalling,

enhanced myoblast migration (Dimchev et al, 2013), whereas phar-

macological inhibition of PI3K and MEK reduced myoblast migra-

tion (Al-Shanti et al, 2011). Platelet lysates have also shown to

enhance motility of C2C12 myoblasts, likely mediated by MAPK and

PI3K signalling (Ranzato et al, 2009).

Although PI3K/Akt and MAPK/ERK signalling pathways are key

mediators of myoblast migration, alternative pro-migratory signal-

ling pathways also exist. C2C12 myoblasts subject to dominant-

negative Ras-related protein Ral-A (dnRalA), an alternative pathway

to MAPK/ERK downstream of Ras, showed significantly reduced

chemotaxis induced by bFGF, IGF-1 and HGF (Suzuki et al, 2000).

Additionally, myogenic progenitors derived from FGF6�/� mice

displayed decreased migration upon intramuscular injection, simi-

larly to myoblasts expressing dominant-negative forms of Ras and

Ral (Neuhaus et al, 2003).

The TGF-b superfamily represents another important signalling

pathway involved in myoblast migration. Although canonical TGF-b
signalling involves the Smad signalling pathway, myogenic progeni-

tor migration driven by members of the TGF-b superfamily likely

occurs in a non-canonical manner, via MAPK/ERK or PI3K/Akt

signalling. KO of Smad4, using Myf5-Cre;Smad4flox/flox transgenic

mice specifically targeting Smad4 in myogenic progenitors, has no

effect on cell migration of myogenic progenitors during tongue

morphogenesis (Massagué, 2012; Han et al, 2012). TGF-b1-mediated

migration of myoblasts has been shown to occur via activation of

the MAPK/ERK pathway which facilitates retraction of the trailing

end of the cell via upregulation of CAPN2, the catalytic subunit of

the ubiquitous calcium-dependent protease m-calpain, capable of

disassembling FAs by proteolysis of FAK and talin (Franco et al,

2004; Leloup et al, 2007; Chan et al, 2010). Furthermore, bone

morphogenetic protein 2 (BMP2), which canonically acts via Smad

signalling, has also been suggested to act in a non-canonical

manner. BMP2 regulates cortical actin remodelling at the leading

edge via PI3K-mediated activation of PH-like domain family B

member 2 (LL5b), which recruits the actin crosslinker filamin and,

subsequently, promotes cell protrusion (Takabayashi et al, 2010;

Hiepen et al, 2014).

Although significant progress has been made in identifying the

aforementioned pathways, mechanisms by which these pathways

are coordinated in a spatiotemporal manner to sequentially regu-

late stages of directional migration of myogenic progenitors

require further investigation. Additionally, different signalling

pathways, such as those driven by Wnt and nitric oxide (NO),

may play context-dependent roles in alternative modes of migra-

tion. One such important external determinant of myogenic

migration is the influence of the ECM which is discussed in the

following section.

Influence of the extracellular environment on muscle stem/
progenitor cell migration
Interactions between cell surface receptors, primarily integrins, with

components of the ECM are crucial to generate traction forces for

directional propulsion. Furthermore, timely disassembly and turnover

of adhesion complexes are a prerequisite for maximal migration

velocity, with dysfunctional FA activity implicated in impaired regen-

eration and disease. As the ECM is a dynamic entity with a tissue-

specific composition that has been suggested to be altered with age

and pathology, changes in ECM composition or stiffness in myopa-

thies may negatively affect migratory capacity of myogenic cells.

Turnover of FAs in muscle regeneration and pathology

Modulation of FA proteins affects myogenic cell migration. Tensins

are FA-associated proteins capable of binding cytoplasmic tails of

integrins in addition to tyrosine-phosphorylated proteins by their

Src homology 2 (SH2) domains (Chen & Lo, 2003; Lo, 2004).

Tensin-1-null mice display delayed skeletal muscle regeneration and

inhibition of tensin-3 reduces migration of MuSCs (Ishii & Lo, 2001;

Chen & Lo, 2003; Baghdadi et al, 2018). Additionally, overexpres-

sion of microRNA-708 recapitulates the tensin-3 inhibitory pheno-

type, with reduction of phosphorylated FA kinase (p-FAK),

suggesting a role for microRNAs in regulating migration by acting

on FAs (Baghdadi et al, 2018). Conversely, upregulation of FAK and

paxillin, as well as increased proportions of p-FAK and p-paxillin,

has been suggested to enhance migration. Swine myogenic progeni-

tors with high p-FAK and p-paxillin have faster wound closure rates

(Wang et al, 2016). Similarly, overexpression of platelet and

endothelial aggregation receptor-1 (PEAR-1; involved in aggregation

of platelets and neoangiogenesis) in MuSCs increases p-FAK, p-

paxillin and vinculin expression, via upregulation and interaction

with integrin b1 (Vandenbriele et al, 2015; Pang et al, 2019).

Platelet-rich plasma was also shown to increase spreading and

migration of muscle progenitors by upregulation of FAK and

paxillin, whereas deprivation of lysine, an essential amino acid for

protein synthesis, resulted in decreased p-FAK, p-paxillin as well as

decreased cell migration (Tsai et al, 2017; Jin et al, 2019).

Spinal muscular atrophy (SMA), caused by a deficiency of the

survival motor neuron-1 (SMN-1) protein, is a severe neuromuscular

disorder characterised by muscle atrophy and loss of motor function

(D’Amico et al, 2011); interestingly, SMN-1-deficient myoblasts

display reduced motility. This has been attributed to abnormal turn-

over of FAs, as FA-associated proteins vinculin, talin-1 and talin-2

persist for extended periods of time resulting in prolonged adhesion

and, subsequently, in a reduction of motility (Bricceno et al, 2014).

The downstream effector of Rho GTPase, ROCK-2, may also be neces-

sary for maturation of FAs as ROCK-2 pharmacological inhibition

resulted in an increased number of vinculin-positive FAs in myoblasts,

which correlated with an increase in migratory velocity (Goetsch et al,

2014). Muscle biopsies from SMA patients do not show signs of regen-

eration, and although this is likely to be caused by several other

reasons, the aforementioned observations suggest that reduced regen-

eration may be partially attributed to decreased migratory capacity of

endogenous muscle progenitors as a result of abnormal FA activity.

Fibrotic microenvironment and muscle cell migration

Various pathological conditions, including muscular dystrophies

and age-related sarcopenia, are associated with fibrosis: an
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accumulation of ECM which reduces or impedes tissue function and

regeneration (Gillies & Lieber, 2011). In muscular dystrophies, endo-

mysial fibrosis is associated with poor motor control, possibly due to

alterations in the load-bearing, biomechanical role of the ECM (Des-

guerre et al, 2009; Gillies & Lieber, 2011). Fibrotic scar tissue has been

postulated to be a limiting factor for the migratory capacity of trans-

planted cells, as reduction of fibrosis in these tissues via MMP-1,-2 or

-9, has shown to be effective at improving cell migration and engraft-

ment (Gargioli et al, 2008; Morgan et al, 2010; Pan et al, 2015).

An alternative method to reduce fibrotic tissue is by targeting

pro-fibrogenic cytokines, which are released as a result of chronic

inflammation in response to recurrent muscle degeneration (Zhou &

Lu, 2010). Targeting pro-fibrogenic signalling pathways in fibrob-

lasts has been shown to reduce skeletal and cardiac muscle fibrosis

by inhibition of TGF-b, which induces fibroblast-mediated fibrogen-

esis (Bernasconi et al, 1995; McGaha et al, 2002; Li et al, 2004;

Andreetta et al, 2006; Cohn et al, 2007; Taniguti et al, 2011).

Furthermore, scid/mdx mice, which lack T and B lymphocytes, have

been reported to have reduced TGF-b1 activity and muscle fibrosis

(Farini et al, 2007). These treatments, however, have not been

systematically integrated into cell transplantation protocols; future

preclinical and clinical studies should therefore focus also on reduc-

ing the pre-existing fibrotic scars to enhance engraftment of intra-

muscularly or systemically delivered cells.

Modulating migration: intramuscular delivery
Understanding the migratory properties of myogenic progenitors has

significant implications for muscle cell therapies, as lack of migra-

tion post-transplantation remains a key issue that limits therapeutic

efficacy. Several approaches have been explored to overcome the

limited migratory capacity of transplanted myogenic cells, with

varying success. The following section will discuss progress and

future implications of these findings.

Pretreatment or co-injection of myoblasts with chemokines

An approach to improve the migratory capacity of myogenic cells is

by treating them with factors that stimulate activation and migration

during development or regeneration. Extracts from crushed muscles

have been shown to activate quiescent MuSCs and to stimulate

myoblast migration (Bischoff, 1986, 1990; Allen et al, 1995; Corti

et al, 2001). In vitro studies performed using growth factor treatment

in transwell or wound healing assays identified several factors able to

improve migration of myoblasts (Table 1). Studies attempting to

understand underlying mechanisms driven by these factors may be

useful for discovery of conserved pathways or mechanisms that could

be targeted and modified for application in cell therapy protocols.

Several factors displayed in Table 1, including HGF and SDF-1,

have been tested in vivo by either treating donor cells prior to admin-

istration or by co-injection. HGF injection into the soleus muscle of

mice was sufficient to increase MuSC migration velocity (Ishido &

Kasuga, 2011), whereas injection of Sdf-1-treated myoblasts into Sdf-

1-treated, injured gastrocnemius muscles led to an increase in donor-

derived fibres in comparison to controls (Kowalski et al, 2017).

Modulation of MMPs to facilitate cell migration within

skeletal muscles

Extensive fibrosis of skeletal muscles negatively impacts on cell

transplantation efficacy, as cells are required to travel through dense

connective meshwork for effective dispersion. Similar to the concept

of pretreatment irradiation in haematopoietic stem cell transplanta-

tion, which “clears space” for donor cells, MMPs may be able to

play an analogous role by digesting fibrotic tissues.

MMPs have been previously identified to play a significant role

for enhancement of myogenic progenitor migration. Pharmacologi-

cal inhibition of MMP activity decreased myoblast migration in vivo

(El Fahime et al, 2000). The role of specific MMPs in myogenic

progenitors has also been studied. MMP13, an interstitial collage-

nase, displays increased expression in skeletal muscle of mdx mice

as well as in muscles acutely injured with cardiotoxin. Overexpres-

sion of MMP-13 in C2C12 myoblasts enhanced migration, which

was abrogated upon MMP-13 inhibition (Lei et al, 2013). Pretreat-

ment of host muscles with collagenase and MMP-7, a matrilysin

capable of degrading collagen IV, laminin-1 and fibronectin, was

shown to increase cell engraftment in host muscles (Torrente et al,

2000). Furthermore, MMP-14 has been demonstrated to increase

invasive capacity of human but not murine myoblasts, suggesting

disparities in the relative importance of MMPs between species

(Lund et al, 2014). Enhanced growth factor-mediated migration and

motility may also be attributed to increased expression and activity

of MMPs. The most likely candidates for this role are MMP-1, -2 and

-9, which are upregulated by IGF-1, bFGF and TNF-a (Allen et al,

2003; Lafreniere et al, 2004). Intramuscular transplantation of

C2C12 myoblasts in scid/mdx mice with concomitant MMP-1

administration resulted in a 3-fold increase in cell engraftment

(Wang et al, 2009). Additionally, a gene therapy approach to induce

MMP-1 expression in C2C12 myoblasts enhanced engraftment in

scid/mdx mice (Pan et al, 2015).

Although MMP-2 and -9 are generally upregulated upon growth

factor treatment, MMP-9 upregulation may be more efficacious in

combinatorial therapies (Yanagiuchi et al, 2009). Tendon fibroblasts

expressing MMP-9 and the angiogenic factor placenta growth factor

(PIGF) were able to restore a microvascular network and reduce

fibrosis, enhancing cell therapy efficiency in aged dystrophic mice

(Gargioli et al, 2008). Similarly, C2C12 myoblasts overexpressing

MMP-9 had superior migratory capacity over C2C12 cells overex-

pressing MMP-2 (Morgan et al, 2010). Overall, these studies indicate

that MMP-9 expression is advantageous for remodelling of fibrotic

tissues found in dystrophic muscles into an environment more

favourable for cellular motility.

Bioscaffolds for intramuscular cell delivery

Biomaterials have been used to improve dispersion and viability of

intramuscularly delivered cells. The advantage of biosynthetic scaf-

folds is that biophysical and biochemical parameters can be

adjusted to modulate cell behaviour (Cezar & Mooney, 2015).

Bioscaffolds can also be functionalised with pro-survival or pro-

migratory factors for myoblasts. Implantation of alginate (a biocom-

patible polysaccharide) seeded with myoblasts, HGF and bFGF into

injured mouse tibialis anterior muscles led to an increase in

myoblast migration and muscle mass (Hill et al, 2006).

A more practical approach may be to substitute the saline solu-

tion in traditional intramuscular injection protocols with hydrogels

to improve dispersion and viability of donor cells. A recent study

performed by replacing saline with a hydrogel comprised of

hyaluronan and methylcellulose resulted in increased donor cell

dispersion (Davoudi et al, 2018). The increase in engraftment area
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could also be attributed to the bioactivity of hyaluronan, which has

been shown to inhibit myogenic differentiation (Elson & Ingwall,

1980): delays in differentiation may facilitate proliferation and

migration/dispersion of donor cells prior to fusion or differentia-

tion. Similarly, a semisynthetic polyethylene glycol and fibrinogen

hydrogel increased engraftment of intramuscularly transplanted

mesoangioblasts in acute and chronic muscle injury mouse models

(Fuoco et al, 2012). Therefore, cell–matrix interactions can be

exploited to generate an environment advantageous for enhanced

cell engraftment.

Trans-endothelial migration of myogenic progenitors:
state-of-the-art and lessons from “professional”
transmigrating cells

Viability of systemic delivery rests on the ability of injected cells

to migrate across blood vessel walls while maintaining the capac-

ity to disperse through complex ECM to reach damaged myofi-

bres. Although mesoangioblasts and CD133+ cells can be

systemically delivered and reach skeletal muscles (reviewed in

(Benedetti et al, 2013)), precise molecular mechanisms underlying

their extravasation process have not yet been established. Greater

understanding of mechanisms dictating transmigration in cell

types in which extravasation occurs normally (e.g. leucocytes) or

pathologically (e.g. metastatic cancer cells) could facilitate

development of efficient protocols for the intra-vascular delivery

of myogenic cells.

Leucocyte diapedesis
Leucocyte extravasation out of the blood vasculature into target

tissues can be summarised into 4 major steps involving different

surface protein interactions between leucocytes and endothelium:

rolling adhesion, firm adhesion, crawling and diapedesis (Fig 3). As

some myogenic progenitors may utilise a similar mechanism when

delivered intra-vascularly (Giannotta et al, 2014), targeting compo-

nents that regulate leucocyte extravasation could improve transmi-

gration of systemically deliverable myogenic cells.

Rolling adhesion requires formation of transient bonds between

leucocytes and endothelial cells. Adhesive molecules such as

endothelial-selectin (E-selectin) and platelet-selectin (P-selectin) on

endothelium are necessary for interaction with leucocyte surface

proteins p-selectin glycoprotein ligand-1 (PSGL-1) and leucocyte-

selectin (L-selectin) (Kunkel & Ley, 1996; Hickey et al, 1999; Stein

et al, 1999; Zarbock et al, 2008). Firm adhesion between leucocytes

and endothelial cells requires activation of high affinity integrins on

leucocytes. Subsequent generation of dense clusters of intercellular

cell adhesion molecule-1 (ICAM-1), vascular cell adhesion mole-

cule-1 (VCAM-1), lymphocyte function associated-1 (LFA-1), very

late antigen-4 (VLA-4) and galectin-3 at the leucocyte–endothelium

surface, also called focal contacts, enables near-complete arrest of

leucocytes (Dustin & Springer, 1988; Elices et al, 1990; Nieminen

Table 1. Examples of chemokines and their impact on myoblast migratory capacity in vitro.

Chemokine Concentration
-fold increase
in migration Cell type Assay

ECM
component Reference

HGF 10 ng/ml 5.43-; 5- Primary myoblasts
(rat; human)

Transwell Fibronectin Bischoff (1997), González
et al (2017)

SDF-1 10 ng/µl 2.5- Primary myoblasts
(mouse)

Wound healing Uncoated Kowalski et al (2017)

TGF-b 5 ng/ml; 20 ng/ml 4.42-; 0.73- Primary myoblasts
(rat); C2C12
myoblasts

Transwell; wound
healing

Fibronectin;
uncoated

Bischoff (1997), Leloup et al
(2006)

IGF-1 40 ng/ml; 100 ng/ml 0.66-; 3.4- C2C12 myoblasts;
primary myoblast
(mouse)

Wound healing;
transwell

Uncoated Leloup et al (2006),
Yanagiuchi et al (2009)

Insulin 15 µg/ml 0.97- C2C12 myoblasts Wound healing Uncoated Leloup et al (2006)

FGF-2 1 ng/ml; 10 ng/ml;
10 ng/ml; 100 ng/ml;
3.8–7.0 ng/ml

N/A; 7.8-;
6.4- ; 3.4-; N/A

Primary myoblasts
(rat; mouse-
embryonic; mouse;
mouse; human)

Transwell; Blind well
chemotaxis chamber;
Chemotaxis chamber;
Chemotaxis chamber;
Microfluidics device

Fibronectin;
Uncoated;
Fibronectin;
Uncoated;
Uncoated;

Bischoff (1997), Webb et al
(1997), Neuhaus et al
(2003), Yanagiuchi et al
(2009), Ferreira et al (2015)

FGF-4 10 ng/ml 6.7- Embryonic myoblasts
(mouse)

Blind well
chemotaxis chamber

Uncoated Webb et al (1997)

FGF6 10 ng/ml ~5- Primary myoblasts
(mouse)

Chemotaxis chamber Fibronectin Neuhaus et al (2003)

PDGF-BB 50 ng/ml 3.3- Primary myoblasts
(human)

Transwell Uncoated Piñol-Jurado et al (2017)

5% Chick
embryo
extract

N/A 6.7- Primary myoblasts
(rat)

Transwell Fibronectin Bischoff (1997)

In cases where multiple concentrations were assessed, the concentration that facilitated the greatest fold change of migration was taken.
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et al, 2008; Muller, 2013). Following arrest, changes in leucocyte

morphology occur, involving polarisation and formation of protru-

sions which promote “crawling” along the surface of endothelial

cells (Schnoor et al, 2015). Once an exit signal is detected, migration

through the endothelial barrier takes place. This can follow either

the paracellular or the transcellular route: most transmigration

events occur via the paracellular route, through endothelial cell–cell

junctions, and require sequential activation of several adhesion

proteins. Firstly, ICAM-b2 integrin interactions are necessary for

transient downregulation of vascular endothelial cadherin (VE-

cadherin). This process is pivotal to loosen adherens junctions

(Filippi, 2016). Subsequently, sequential interactions of leucocytes

with junction adhesion molecule-A/C (JAM-A/C), platelet endothe-

lial cell adhesion molecule (PECAM) and CD99 mediate transloca-

tion through the intercellular gap (Schenkel et al, 2002; Woodfin

et al, 2009). Alternatively, leucocytes can migrate through the cell

body of endothelial cells via transcellular pores, although this is

mostly found in regions which necessitate strict regulation of perme-

ability, such as the blood–brain barrier (Lossinsky et al, 1989;

Wolburg et al, 2005). Finally, entry into peripheral tissues requires

migration through associated pericyte and perivascular basement

membrane layers (Voisin & Nourshargh, 2013).

Metastatic cancer cells, angiopellosis and other unorthodox
extravasation strategies
Pathological extravasation: cancer metastasis

Cancer metastasis involves formation of new tumours within tissues

and organs distal to the primary mass. This process usually requires

cancer cells to intravasate into proximal lymph or blood vessels,

circulate, extravasate and, subsequently, proliferate to give rise to

secondary tumours (Valastyan & Weinberg, 2011). The efficiency of

cancer cell extravasation is a key factor that determines metastatic

potential (Leong et al, 2014). Extravasation of cancer cells involves

the same major steps as leucocytes but displays disparities at the

molecular level. Additionally, a key difference between cancer cell

and leucocyte extravasation is that cancer extravasation results in

disruption of vascular integrity, whereas leucocyte extravasation

induces transient, reversible modifications of the endothelium

(Strell & Entschladen, 2008). Studying molecules involved in cancer

metastasis may reveal general conserved mechanisms necessary for

trans-endothelial migration of non-leucocyte cells, thus exposing key

molecules that may be modulated to enhance the efficiency of

myogenic cell trans-endothelial migration.

Rolling of tumour cells has been shown to require several ligands

of E- and P-selectins. Metastases within bone, lymph node and the

brain derived from human prostate tumours display increased

PSGL-1 expression, involved in leucocyte rolling (Dimitroff et al,

2005). Within PSGL-1-negative breast carcinoma cells, CD24 was

shown to be responsible for rolling, suggesting the existence of alter-

native mechanisms for tumour cell rolling (Aigner et al, 1998).

Isoforms of CD44 may also play crucial roles in cancer cell–endothe-

lium interactions. Knockdown of CD44 glycoform haematopoietic

cell E-/L-selectin ligand (HCELL) in colon carcinoma cells resulted

in reduced binding to HUVECs and increased rolling speed (Burdick

et al, 2006). CD44 variant (CD44v, a CD44 isoform) expression in

colon carcinoma cell lines reduced rolling velocity and increased

binding to P-selectin (Napier et al, 2007). Upon knockdown of

CD44, the glycoprotein carcinoembryonic antigen (CEA) acts as a

compensatory mechanism to mediate colon cancer cell interactions

with E-selectin (Thomas et al, 2008). This suggests that although

the process of rolling is conserved between tumour cells and leuco-

cytes, disparities exist at the molecular level.

Firm adhesion of cancer cells to the vascular endothelium can

occur in a leucocyte-dependent or -independent manner. Tumour

cells are capable of recruiting and binding to leucocytes, which subse-

quently interact with the endothelial cell layer as a proxy (Strell et al,

2007; Liang et al, 2007). Interestingly, it is currently unknown

whether donor myogenic cells are able to interact with leucocytes

intravascularly. Tumour cell firm adhesion also takes place indepen-

dently of leucocytes. Similarly to leucocytes, VLA-4 acts as the
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Figure 3. Schematic representation of the sequential events that occur during leucocyte diapedesis with key surface molecules involved at each step.
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primary VCAM-1 ligand during tumour cell extravasation. VLA-4 was

shown to be essential for adherence of melanoma cells to VCAM-1-

expressing endothelial cells, with clones of melanoma cells express-

ing VLA-4 displaying increased metastases in IL-1-treated mice (Garo-

falo et al, 1995). Additionally, treatment of mammary carcinoma cell

lines, possessing high tropism for the brain, with anti-VLA-4 antibod-

ies reduced incidence of tumour seeding (Soto et al, 2014). Firm

adhesion of breast and prostate cancer cells has been shown to

involve binding with galectin-3 on the endothelial surface (Glinsky

et al, 2000, 2003; Khaldoyanidi et al, 2003).

Several molecules involved in cancer cell extravasation and

leucocyte extravasation are conserved, but there are also alternative

mechanisms of tumour cell extravasation. Transcriptional profiles of

circulating tumour cells from 5 different cancer types revealed

conserved upregulation of PECAM-1, JAM3 (JAM-C) and F11R (JAM-

A), which are critical for leucocyte diapedesis (Yadavalli et al, 2017).

Additionally, melanoma metastases are reduced in mice with an

endothelial cell-specific KO of JAM3 (Langer et al, 2011). Treatment

of hepatoma and colon cancer cells with anti-CXCR4 antibodies had

no effect on adhesion but abrogated extravasation and, conversely,

pretreatment of these cells with SDF-1 enhanced extravasation

(Gassmann et al, 2009). Homophilic CD146 interactions have also

been shown to mediate melanoma extravasation, which is decreased

upon cell delivery in CD146 KO mice (Jouve et al, 2015).

Cancer cell extravasation also involves vasculature modulation.

Secretion of c-terminal fibrinogen-like domain of angiopoietin-like 4

(cANGPTL4) by carcinomas and melanomas induces vascular leaki-

ness by interacting with a5b1 integrin, VE-cadherin and claudin-5

(Huang et al, 2011). Similarly, the glycoprotein osteonectin interacts

with VCAM-1 and facilitates increased vascular permeability, result-

ing in enhanced melanoma cell extravasation (Tichet et al, 2015).

Overall, this section highlights molecules and mechanisms that might

be positively exploited to increase extravasation efficiency of systemi-

cally deliverable myogenic cells, although potential detrimental

effects on vascular integrity and off-target extravasation (i.e. into

non-skeletal muscle tissues) will need to be carefully assessed in

future studies.

Angiopellosis

Recently, an alternative mechanism to diapedesis termed

angiopellosis has been proposed for cells that are not native to

the blood circulation, including tumour cells (Allen et al, 2019).

Angiopellosis displays molecular and temporal disparities in

comparison to canonical leucocyte extravasation and involves

formation of endothelial protrusions which sequester and trans-

port cells into the surrounding parenchyma (Cheng et al, 2012;

Allen et al, 2017). In contrast to leucocyte diapedesis, angiopel-

losis allows for extravasation of multiple cells during a single

event. Knockdown of CD11a, the a-integrin subunit of LFA-1

implicated in multiple stages of leucocyte extravasation, abolished

diapedesis of leucocytes but not of mesenchymal stromal cells,

indicating a difference of surface molecules involved in this

process (Allen et al, 2017). Overall, angiopellosis appears relevant

in the context of muscle cell therapies, as myogenic cells are by

definition not native to the circulation. More research on this

process, alongside cross-validation with additional independent

studies, will be necessary to exploit this modality of cell migra-

tion for the intravascular delivery of myogenic cells.

Modulating migration: systemic delivery
Treating myogenic cells with growth factors, inflammatory chemokines

or other small molecules

Cells delivered intra-arterially must perform two major tasks: (1)

transmigration across the endothelial barrier of injured muscle

tissues and (2) migration towards regions in which they are

required. During embryonic myogenesis, myoblasts in close prox-

imity to endothelial cells undergo a fate transition into pericyte-like

cells (Cappellari et al, 2013). This phenomenon can be mimicked

in vitro by combined application of platelet-derived growth factor-

BB (PDGF-BB) (also expressed by regenerating and necrotic myo

fibres (Piñol-Jurado et al, 2017)) and delta-like 4 (DLL4; a Notch

signalling ligand), inducing pericyte-like features in both mouse

and human myoblasts (Gerli et al, 2019). Importantly, treated Mu

SC-derived myoblasts displayed enhanced endothelial transmigra-

tion capacity in vitro and in vivo (Gerli et al, 2019). Of note, a

recent study also showed that PDGF-BB promotes migration of vari-

ous types of muscle interstitial cells via interaction with its putative

receptor, platelet-derived growth factor receptor-b (PDGFR-b)
(Camps et al, 2019). As this phenomenon occurs during embryonic

development (Cappellari et al, 2013), translating this approach to

iPSC-derived myogenic progenitors may result in greater cell trans-

migration than what observed with adult myoblasts, given the

embryonic-/foetal-like identity of most currently available skeletal

myogenic iPSC derivatives (Xi et al, 2020).

Cells delivered intra-arterially require appropriate exit signals

that regulate extravasation. It is therefore not surprising that pro-

inflammatory cytokines secreted by resident cells have previously

shown to promote endothelial transmigration. Tumour necrosis

factor-a (TNF-a), a cytokine secreted by macrophages, natural killer

(NK) cells and lymphocytes, enhanced mesoangioblast migration

in vitro and in vivo. Furthermore, highly mobility group box-1

(HMGB-1), a pro-inflammatory cytokine released by necrotic cells or

secreted by immune cells, has been shown to promote extravasation

and homing of mesoangioblasts (Palumbo et al, 2004; Lotze &

Tracey, 2005); a similar effect has been reported with nitric oxide

(Sciorati et al, 2006). Interestingly, other pro-inflammatory cytokines

such as IL-1, IL-6 and IL-10, had no significant effect on donor cell

migration (Galvez et al, 2006); similarly, lipopolysaccharide (LPS)-

induced inflammation did not stimulate mesoangioblast homing or

migration despite upregulation of IL-1a, IL-1b and IL-6 in mouse and

rat skeletal muscle (Frost et al, 2002; Lang et al, 2003; Palumbo et al,

2004). Therefore, specific growth factors, chemokines and other

ligands can induce pro-migratory properties to different classes of

myogenic cells; translating these protocols to human myogenic cells

will be a key step towards their preclinical validation.

Modification of cell–endothelial interactions to promote transmigration

Targeting proteins that dictate donor cell–endothelium interactions

during extravasation is another promising strategy to promote cell

engraftment in dystrophic muscles. Although surface proteins of

candidate myogenic cell types differ from those of leucocytes,

expression of key molecules involved in leucocyte diapedesis on

myogenic cells has been shown to enhance their migration capacity

(Tagliafico et al, 2004; Galvez et al, 2006).

Another strategy for increasing efficiency of transmigration is to

target molecules that facilitate sequential migration through paracel-

lular endothelial junctions. KO or inhibition of JAM-A in mouse

ª 2020 The Authors EMBO Molecular Medicine 12: e12357 | 2020 11 of 18

SungWoo Choi et al EMBO Molecular Medicine



models of acute or chronic muscle injury significantly improved

engraftment of intra-arterially delivered mesoangioblasts (Giannotta

et al, 2014). Downregulation of PW1, a direct transcriptional repres-

sor of JAM-A, inhibited transmigration of adult mouse mesoan-

gioblasts when delivered via femoral arteries of scid/mdx mice

preventing amelioration of the dystrophic phenotype (Bonfanti et al,

2015). Notably, a similar strategy in PECAM-1-null mice did not

increase cell engraftment, indicating that not all endothelial junction

molecules can be targeted to improve cell extravasation (Giannotta

et al, 2014).

Future perspectives

Strategies to enhance migration and motility of myogenic progeni-

tors have been investigated in previous studies; however, how

these factors regulate the cellular cytoskeleton as downstream

output is less studied and may be important to identify key

processes or molecular components that may be perturbed in

disease or augmented in cell therapies. Additionally, it may be

advantageous for future studies to focus on migratory behaviours

of myogenic cell types within 3D environments that recapitulate

skeletal muscle architecture with higher fidelity with regards to

ECM composition, stiffness and multicellular complexity (e.g.

Bersini et al, 2018; Maffioletti et al, 2018). This could be achieved

by observing migratory behaviour and cytoskeletal activity in

synthetic 3D hydrogels that mimic interstitial ECM or by using

decellularised matrices retaining the intrinsic architectural integrity

of skeletal muscle tissue (Hughes et al, 2010; Webster et al, 2016;

Yamada & Sixt, 2019). Furthermore, intravital imaging may reveal

previously unidentified mechanisms or requirements for optimal

migratory capacity of muscle stem cells upon intramuscular or

intravascular delivery (Paul et al, 2015; Yan et al, 2019).

Identifying key genetic programmes and molecular machineries

involved in myogenic cell migration could be instrumental to derive

or engineer highly migratory cell populations for efficacious muscle

cell therapies. For this purpose, several avenues could be explored:

1 Systematic assessment of the migratory properties of intersti-

tial skeletal muscle cells may reveal distinct populations with

migration capacity (Tedesco et al, 2017). Subsequently, pro-

migratory signals can be modulated to optimise migration and

differentiation capacity for maximal engraftment in cell thera-

pies (Gerli et al, 2019). Engineering myogenic derivatives from

human iPSCs will become increasingly relevant as

modifications of current transgene-based (e.g. (Tedesco et al,

2012; Darabi et al, 2012)) or transgene-free protocols (e.g.

(Chal et al, 2016; Hicks et al, 2018)) could generate innovative

advanced therapy medicinal products (ATMPs) with control-

lable proliferation, migration and differentiation capacity.

2 Phenotypic disparities between young and aged myogenic cell

types have been investigated (Collins-Hooper et al, 2012;

Brown et al, 2017; Rotini et al, 2018). In addition to regenera-

tive capacity, migration has been suggested to be altered with

ageing: studying and understanding migration dynamics in

young vs aged myogenic cells may highlight specific pathways

to modulate to enhance migration of ATMPs.

3 Lastly, omics-based comparative studies of myogenic cell

populations treated with pro-migratory factors or small mole-

cules may unravel druggable pathways which could be

further modulated to enhance cell motility. For intravascular

delivery, similar studies focusing on cells with highly effi-

cient transmigration capacity in health (e.g. leucocytes) or

disease (e.g. metastatic cells) could provide insights on stra-

tegies to be deployed in next-generation skeletal muscle cell

therapies.
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