
RESEARCH ARTICLE Open Access

Using genome-wide associations to identify
metabolic pathways involved in maize
aflatoxin accumulation resistance
Juliet D. Tang1, Andy Perkins2, W. Paul Williams3 and Marilyn L. Warburton3*

Abstract

Background: Aflatoxin is a potent carcinogen that can contaminate grain infected with the fungus Aspergillus
flavus. However, resistance to aflatoxin accumulation in maize is a complex trait with low heritability. Here, two
complementary analyses were performed to better understand the mechanisms involved. The first coupled results
of a genome-wide association study (GWAS) that accounted for linkage disequilibrium among single nucleotide
polymorphisms (SNPs) with gene-set enrichment for a pathway-based approach. The rationale was that the
cumulative effects of genes in a pathway would give insight into genetic differences that distinguish resistant
from susceptible lines of maize. The second involved finding non-pathway genes close to the most significant
SNP-trait associations with the greatest effect on reducing aflatoxin in multiple environments. Unlike conventional
GWAS, the latter analysis emphasized multiple aspects of SNP-trait associations rather than just significance and
was performed because of the high genotype x environment variability exhibited by this trait.

Results: The most significant metabolic pathway identified was jasmonic acid (JA) biosynthesis. Specifically, there was at
least one allelic variant for each step in the JA biosynthesis pathway that conferred an incremental decrease to the level
of aflatoxin observed among the inbred lines in the GWAS panel. Several non-pathway genes were also
consistently associated with lowered aflatoxin levels. Those with predicted functions related to defense were:
leucine-rich repeat protein kinase, expansin B3, reversion-to-ethylene sensitivity1, adaptor protein complex2,
and a multidrug and toxic compound extrusion protein.

Conclusions: Our genetic analysis provided strong evidence for several genes that were associated with aflatoxin
resistance. Inbred lines that exhibited lower levels of aflatoxin accumulation tended to share similar haplotypes for genes
specifically in the pathway of JA biosynthesis, along with several non-pathway genes with putative defense-related
functions. Knowledge gained from these two complementary analyses has improved our understanding of population
differences in aflatoxin resistance.
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Background
Aspergillus flavus is one of the causative agents of ear rot
in maize. Although infection does not typically reduce
yield in temperate environments, the grain can become
contaminated with aflatoxin, a polyketide secondary me-
tabolite produced by the fungus that is highly toxic to
humans and animals even in minute amounts [1]. In the
USA, action levels are 20–300 ppb for animal feed [2]

and 0.5 ppb for aflatoxin in fluid milk products [3].
Thus, aflatoxin contamination of maize poses a serious
health and economic burden worldwide. One promising
solution that would mitigate the damage is breeding for
host plant resistance.
Most of the known resistance to aflatoxin accumula-

tion in maize has been found in tropical lines, typically
with Tuxpan or Tuxpeño in their pedigree [4]. Analysis
of bi-parental mapping populations derived from a few
of these tropical lines, including CML322 [5], Mp313E
[6, 7], and Mp715 [8], has identified many quantitative
trait loci (QTL) on all chromosomes but 9 and 10.
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Narrowing the QTL to single loci with major effects,
however, has proved difficult. The QTL encompass large
regions, exhibit low to moderate heritability, and are
characterized by high genotype x environment interac-
tions [4, 9, 10]. Therefore, host plant improvement by
introgression of resistance into temperate lines adapted
to the major corn production areas in the US, China,
and Europe, has not been efficient.
A complementary approach to QTL mapping is associ-

ation mapping, which relies on historical recombination
events of many different lineages for the discovery of
markers linked to the trait of interest. In a genome-wide
association study (GWAS) of maize aflatoxin resistance,
an association mapping panel of 287 inbred lines was ge-
notyped by sequencing (GBS) and phenotyped for afla-
toxin content in testcrossed replicated field experiments
[4]. Whole genome association analysis of the data yielded
eight single nucleotide polymorphism (SNP)-trait associa-
tions that were better than the threshold set for the false
discovery rate (FDR) [11]. These eight SNPs fell within the
sequence of two genes that had conserved domains for
DNA methyltransferase and C2H2-like zinc finger protein,
and a third gene which was an expressed protein of un-
known function. Many more will have been missed, how-
ever, as many genes may be expressed only in specific
genetic backgrounds, possibly because they are part of a
pathway and rely on specific haplotypes at other loci.
Thus, the positive alleles of these resistance genes may
only be useful when found in combination with the posi-
tive alleles of other genes in the same pathway.
In addition to missing true positives due to genetic

background or environmental variation, the statistical
power of GWAS is limited by strict levels set for FDR
and by insufficient numbers of high-frequency polymor-
phisms found in most panels. FDR helps compensate for
multiple testing effects, since a single trait is tested for
association against very large numbers of polymor-
phisms. The candidate gene method of association ana-
lysis aims to improve the odds of identifying the most
important alleles by genotyping or resequencing only
those genes considered to have a high probability of as-
sociation with the phenotype of interest within the
germplasm being tested [12]. This may be done to valid-
ate GWAS results, or to find associations that GWAS
missed. Many successful studies of candidate gene asso-
ciation analysis in maize have been published to im-
prove traits like flowering time [13] and kernel traits
like starch production [14], β-carotene content [15], and
provitamin A biofortification [16].
Metabolic pathway analysis focuses on the combined ef-

fects of many genes that are grouped according to their
shared biological function. This is another promising ap-
proach that can complement the most significant SNP-
trait associations or give clues to the genetic basis of a trait

[17]. Although originally developed to study differences in
gene expression data for medically important diseases
[18], pathway analysis has been used with association
mapping to find biological insights missed when focusing
on only one or a few genes that have the highest associa-
tions with the trait of interest. In addition, biologically
relevant pathways can be used to determine candidate
genes for association analysis or to interpret large data sets
produced by other high-throughput approaches like RNA
sequencing, proteomics, and metabolomics.
Pathway-based approaches are now used routinely to

study human disease [19–21], but published reports on
pathway analysis of GWAS data in plants are still non-
existent. Combining the aflatoxin GWAS data in a pathway
analysis jointly considers all genetic sequences positively
associated with A. flavus infection and aflatoxin accumula-
tion resistance; thus, pathways may be highlighted which
lead to mechanisms for fungal resistance and those
that discourage fungi in the maize kernel from producing
deleterious aflatoxin. Identification of these genes will
eventually lead to more efficient breeding procedures and
development of maize hybrids with resistance to aflatoxin
accumulation. A better understanding of pathways in-
volved in resistance will also advance our broader un-
derstanding of plant defense mechanisms against other
opportunistic saprobic fungi. Therefore, the primary
objective of this study was to identify metabolic path-
ways and pathway genes underlying aflatoxin resistance
by accounting for linkage disequilibrium among SNPs
from a large-scale GWAS study. A second separate, but
complementary objective was to identify genes within 1
Kb of significant SNP-trait associations whose effects for
lowering aflatoxin recurred in multiple environments.
Unlike conventional GWAS, this analysis emphasized
multiple aspects of SNP-trait associations rather than
just significance and was performed because of the high
genotype x environment variability exhibited by this trait.
By synthesizing the combined results, we hope to better
understand the relationships that connect metabolic path-
way and non-pathway genes in maize aflatoxin resistance.
The joint analysis of all genes in this manner is expected
to uncover new mechanisms that improve resistance to
aflatoxin accumulation in maize.

Results and discussion
GWAS
Among the 287 inbred maize lines, TASSEL calculated
SNP-trait associations for 261,183 SNPs [11]. Of these,
45.8 % of the SNP allele calls were imputed from the
regional haplotype. The range of association p, effect,
and R2 values were 2.87E−10 to 1.0, −2.55 to 3.46, and
6.4E−14 to 0.3, respectively. Sorting output of the linkage
disequilibrium values between pairs of SNPs in ascending
order by the position of SNP 1 or 2 produced linkages
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from the reference SNP in the upstream and downstream
directions, respectively. Due to size limitations, the
TASSEL output files could not be included in the
supplement but they are available upon request.

SNP to gene algorithm for the pathway analysis
A plot of pairwise linkage disequilibrium values—log(p)
against R2 showed that the most significant linkages be-
tween a reference SNP and its linked SNP occurred for
R2 > 0.8 (Additional file 1: Figure S1). Based on this dis-
tribution, 0.8 was chosen as the threshold to define link-
age. The frequency of linkage types were: 46.3 %
unlinked (type 0), 33.5 % reference SNP linked to single
SNP (type 1), 19.1 % reference SNP linked to a SNP
block where the associations in the block had a majority
effect sign, that is the majority of associations had either
a positive or negative effect (type ≥ 2, the type number
here refers to the number of linked SNPs in the block),
and 1.1 % where the block had no majority effect sign
(equal numbers of associations with positive and nega-
tive effects, type −1) (Additional file 2: Figure S2). A
comparison of the effect signs in linkage groups (refer-
ence SNP linked to a single SNP or SNP block), showed
that 84 % of the linkage types shared the same sign
(between reference SNP and linked SNP or between ref-
erence SNP and majority effect sign for the SNP block),
while 16 % did not. The SNP to gene algorithm was de-
signed to account for all possibilities present.
The steps of the decision tree used to find the tagSNP

and gene are detailed in Fig. 1. If there was no linkage
(type 0), then the reference SNP (labeled SNP1 in Fig. 1)
was the tagSNP used to find the gene. For linkage type 1
(path labeled Single in Fig. 1), if SNP1 and the linked
SNP (labeled SNP2 in Fig. 1) had the same effect sign,
the SNP with the maximum absolute value of the effect
value (|effect|) was designated as the tagSNP. If the
SNP1 and SNP2 had opposite effect signs, the SNP with
the most significant association was assigned the
tagSNP. For linkage types ≥ 2 (path labeled Block in
Fig. 1), two branches were possible depending upon
whether the SNP2 block had a majority effect sign or
not. If yes, then the distance between SNP2 and the
SNP2 block was examined. If the distance was ≤ 1 Kb
then the tagSNP was the SNP with the maximum |ef-
fect| among SNP1 and SNPs in the SNP2 block. If the
distance was > 1 Kb, then the tagSNP was the SNP with
the maximum |effect| from the SNPs in the SNP2 block
only. If the number of SNPs with positive and negative
effect signs in the SNP2 block was tied, then the effect
sign of SNP1 was used to break the tie and find the SNP
in the SNP2 block with the maximum (labeled + in Fig. 1)
or minimum (labeled—in Fig. 1) effect value. Once the
tagSNP was identified, the associated gene(s) was as-
sumed to be within 1 Kb. This search distance was based

on our finding that the majority (62 %) of linkages be-
tween two SNPs (linkage disquilibrium R2 > 0.8) was
within 1 Kb (Additional file 3: Figure S3). Rapid decay
of average linkage disequilibrium is typical for maize,
especially for tropical germplasm, and has been studied
in detail by Romay et al. [22]. The association p, effect,
and R2 values of the tagSNP were then assigned to the
located gene. A total of 25,246 tagSNPs were used to
locate 25,404 genes.

Validity of the GWAS to pathway pipeline
Kernel color, which is a trait known to involve the path-
way PWY-6475-1 (trans-lycopene biosynthesis II), was
used to test the performance of the GWAS to pathway
pipeline. All steps were similar to those used for the
pipeline for aflatoxin resistance except (1) the trait was
fraction of yellow kernels, where 1 was all yellow and 0
was all white, and (2) the gene effect scores were ranked
from yellow to white for the enrichment score calcula-
tion. The top two pathways found in this verification ana-
lysis were PWY-6299 (aldehyde oxidation I, p = 0.006) and
the expected pathway, PWY-6475-1 (trans-lycopene
biosynthesis II, p = 0.009). PWY-6299 was a one step
oxidation of the precursors (abscisic aldehyde, aldehyde,
or benzaldehyde) to the corresponding acid that had 8
genes contributing to the enrichment score. The involve-
ment of this pathway in kernel color is unknown, but the
yellow pigment of corn kernels are carotenoids and absci-
sic acid is biosynthesized from C40 carotenoid precursors.
The expected pathway, PWY-6475-1, has 9 sequential re-
actions that begin with two molecules of geranylgeranyl
diphosphate, which are condensed by phytoene synthase
to phytoene, the first committed step of carotenoid bio-
synthesis. Based on the ranks of the effect values, there
were three of seven genes that contributed the most to the
enrichment score. The genes and their MaizeCyc enzyme
annotations were : GRMZM2G300348 (PSY1, phytoene
synthase), GRMZM2G108457 (carotenoid isomerase 1),
and GRMZM2G454952 (ZDS, zeta-carotene desaturase).
These three genes were unique to PWY-6475-1, that is
their reactions were not mapped to any other MaizeCyc
pathway. Further, PSY1, which confers yellow color to
endosperm, has been shown to be essential for carotenoid
biosynthesis [23]. Therefore, the test results appeared to
support the validity of our GWAS to pathways analysis.

Most significant pathways
Figure 2 summarizes the steps in the GWAS to path-
ways pipeline for grain aflatoxin levels and includes
data inputs for each tool and their outcomes. Of the
25,404 gene associations found, 2880 of the genes
mapped to the 298 MaizeCyc pathways that had five or
more genes. Of these, 17 pathways (containing 243
genes) had enrichment scores better than FDR < 0.2
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(Table 1). Graphs of two pathways for the biosynthesis
of plant hormones illustrate how the values of the run-
ning enrichment score changed with gene rank (Fig. 3).
The jasmonic acid biosynthesis pathway (PWY-735,
Fig. 3a) had a high enrichment score (0.54) because the
genes in the pathway (denoted by the hash marks along
the top of the graph) were among the topmost ranks
and thus increased the value of the enrichment score.
This contrasted with the ethylene biosynthesis pathway
(ETHYL-PWY, Fig. 3b), which had a lower enrichment
score (0.15) and fewer genes in the topmost ranks.

After normalization of the enrichment score, PWY-735
and ETHYL-PWY were ranked number 1 and 153 out
of 298, respectively.
The normalized enrichment score, p, q, and gene count

for the 17 top ranking pathways (FDR < 0.2) are listed in
Table 1. A summary of the gene identifiers belonging to
these pathways with their tagSNPs, association statistics,
and alleles are provided (Additional file 4: Table S1). The
jasmonic acid (JA) biosynthesis pathway (PWY-735) was
by far the most significant (p = 2.63E-6, FDR = 0.001). JA
is a cyclopentanone oxylipin biosynthesized through the

Fig. 1 Decision tree to find the tagSNP and gene for the GWAS results based on linkage disequilibrium values. The tagSNP is at the terminal branch of
the tree, SNP1 is the reference SNP, SNP2 Block is a block of SNPs linked to SNP1 (R2 > 0.8), and SNP2 is a found SNP within the SNP2 Block based on the
decisions made by the algorithm. The values of the association effect and significance (p) were obtained from the GWAS. Once a tagSNP was identified,
it was assumed that the gene(s) causing the association was within 1 Kb
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allene oxide synthase (AOS) branch of the lipoxygenase
(LOX) pathway [24]. Our results indicate that the allelic
variation found among the genes involved in the biosyn-
thesis of JA were critical for determining the level of
resistance to aflatoxin contamination in kernels.

JA signaling has known roles for increasing resistance
to necrotrophic pathogens [25]. Plant-derived oxylipins
like 13S-hydroperoxyoctadecadienoic acid (13S-HPODE)
and 9S-HPODE are known to mimic fungal oxylipins
[26] and induce increased conidiation and increased

Fig. 2 Analysis pipeline that coupled the GWAS, linkage disequilibrium, and pathway analyses. The outcome or size of the data set following each step
is indicated. Assoc, association; LD, linkage disequilibrium; Q + K, genetic marker-based kinship matrix plus population structure files for the mixed linear
model analysis implemented by TASSEL; PW, pathways

Table 1 Summary of the gene-set enrichment analysis for pathways with FDR < 0.2

MaizeCyc ID PW Name NES p q Genesa

PWY-735 jasmonic acid biosynthesis 4.55 2.63E-6 0.001 28

PWY-6124 inosine-5′-phosphate biosynthesis II 3.18 0.0007 0.109 8

PWY-5136 fatty acid β-oxidation II (core pathway) 2.85 0.0022 0.163 25

ARGASEDEG-PWY arginine degradation I (arginase pathway) 2.79 0.0026 0.163 14

FOLSYN-PWY-1 superpathway of tetrahydrofolate biosynthesis 2.68 0.0037 0.163 15

PWY-3001 isoleucine biosynthesis I 2.64 0.0041 0.163 65

SULFATE-CYS-PWY superpathway of sulfate assimilation and cysteine biosynthesis 2.61 0.0046 0.163 24

BRANCHED-CHAIN-AA-SYN-PWY superpathway of leucine, valine, and isoleucine biosynthesis 2.55 0.0054 0.163 38

PWY-5409 divinyl ether biosynthesis II 2.53 0.0056 0.163 7

PWY-6435 4-hydroxybenzoate biosynthesis V 2.53 0.0057 0.163 20

PWY-3461 tyrosine biosynthesis II 2.50 0.0063 0.163 7

PWY-561 superpathway of glyoxylate cycle 2.46 0.0069 0.163 59

PWY-6040 chlorogenic acid biosynthesis II 2.43 0.0076 0.163 5

PWY-4221-1 superpathway of pantothenate and coenzyme A biosynthesis II 2.43 0.0076 0.163 43

THRESYN-PWY threonine biosynthesis 2.40 0.0083 0.165 41

LEUSYN-PWY leucine biosynthesis 2.37 0.0090 0.167 21

PWY-5481 pyruvate fermentation to lactate 2.33 0.0098 0.172 8

ID identifier, PW pathway, NES normalized enrichment score
aThe number of genes that were mapped to a pathway and contributed to the enrichment score calculation
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production of aflatoxin when applied to cultures of As-
pergillus species [27, 28]. Although our analysis did not
examine how the allelic variation affected kernel levels of
JA, fatty acid precursors, or other 9- and 13-LOX deriva-
tives, it is conceivable that resistance was correlated with
changes in flux to the various branches of the LOX path-
way that favored JA biosynthesis over other oxylipins.
Increases in foliar levels of JA have also been associ-

ated with defense against herbivores. In a comparison of
herbivore-resistant (Mp708) and susceptible (Tx601)
lines of maize, higher foliar levels of JA and the cyclopen-
tenone intermediate, 12-oxophytodienoate, were found in
the resistant line with levels increasing after exposure to
fall armyworm larvae [29]. Maize is similar to other plants
in that exogenous application of JA to leaves induced the
accumulation of defense-related compounds like phyto-
alexins, mimicking the accumulation observed after fungal
inoculation or wounding [30]. In addition, the timing
of the increase in endogenous JA levels after damage
and fungal inoculation have supported a role for the JA
signaling pathway in initiating localized plant defense
mechanisms [30].
PWY-735 had 28 genes contributing to the calculation

of the enrichment score in 11 reaction types. The first
reaction (EC 1.13.11.12) is the oxidation of the fatty
acid, α-linolenate to form 13S-HPODE by LOX. Step 2
(EC 4.2.1.92) forms the epoxide, 12,13-epoxylinolenate.
This reaction is unique to PWY-735 and can be cata-
lyzed by hydroperoxide dehydratase (HD), AOS, and
cytochrome P450 (CYP450). The epoxide, being un-
stable, undergoes cyclization by allene oxide cyclase
(AOC, EC 5.3.99.6) to produce the cyclopentenone

intermediate 12-oxophytodienoate (step 3). Reduction
in step 4 by 12-oxophytodienoate reductase (OPR, EC
1.3.1.42) is followed by addition of Coenzyme A (step
5) and three rounds of β-oxidation (steps 6–9, re-
peated three times) to produce jasmonyl-CoA. Step 6
is a dehydrogenation reaction (EC 1.3.3.6) catalyzed by
acyl-CoA oxidase (ACO), acyl-CoA dehydrogenase
(ACAD), and dodecenyl-CoA isomerase (DCAI) that
produces the corresponding trans enoyl-CoA. In step
7 (EC 4.2.1.17: enoyl-CoA hydratase, ECH; enoyl-CoA
hydratase2, ECH2; and 3-hydroxybutyryl-CoA dehydro-
genase, BUDH), water is added to the enoyl group, and in
step 8 (EC 1.1.1.35: enoyl-CoA hydratase2, ECH2; and
3-hydroxyacyl-CoA-dehydrogenase, HAD), dehydrogen-
ation converts the hydroxyacyl-CoA to the keto-acyl-CoA.
Thiolytic cleavage in step 9 (EC 2.3.1.16: acetyl-CoA
C-acyltransferase, ACAA) forms an acyl-CoA that is
two carbons shorter. Hydrolysis removes the Coenzyme A
moiety (step 10), and a configuration change at one of the
two stereocenters (step 11) ends the pathway with the for-
mation of the prohormone (−)-jasmonate. The reactions
lacking evidence in maize are catalyzed by EC 6.2.1 in step
5 (acid thiol ligase), EC 3.1.2.20 in step 10 (acyl-CoA
hydrolase), and the conformation change in step 11.

Most significant pathway genes
For each of the nine reaction types of PWY-735 with evi-
dence in maize, there was at least one gene that had an
associated tagSNP with a negative effect value for de-
creasing aflatoxin contamination (Fig. 4). Thus, there
was at least one allelic variant for each of these nine
steps in the JA biosynthesis pathway that conferred an
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Fig. 3 Graphs of the running enrichment score calculation for (a) PWY-735 (JA biosynthesis pathway) and (b) ETHYL-PWY (ethylene biosynthesis pathway).
Genes were ranked in ascending order by their effect scores. Hash marks at the top of the graph denote the ranks of genes in the pathway. The pathway
enrichment score coincided with the maximum running enrichment score and is marked by the dashed vertical line
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incremental decrease to levels of aflatoxin observed
among the association panel. Genes that contributed the
most to the enrichment score (p < 0.1 and effect < −0.1
and marked with a double asterisk in Fig. 4) appear in
Table 2. They were mapped to steps 1, 2, and 6–9 (fatty
acid β-oxidation). Genes for all three LOXs (LOX1,
LOX8, and LOX13), HD (unique to PWY-735), and ACAA
all fell within previously described QTL for resistance to af-
latoxin contamination in maize [5, 31]. Interestingly, the
gene for HD fell within a cluster with ECH2 and LOX10
on chromosome 4 (Fig. 4). A suspected gene cluster in
this region was reported by Mideros et al. [5], whose
meta-analysis of several previous QTL mapping studies
found 12 independent QTLs, 7 in bins 4.07–4.08 and 5

in bin 4.09, with the largest-effect QTL in bin 4.08.
ACAA was common to three other pathways (PYW-
5136, fatty acid β-oxidation II; PWY-561, superpathway
of glyoxylate cycle; and PWY-6435, 4-hydroxybenzoate
biosynthesis V).
Functional analysis of heterologously expressed LOX1

from maize showed that it is a non-traditional LOX exhi-
biting both 9- and 13-LOX activities [32]. In maize seed-
lings, LOX1 gene expression is induced by wounding and
exogenous application of methyl jasmonate [32]. When
gene expression levels of LOX1, LOX3, and AOS1 were
quantified in Mp708 compared to Tx601, all three exhib-
ited constitutively higher expression levels in the resistant
line compared to the susceptible line before and after 24 h

Fig. 4 Relative positions of the genes in PWY-735 on the maize chromosomes. Thick vertical lines depict chromosomes 1–10 (left to right). Genes with
notations were associated with a tagSNP and contributed to the enrichment score calculation. Notations: *gene had a negative effect value, **gene
had p < 0.1 and effect < −0.1, † gene had a positive effect value. Numbers to the left of the chromosome refer to the pathway step catalyzed. Genes
that lacked notations did not contribute to the enrichment score because they lacked polymorphisms among the lines in the association panel
or lacked sequenced reads from the region. See text for abbreviations of gene function and EC number of the reaction catalyzed

Table 2 Annotation and QTL evidence for genes from the JA biosynthesis pathway with the most significant associations and greatest
effectsa on lowering aflatoxin accumulation

tagSNP p Rb Effect Gene Identifier MaizeCyc Annotation Stepc Bin QTLd

S1_188114572 0.059 0.01 –0.23 GRMZM5G822593 lipoxygenase13 1 1.06 mqtl1_5 mqtl1_6

S2_45193435 0.047 0.01 –0.24 GRMZM2G104843 lipoxygenase8 1 2.04 mqtl2_2

S3_168834972 0.076 0.03 –0.36 GRMZM2G156861 lipoxygenase1 1 3.05 mqtl3_3

S4_230398767 0.007 0.02 –0.37 GRMZM2G168404 hydroperoxide dehydratase 2 4.09 mqtl4_8

S5_31133128 0.002 0.04 –0.60 GRMZM2G110201 acetyl-CoA C-acyltransferase 9 5.03 Mp715

S6_124147817 0.065 0.01 –0.15 GRMZM2G002959 acyl-CoA dehydrogenase 6 6.05 None

S6_138501372 0.062 0.02 –0.20 GRMZM2G117357 enoyl-CoA hydratase 7 6.05 None

S8_171705472 0.047 0.03 –0.27 GRMZM2G106250 3-hydroxyacyl-CoA dehydrogenase 8 8.08 None
aSubset had association p < 0.1 and effect < −0.1
bProportion of the phenotypic variation accounted for by the tagSNP
c Pathway step described in the text
dData for QTL (resistant parent listed) and meta-QTL (mqtl) for resistance to Aspergillus species were compiled from Mideros et al. Supplementary Table 8 [5] and
Warburton and Williams [31]. TagSNP was in or within 2 Mb of QTL
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of feeding by fall armyworm, but relative fold changes were
about an order of magnitude higher for LOX1 [29]. Other
studies have demonstrated that chloroplast-localized LOX1
[32] and LOX8 [33] are responsible for wound-induced JA
production in maize leaves. LOX13 has no known func-
tional role, but shares highest sequence homology with
LOX10 [33], a 13-LOX that provides precursors for the
production of the green leaf volatiles (hydroperoxide lyase
branch of the LOX pathway), as well as semiochemicals
that recruit predators and parasites to the wounded area.
In addition, LOX10 mediates JA production by LOX8
because LOX8 is dependent upon signaling from LOX10-
derived oxylipins [33].
Even though the remaining pathways in Table 1 had

FDR values between 0.1 and 0.2, several could be associ-
ated with decreasing levels of aflatoxin because of their
relationships with JA. Among the biologically active
forms of JA, JA-isoleucine is the most potent signaling
form [34, 35]. This may explain why we detected PWY-
3001 (isoleucine biosynthesis I), BRANCHED CHAIN-AA-
SYN-PWY (superpathway of leucine, valine, and isoleucine
biosynthesis), and THRESYN-PWY (threonine biosynthesis
pathway). The first two pathways produce isoleucine, and
the third produces threonine, a precursor for isoleucine
biosynthesis.
Detection of PWY-5409 (biosynthesis of divinyl ethers II)

in Table 1 may have occurred because divinyl ethers are
oxylipin secondary metabolites, biosynthesized through the
divinyl ether synthase branch of the LOX pathway [24]. In
potato, divinyl ethers inhibit growth of the fungal pathogen,

Phytophthora infestans, and accumulate more in resistant
than susceptible cultivars [36].
Another compound involved in defense is glutathione,

a potent antioxidant that is induced by JA in response to
oxidative stress [37]. Glutathione can also influence basal
levels of JA gene expression and JA signaling strength
[38]. These roles may explain the associations of two path-
ways that provide precursors for glutathione production,
the ARGASEDEG-PWY, which produces glutamate, and
the SULFATE-CYS-PWY, a superpathway for sulfate as-
similation and cysteine biosynthesis (Table 1).
Other pathways that had possible associations because

of their roles in plant defense are PWY-6435 (4-hydroxy-
benzoate biosynthesis V) and PWY-6040 (chlorogenic
acid biosynthesis II) (Table 1). Both are phenylpropanoid
derivatives found in plant cell walls. The phenolic acid,
4-hydroxybenzoate, accumulates along with other aromatic
compounds after pathogen infection [39, 40]. Levels of
chlorogenic acid (5-O-caffeoylquinic acid), one of the most
important antimicrobials found in cell walls, can be consti-
tutively isolated from resistant cultivars or induced by patho-
gen infection depending upon the plant species [41, 42].

Individual genes with significant effects on aflatoxin
resistance
After applying the sequential filters, 13 genes were found
flanking 25 SNPs that had the greatest associations in mul-
tiple environments for lowering aflatoxin levels. All but
two had annotations and six were located in previously de-
scribed QTL (Table 3). The annotations (from Arabidopsis

Table 3 Annotation and QTL evidence for individual genes with the most consistent associations for lowering aflatoxin resistancea

Marker p Rb Effect Geneid TAIR Annotationc Bin QTLd

S1_45772203 0.0051 0.07 –0.69 GRMZM2G135359 LRRPK family protein 1.03 mqtl1_3

S2_23556305 0.0009 0.10 –0.77 GRMZM2G078279 expansin B3 2.03 mqtl2_1

S2_37133737 0.0001 0.07 –0.57 GRMZM2G057637 None 2.04 None

S3_23493748 0.0017 0.06 –0.83 GRMZM2G041352 endonuclease 2 3.04 mqtl3_2

S4_238436842 0.0009 0.07 –0.61 GRMZM2G174481 NAD(P)-OR superfamily protein 4.10 mqtl4_9

S5_193538196 0.0004 0.09 –0.76 GRMZM2G165601 None 5.05 None

S5_213916936 0.0061 0.07 –0.75 GRMZM2G469142 AlgP 5.08 mqtl5_6

S6_5158838 0.0023 0.08 –0.54 GRMZM2G125081 LRRPK family protein 6.00 None

S6_5158838 0.0023 0.08 –0.54 GRMZM2G125138 glycine-rich protein 6.00 None

S6_161709273 0.0040 0.07 –0.82 GRMZM2G121208 RTE1 6.06 mqtl6_8

S9_154403351 0.0002 0.08 –0.62 GRMZM2G092741 AP-2, α subunit 9.07 None

S9_154245175 0.0042 0.06 –0.68 GRMZM2G303312 ECT4 9.07 None

S10_2433643 0.0003 0.08 –0.61 GRMZM2G151903 MATE efflux family protein 10.00 None
aTwo sequential filters applied. Filter 1 = p < 0.01, effect < −0.2, and R2 > 0.04. Filter 2 = R2 > 0.06 and effect < −0.5
bProportion of the phenotypic variation accounted for by the tagSNP
cAbbreviations: TAIR, The Arabidopsis Information Resource; LRRPK, leucine-rich repeat protein kinase; NAD(P)-OR, NAD(P)-linked oxidoreductase; AlgP, alginate
regulatory protein; RTE1, reversion-to-ethylene sensitivity1; AP, adaptor protein complex; ECT4, evolutionarily conserved C-terminal region 4; MATE, multidrug and
toxic compound extrusion. The AlgP annotation was from rice
dData for QTL (resistant parent listed) and meta-QTL (mqtl) number for resistance to Aspergillus species were compiled from Mideros et al. Supplementary Table 8
[5]and Warburton and Williams [31]. TagSNP was either in or within 2 Mb of QTL
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thaliana gene orthologs) related to defense were leucine-
rich repeat protein kinase (LRRPK), expansin B3 (EXPB3),
reversion-to-ethylene sensitivity1 (RTE1), the α-subunit of
the adaptor protein complex2 (AP-2), and a multidrug and
toxic compound extrusion protein (MATE).
LRRPKs comprise the largest sub-family of receptor-

like kinases. Despite their abundance, only a handful
have been studied in depth with diverse signaling roles
related to development and pathogen recognition in host
defense [43]. The expression of a gene for EXPB3 was
one of several genes down-regulated by cyclopentenones
and involved in cell wall remodeling [44]. Cyclopente-
nones (e.g. 12-oxophytodienoate and phytoprostanes)
like the cyclopentanone JA are potent signaling com-
pounds that accumulate in response to wounding and
pathogen infection [45]. RTE1 is a negative regulator of
ethylene signaling found to interact with at least one of
the ethylene-responsive receptors [46]. AP-2 binds cargo
into clathrin-coated pits during endocytosis, an essential
process cells use to internalize nutrients, communicate
with the exterior, recycle plasma membrane, and mediate
plant-microbe interactions [47]. The antiporter activity of
MATE family proteins have known roles for moving xeno-
biotics, cations, organic acids, and secondary metabolites
out of the cytoplasm to the exterior or into vacuoles [48].

Conclusions
Although resistance to aflatoxin accumulation in maize
kernels is a quantitative trait with high genotype x envir-
onment variability, we were able to apply GWAS data to
a pathway-based approach, which groups genes based on
their shared biological function, to find genetic differ-
ences that distinguish resistant and susceptible lines of
maize. Most notably, we determined that the allelic vari-
ation found among the genes involved in the biosynthesis
of JA were highly associated with the levels of aflatoxin ob-
served among the panel of 287 inbred lines examined.
Moreover, we detected at least one allelic variant for each
of the nine reaction types in the JA biosynthesis pathway
that conferred an incremental decrease to the overall levels
of aflatoxin observed. We were also able to identify non-
pathway genes with putative defense-related functions in
our second approach, which used a conventional GWAS
analysis, but emphasized SNP-trait associations that con-
sistently lowered aflatoxin levels in multiple environments.
Knowledge gained from these two complementary analyses
has improved our understanding of population differences
in aflatoxin resistance and, following additional verification,
will provide markers for host plant improvement by intro-
gression. To this end, the candidate gene method of asso-
ciation analysis and the construction of near isogenic,
transgenic, or mutant plants will be employed to validate
the more important alleles identified and how they affect
aflatoxin accumulation.

Methods
GWAS
An association mapping panel of 287 maize inbred lines
with varying levels of resistance to aflatoxin accumulation
was assembled and characterized by Warburton et al. [4].
Following GBS [49], GWAS was performed and reported
in Warburton et al. [4, 11]. Briefly, testcrosses of the plants
were deployed in a randomized complete block design
with three replications in seven different environments
spread over Texas and Mississippi in 2009 and 2010. Ears
were inoculated with Aspergillus flavus (strain NRRL
3357) using the side-needle technique [50] seven days
after half of the primary ears showed silk. At harvest, the
dried and ground grain (50 g samples) was phenotyped for
aflatoxin content (measured in ng/g) using the Vicam
AflaTest (VICAM, Watertown, MA). The least squared
means of the natural log transformed values of aflatoxin
from each environment and the average over environ-
ments were calculated. Analysis of the SNP-trait associa-
tions in terms of their significance (p), correlation (R2 or
proportion of the phenotypic variation accounted for), and
effect values were performed with a mixed linear model
approach implemented by TASSEL [51] with a minor al-
lele frequency setting > 0.05. Effect values could be positive
or negative and indicated the relative amount that a SNP
increased or decreased aflatoxin levels, respectively.
TASSEL also calculated linkage disequilibrium (D’, R2,
and p) [52] between each marker SNP (denoted as the
reference SNP) and its closest neighboring SNPs (50 up-
stream and 50 downstream). Since both SNP-trait asso-
ciations and linkage disequilibrium have R2 and p values
that were used at different times in the analyses, this
text will state the context to avoid confusion.

SNP to gene algorithm for the pathway analysis
The goal of the SNP to gene algorithm was to identify
the tagSNP from SNP linkage groups and then deter-
mine if there was one (or more) nearby gene(s), presum-
ably causing the association. The tagSNP served two
main purposes: 1) by accounting for linkage, it reduced
the dimensionality of the dataset, and 2) it assigned the
SNP-trait association with the largest |effect| to the gene
along with other attributes including R2 and p.
The threshold for linkage was determined from a plot of

linkage disequilibrium values, —log(p) against R2. The de-
cisions implemented by the algorithm were based on: 1)
linkage type (no linkage versus linked to one or more
SNPs in a block), 2) the majority sign (positive or negative)
of the SNP-trait association effects in the linkage block
versus the effect and association p values for the reference
SNP, and 3) distance between linked SNPs. Once a tagSNP
was identified, the search window for the causative gene
was set to ± 1 Kb, which was based on a histogram of dis-
tances between linked SNPs. The association effect and p
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values of the tagSNP were then assigned to the identified
gene. The linkage threshold determination and gene search
window were taken from plots made for chromosome 1,
which appeared to be typical for all 10 chromosomes.

Pathways
For the pathway analysis, the SNP to gene algorithm was
run with associations for the phenotype from the average
environment only. Gene-set enrichment calculations were
performed according to Subramanian et al. [18]. Genes
were grouped into pathways as outlined by MaizeCyc v2.1
[53]. Only pathways with five or more genes (298 pathways
total) were considered to reduce bias from small sample
size. A pathway in MaizeCyc could also be a superpathway,
which is composed of multiple individual pathways and
may have reactions of its own. Genes were ranked by their
effects (negative to positive), and a running sum statistic
was calculated that increased or decreased if genes were or
were not, respectively, in the pathway. The amount of in-
crease was the fraction of genes in the pathway weighted
by the |effect|, while the amount of decrease was the frac-
tion of genes not in the pathway. This procedure is similar
to calculating a weighted Kolmogorov-Smirnov statistic.
The enrichment score (ES) for the pathway was the
maximum deviation from zero. The significance of a
pathway was determined by taking 1000 permutations
of the gene effect values to generate a null distribution
for the ES. The null distribution mean (μ), and standard
deviation (σ) served to normalize the ES for the pathway,
(X-μ)/σ, and pathway p values were computed using the
pnorm function in R [54]. The values of p were then cor-
rected for FDR as calculated by the QVALUE package in
R [55]. Genes that contributed the most to the enrichment
scores of pathways with FDR < 0.2 were filtered based on
thresholds set for gene association and effect values.

Identifying individual genes with significant effects on
aflatoxin resistance
A second separate, but complementary objective was to
identify non-pathway genes that were (1) within 1 Kb of
SNP-trait associations whose significance exceeded a
minimum threshold (p), (2) acted consistently to lower
aflatoxin levels (negative effect value), where effects re-
curred in multiple environments, and (3) exceeded a
minimum threshold set for the fraction of the pheno-
typic variation accounted for (R2). To implement these
criteria, SNP-trait associations from all seven environ-
ments plus the average (eight total) were subjected to two
sequential filtering steps. The first filter retained SNPs
if p < 0.01, effect < −0.2, and R2 > 0.04, with the three
criteria being met in a minimum of three environ-
ments; the second filter further reduced the list by
keeping only those associations with R2 > 0.06 and ef-
fect < −0.5. The causative gene was then assumed to

be within 1 Kb of the SNP. When there were several
SNPs close to the same gene, the SNP with the low-
est p was assigned to the gene for this analysis. Infor-
mation regarding tagSNPs, linkage disequilibrium, and
pathways were not considered in this analysis.

Data sources and analysis tools
The Zea mays reference sequence (B73 RefGen v2 assem-
bly), canonical gene coordinates (ZmB73_5b_FGS_info.txt),
and gene functional annotations (ZmB73_5a_gene_descrip-
tors.txt) were obtained from MaizeSequence.org. The SNP
marker data (AllZeaGBSv27_imputed posted on December
18, 2013) [22] was downloaded from the Panzea website
(www.panzea.org/lit/data_sets.html). Orthologous gene
information for rice and A. thaliana (Zmays_181_an-
notation_info.txt) was retrieved from phytozome.org.
The MaizeCyc v2.1 pathway genome database [53] was
accessed from www.maizegdb.org. Unless otherwise
specified, scripts to perform analyses were written in
Perl 5 v16 (www.perl.org). Graphing and statistical ana-
lyses were done in R v3.0.2 [54].
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Additional file 1: Figure S1. A plot of the chromosome 1 linkage
disequilibrium values, −log(p) against R2, showed that the most
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was chosen as the threshold to define SNP linkage. Points were binned
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