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Abstract

While grid cells in the medial entorhinal cortex (MEC) of rodents have multiple, regularly

arranged firing fields, place cells in the cornu ammonis (CA) regions of the hippocampus

mostly have single spatial firing fields. Since there are extensive projections from MEC to

the CA regions, many models have suggested that a feedforward network can transform

grid cell firing into robust place cell firing. However, these models generate place fields that

are consistently too small compared to those recorded in experiments. Here, we argue that

it is implausible that grid cell activity alone can be transformed into place cells with robust

place fields of realistic size in a feedforward network. We propose two solutions to this prob-

lem. Firstly, weakly spatially modulated cells, which are abundant throughout EC, provide

input to downstream place cells along with grid cells. This simple model reproduces many

place cell characteristics as well as results from lesion studies. Secondly, the recurrent con-

nections between place cells in the CA3 network generate robust and realistic place fields.

Both mechanisms could work in parallel in the hippocampal formation and this redundancy

might account for the robustness of place cell responses to a range of disruptions of the hip-

pocampal circuitry.

Introduction

Place cells in the CA regions of the hippocampus [1] and grid cells in the medial entorhinal

cortex (MEC) [2] are important components of the navigation system in mammals [3]. Place

cells fire spikes selectively when the animal passes through small regions of space, which are

called place fields. Whereas place cells have just one or a few place fields, grid cells fire spikes

in many fields that are arranged on a hexagonal grid.

Both cell types are similarly dependent on landmarks and boundaries of the environment.

They exhibit stable firing patterns during repeated visits to the same environment [4], are

robust to the removal of some environmental cues [2, 5], mostly preserve their firing maps in

darkness [6, 7], rotate their spatial firing maps in concert with displaced landmarks [2, 8],

rescale the size of the place fields when the environment is expanded [9, 10], and remap their
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representations simultaneously [11, 12]. Moreover, the field sizes of both cell types increase

along the dorsoventral axis [11, 13], consistent with topographic projections from EC to the

hippocampus along the same axis [14].

Consequently, it has been suggested that grid cells are responsible for driving place cell

activity [15–20] Theoretical models have shown that it is indeed possible to create place cells

from grid cells in a simple feedforward network by competitive learning [17, 21], through

competitive activation [22], by Fourier transformation [18], by assigning weights in a specific

manner [23], by Hebbian learning [24], by independent component analysis [20] or by apply-

ing linear regression [19].

However, recent experimental findings call into question the plausibility of such a simple

relationship. Stable place cells were found in the hippocampus, even when the periodic firing

map of grid cells were disrupted by medial septum inactivation [25, 26]. During development,

mature place cells emerge before mature grid cells do [27, 28]. When two sets of cues are

rotated in different directions, cells in the MEC follow global cues and place cells local cues

[29, 30]. Although we showed previously that some of these issues could be accounted for by

robustness of the grid-to-places transformation [31], we find here that all current models suffer

from another issue that has received little attention so far: unrealistically small place field size.

Extant models produce average place field sizes ranging from about 300–627cm2 (Table 1)

or the resulting place fields are highly sensitive to noise [23]. The average place field sizes in

the robust models correspond roughly to the small place fields of granule cells in the rat den-

tate gyrus [33]. However, in the CA regions, place fields are significantly larger. Place cells in

the dorsal CA regions have fields size of around 1225cm2 in CA3 and 1775cm2 in CA1 [34].

Moreover, place fields as large as 5000cm2 have been reported for dorsal cells in both regions.

Here we first use a general feedforward model to show that the problem arises from the

structure of the spatial autocorrelation of grid cells and hence cannot be avoided by tuning

parameters in the specific models. We then propose two alternative models that can produce

realistic place fields. First, a feedforward network that receives inputs from grid cells and

weakly spatially modulated cells, which appear to be abundant in the entorhinal cortex (EC).

In the medial EC (MEC), there are boundary cells [35, 36], head direction cells [37], irregular

spatial cells or nonspatial cells [38]. In the lateral EC (LEC), cells are receptive to individual

items such as odours [39] or objects [40–43] and hence they express only little spatial specific-

ity in object-poor environments [44, 45]. Second, a network with recurrently connected CA3

neurons that each receives narrowly tuned spatial drive (from grid cells). Since neurons recur-

rently excite other neurons that receive spatial inputs at a more distant location, the place field

of a given CA3 cell will appear larger than the extent of the external spatial input. The two

models might represent redundant mechanisms for generating place cells in the hippocampal

formation. This redundancy could account for the observed robustness of place cell responses

to experimental disruptions of the hippocampal circuitry.

Table 1. Comparison of place field sizes and numbers in selected studies.

Study Field Size Number Reference

Model (competitive learning) 350cm2 1.2 [21]

Model (competitive activation) 627cm2 1.5 [22]

Model (random weights; CA3) 290cm2 1.1 [32]

Model (predefined weights) < 420cm2 1 [31]

Measurement DG < 120cm2 1-4 [33]

Measurement dorsal CA3 1275cm2 1.5 [34]

Measurement dorsal CA1 1725cm2 1.4 [34]

https://doi.org/10.1371/journal.pone.0181618.t001
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Materials and methods

All calculations were performed in a 2 × 1m rectangular environment, which is discretized

into 80 × 40 = 3200 location bins.

Model of inputs to place cells

Grid cell activity. The grid cell parameters in our model were chosen to match experi-

mental data from [46] because that study recorded from the dorsal 50% of the MEC and this

area probably covers all MEC inputs to a typical dorsal CA3 cell due to the topography of these

projections [14, 47, 48]. The grid cell population is divided into four modules [46]. Cells in the

same module have similar grid spacings and orientations, which were drawn from normal dis-

tributions (Fig 1A–1C). The grid spacings si in the four modules have a mean of 38.8, 48.4, 65

and 98.4 cm and a common standard deviation of 8 cm. Most grid cells (87%) belong to the

two modules with small spacings (see Fig 1C) [46]. The orientations have means of 15, 30, 45

and 60 degrees and a standard deviation of 3 degree. The grid offset is chosen randomly from

a uniform distribution.

As in previous models [24, 49, 50], the activity of each grid cell consists of multiple firing

fields that are arranged in a hexagonal grid. The activation pi of grid cell i at location r = (x, y)

is determined by

piðrÞ ¼ Aij exp � lnð5Þ
dðrÞ

si

� �2
" #

; ð1Þ

where d is the Euclidean distance to the nearest field center j and σi is the radius of the firing

field. Each field has the same size, which is related to the grid spacing via σi = 0.32si (see Fig

S4G in [2]). The grid cell activations are defined such that the activation reaches the peak firing

rate Aij in the center and 1/5Aij at the border of a field, which is motivated by the definition of

a place field [2]. The peak firing rates Aij are drawn from a normal distribution with mean 1

and standard deviation 0.1.

Weakly spatially modulated cells. The rate map of an EC cell that is not a grid cell is cre-

ated by assigning each location a random activation, drawn from a uniform distribution

between 1 and 0. The map is then smoothed with an isotropic Gaussian kernel. The standard

deviation of the smoothing kernel σN varies from 1 to 16 cm. Firing rates are then normalized

such that they are between zero and one. Examples of rate maps produced by different kernel

widths are shown in Fig 1D. As the default, we chose σN = 6 cm, which matches roughly the

spatial information of cells in rat LEC [44, 45] (see Fig 1E). However, we analyse the effects of

using other kernel widths, too. Note that we do not claim that weakly spatially modulated cells

respond to the spatial location of the animal per se, instead we think it likely that these cells

respond to other stimuli that happen to be located in a particular spatial location. For some

cells, such as border cells [35], these stimuli are known, but for many other EC cells the pre-

ferred stimuli remain unknown.

Models of place field generation

To explore how place fields with realistic place field sizes could be generated in CA3, we use

three different network models. First, a general feedforward network with grid cell input only.

Second, a feedforward network driven with a mixture of inputs from grid cells and weakly spa-

tially modulated cells. Third, a recurrent network driven with inputs from grid cells.

General feedforward network. We adopt a generic feedforward network driven by inputs

from grid cells to investigate the issue of generating realistic place fields, in principle, The
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Fig 1. Model setup. A: Rate maps of four grid cell examples, one out of each module. B-C: Distribution of grid spacings (B) and orientations (C) in

the grid cell population. Colours indicate grid module. D: Examples of weakly spatially modulated cells created with different kernel sizes (shown on

the left). The numbers above each panel indicate the spatial information of the rate map. E: Distribution of spatial information for different kernel

sizes. Black line shows the observed distribution in the rat LEC [44]. F: Overview of the modelled subregions. Black lines indicate connections that

are fixed and used only during the learning of the grid to place transformation. Learning occurs in the plastic connections indicated by the red line.

Only these connections drive CA3 activity once learning is complete. Rate maps illustrate the mixture of the input: 1/6 consists of grid cells and 5/6

of weakly spatially modulated cells.

https://doi.org/10.1371/journal.pone.0181618.g001
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network consists of an input layer containing grid cells and an output layer containing pur-

ported place cells. We denote the population vector (PV) of grid cell activity at location r as

p(r). Each output cell i is activated by grid cell inputs weighted by the vector wi.

hiðrÞ ¼ wT
i pðrÞ ð2Þ

Monotonic activation function f(hi) is applied to determine where the output cell fires

spikes. Suppose we want cell i to have a large place field at location ri with radius Ri, i.e., the

neuron should fire spikes when the animal is located inside the field and not elsewhere. Since

the activation function f is monotonic, the activation hi(r) must be higher than some threshold

c within the field and lower than the threshold outside it.

wT
i pðrÞ � c 8r : jjr � rijj � Ri ð3Þ

wT
i pðrÞ < c 8r : jjr � rijj > Ri: ð4Þ

Up to here, the model is general and subsumes several previous models [17–19, 21, 22,

24, 31]. Specific models differ only in the activation function, the way the weights are set up

and in the choice of the threshold c.

The problem of finding the weight vector and threshold can be regarded as a classification

problem. That is, the PVs have to be classified into two classes: PVs at locations within the

place field, and PVs located outside the place field. Support vector machines are efficient algo-

rithms for solving such problems. This classifier does not only find a solution when it exists,

but also returns the solution that is most robust, in the sense that the margin to the threshold c
is maximal (see for example [51], chapter 4.5.2]). We use the LinearSVC implementation of

the python package sklearn [52] to find the weight vector and threshold for circular place fields

with a radius of 10cm, 25cm and 35cm.

Feedforward network with inputs from grid cells and weakly modulated cells. We

adopt a reduced version of the hippocampal circuit model described in detail previously in

[50] to study the transformation from grid cells to place cells in a feedforward network. Briefly,

our model consists of the EC, DG and CA3 (Fig 1F) with parameters that are based on the rat

hippocampus. Cell numbers are 1100, 12000 and 2500 respectively. Each DG cell receives

input from 352 EC cells and each CA3 cell from 7 DG cells and 352 EC cells. The sparsity, i.e.,

the proportion of cells simultaneously active at a given time and location, is 0.0078 in the DG

and 0.032 in CA3. Note that these numbers are necessarily lower than the fraction of cells that

have place fields anywhere in the environment.

In this model, the EC input to the hippocampus (DG and CA3) is provided by grid cells

and weakly spatially modulated cells. To study the role of grid cells and non-grid-cells in the

genesis of place cells, we perform simulations with different proportion of grid cell inputs,

from 0 to 1. Unless specified otherwise, the proportion is set to the default value of 1/6, thus

1100 � 1

6
¼ 183 cells are grid cells.

As the activation function f in CA3, we use a simple k-Winner-Take-All (WTA) mecha-

nism: After calculating the activations of all cells in the population of place cells, the k cells

with the highest activation are set to hi. The others are inhibited and set to 0. The number k is

determined by the sparsity a of that region, i.e k = aN. As a result, the effect of inhibitory cells,

even though not modelled explicitly, are nevertheless included in the network dynamics

[49, 50, 53–57].

The weights EC-DG-CA3 are random and kept fixed (black arrows in Fig 1F), so that the

DG functions as a pattern separator by mapping similar input pattern from EC onto distinct

output patterns in CA3. The EC-DG-CA3 pathway serves to drive CA3 activity during
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learning [58], so that the synaptic weights from EC to CA3 (red arrow in Fig 1F) can be learned

through Hebbian hetero-association by the Stinger rule [59]

wij ¼
X

r

½pjðrÞ � �pj�qiðrÞ; ð5Þ

where the summation runs over all locations r, pj(r) is the activity of the presynaptic cell j, �pj

its mean, and qi(r) is the activity of the postsynaptic cell i. After learning, activity in CA3 is

solely driven by the EC in order to determine whether the transformation from EC to CA3 is

able to create place cell firing. Thus, the DG does not contribute to retrieval as suggested previ-

ously [58]. Previous studies showed that either the post-synaptically gated plasticity [24] or a

k-winner-take-all mechanism [22] alone could generate place field response from grid cell

inputs. However, each single mechanism requires some degree of fine tuning. For instance, the

post-synaptically gated plasticity requires that the initial synaptic weights be just so, not so

strong that they induce the post-synaptic cell to be active everywhere and not so weak that the

post-synaptic cell is silent. In contrast, the competitive mechanism requires that synaptic

weights on postsynaptic cells are randomized. Including both features in our model relaxes

these constraints and makes the model more robust.

Recurrent model of CA3. A CA3 network that is driven by inputs from grid cells only,

might generate place fields of realistic size due to its recurrent dynamics. Our recurrent CA3

model consists of 2000 excitatory (s = E) and 500 inhibitory (s = I) integrate-and-fire neurons.

The dynamics of each neuron is governed by

dvs
i

dt
¼ �

vs
i

ts
cell
þ Ibias þ IsE

i � IsI
i þ Iext

i ; ð6Þ

where vs
i is the membrane potential of the i-th cell, τcell is the integration time constant of the

cell, and Ibias is a constant input current to each cell. An external input current is applied to

each cell to mimic spatially selective input with a small spread

Iext
i ðtÞ ¼

1
ffiffiffiffiffiffi
2p
p

sext

exp �
jri� rðtÞj

2

2s2
ext

� �

ð7Þ

The vector ri represents the randomly assigned center of the place field of the i-th cell, r(t)
is the location of the virtual animal at time t and σext = 4cm is the width of the spatially selective

external input. The synaptic input currents are defined as follows:

dIss0
i

dt
¼ �

Iss0
i

ts0
þ
X

j;k
Wss0

ij dðt � tjkÞ; ð8Þ

where Wss0
ij is the synaptic weight from cell j to cell i, which belong to subpopulations s0 and s,

respectively, and tjk is the k-th spike of neuron j. The connectivity between the populations

I! E, E! I, and I! I is all-to-all. The weights are drawn from uniform distributions

between a minimum value of 0 and a maximum value of 0.05, 0.1, and 0.17, respectively. Thus,

the excitatory cells receive global inhibitory feedback from the population of inhibitory cells.

The connection weights between the excitatory cells are defined to produce a bump-

attractor network:

WEE
ij ¼

1
ffiffiffiffiffiffi
2p
p

sW

exp �
jri � rjj

2

2s2
W

" #

; ð9Þ

where σW is the width of the connectivity kernel. The local kernel implies a topographic
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representational space and might be the result of a self-organizing learning process during

development, much like the process suggested for the grid cell network [16]. However, this

topographic representational space does not have to be reflected in the anatomical space in

CA3 since the nodes in the representational space can be arbitrarily located in anatomical

space. In fact, no topography has been reported in the hippocampus [60] Multiple spatial rep-

resentations can be stored in the network, so that it can account for global remapping between

distinct environments [61–63]. To the best of our knowledge, bump-attractor networks have

not been used to explain the size of place fields previously, even though such models have been

used to model place cells more generally [63] and to define the tuning width of the cells in the

visual system [64].

The virtual animal explores the environment randomly for a period of 160 seconds. The

average velocity of the movement is 7 cm/s. When the trajectory of the virtual animal reached

the borders of the environment, the direction of the movement reversed. This particular explo-

ration of the environment is enough to sample most regions of the environment. Longer

exploration time did not change specific simulation runs (data not shown) and therefore we

used the mentioned movement parameters to sample place-related activity.

Analysis

Place field analysis. To calculate the place fields of the spiking neuron model, we first

divided the environment into 80 × 40 bins. The firing rate map was calculated by dividing the

number of spikes by the time the virtual animal spends in each bin. The firing rate map was

then smoothed with a Gaussian kernel with the width of 5cm.

A contiguous region is considered a place field if a cell is active in all bins within this region

and has an area> 200 cm2. A cell is defined as active in a spatial bin if its firing rate is at least

20% of the peak firing rate of the cell. We compare our simulation results to the data obtained

by [34] who use a similar definition of a place field. Spatial information in the rate map of cell i
is computed by

Ii ¼
X

r

pðrÞ
liðrÞ

li

log 2

liðrÞ
li

; ð10Þ

where p(r) is the occupancy probability, which is uniform across the environment in our simu-

lations. The value λi(r) is the firing rate at location r and li is the mean firing rate of the cell

over all bins [65].

Cell lesioning

To compare the robustness of the place cell spiking in our models to experimental observa-

tions after partial lesions of the entorhinal inputs, we manipulated the input in our model by

A) setting the firing rate of randomly chosen input cells to zero at all locations or B) removing

the place specific input current, Eq 7, to the cells. We then quantified the error rate of a down-

stream place cell as the average proportion of bins, in which the place cell erroneously fired or

remained silent.

ε ¼
1

2

Nðsilent＆ infieldÞ
NðinfieldÞ

þ
Nðactive＆ outfieldÞ

NðoutfieldÞ

� �

; ð11Þ

where N(.) indicates the number of bins that matches the text label. The maximum error,

when the cell’s firing rate is a random number, is ε = 0.5. This level is reached when all input

cells are lesioned. On the other hand, if no noise is applied, ε = 0. For a network that generates
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a place field, but is sensitive to noise, we expect that the error rate as a function of the lesion

size is a line that passes through (0, 0) and (N, 0.5), where N is the size of the network

(N = 1100 in our case). For a place cell that is robust to noise we expect that the error rate

grows slower than linear for small lesions. To more easily compare our model to experimental

lesion studies, we split the EC input into MEC and LEC inputs in some simulation runs. The

LEC in our model consists of 550 weakly spatially modulated cells, which may be unstable (see

below). The MEC consists of 550 cells where one third are grid cells and two thirds are weakly

spatially modulated cells, which are always stable.

Stability

Since spatial rate maps of LEC cells are not as stable as those of MEC cells during a recording

session or between sessions [44, 45], we tested how the instability in LEC cells might affect the

stability of place cells in the hippocampus. To model instability parametrically, we first gener-

ate for each LEC cell two independent rate maps M1 and M2. The cell’s rate map on the first

entry is M1. On the second entry, it is a mixture of the two maps

Mx ¼ aM1 þ ð1 � aÞM2; ð12Þ

where the parameter 0� α� 1 controls for the degree of stability. The higher α, the higher the

stability of the cell’s firing rate map across the two sessions. After applying Eq (12), we normal-

ize the rates to ensure that they are between 0 and 1.

The weights in the feedforward network are trained on M1. We then compare the response

of the hippocampal layer in this network when it is driven with either M1 or the mixed map in

the LEC input, along with the identical MEC input. Like in [44], we define a cell’s stability

between visits to the same environment as the correlation between the cell’s rate map on first

entry and the rate map on the second entry. Furthermore, we investigate hippocampal stability

when entorhinal regions are lesioned on the second entry.

Results

Analysis of place field size in feedforward grid-to-place transformation

To study the discrepancy in place field sizes between experiments and feedforward models, we

first adopted a general two-layer feedforward network to represent the simple grid-to-place

transformation (see Methods). The general problem is to find a weight vector w that divides

the set of input population vectors (PVs) into two groups, in-field PVs and out-of-field PVs.

This classification problem can be solved by a linear support vector classifier (see Methods).

We train the classifier to produce place fields of different sizes: a circle with radius 10cm, 25cm

or 35cm (field sizes of 314cm2, 1963cm2 and 3848cm2). Interestingly, there are solutions to the

problem even for large place fields (Fig 2A, 2D and 2G). However, these solution are not

robust. We quantified the robustness of the solution by lesioning different fractions of the grid

cell inputs. Examples of the resulting firing rate maps (Fig 2A, 2D and 2G; bottom panels) indi-

cate that the solution for the large place field is less robust to noise than the solutions for the

other two place field sizes. A systematic exploration of the error rate (see Methods) reveals that

the solution for the large size is highly sensitive to lesioning even a small fraction of grid cells

(Fig 2H), even if the solution for small place field sizes is robust (Fig 2B).

Furthermore, the weights are unevenly distributed in the solution that produces the largest

place fields (Fig 2I). Strong weights are only found to cells in the two modules with the largest

grid spacings. The vast majority of inputs from grid cells, those with small spacings, have small

weights on the output cell, raising the question of whether they are needed at all in the grid-to-
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place transformation and whether the large modules alone are sufficent. We therefore solved

the classification problem on a grid cell population of equal size containing only cells in the

two modules with the larger spacings. The classifier is able to find slightly more robust solu-

tions for medium sized and large fields when the population has only large spacings. However,

the solution remains sensitive to noise indicating that even those grid cells cannot trigger a

robust place field of 35 cm radius.

Fig 2. Solution of the grid-to-place transformation by a linear support vector classifier. A: Upper panel shows the

activation map of the output cell h(r) after solving Eq 3 for a place field with a radius 10cm. Middle panel shows the map

when place cells below background firing threshold have been inhibited. Lower panel shows the same as the middle panel

after 7% of the grid cells have been lesioned. B: The error rate in the output rate map (maximal error is 0.5, see Methods)

as a function of the fraction of grid cells that are lesioned is an indicator of the robustness of the solution. Blue line

represents simulations when all four grid cell modules are present in the input. Green line represents simulations when only

the two modules with the largest grid spacings are included. Dashed line is the reference when the error rate would

increase linearly. Red diamond indicates noise level for the lower two rate maps in (A). C: Absolute value of the weights

that are assigned to grid cells in different modules in the solution. Module one contains cells with smallest spacings and

module four cells with the largest spacings. D-I: Same as (A-C) for a place field with radius 25cm (D-F) and 35cm (G-I),

respectively.

https://doi.org/10.1371/journal.pone.0181618.g002
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We next investigated the reason why the place fields resulting from the simple grid-to-place

transformation are unrealistically small. First, consider the case of competitive learning. It

leads to a vector quantization of the input space (see for example [66, chapter 5]), which

means that learning results in weight vectors that are similar to some input PV wi = p(ri).

Together with Eq (2), the cell activations are given by hi(r) = p(ri)
T p(r), which is the autocor-

relation function of the PV. The autocorrelation is highest at zero offset and drops off very

quickly, but, crucially, it rises again at periodic distances (see later in Fig 4C, purple line). To

produce a cell that is active in a single place field around ri from such an activation function,

one only has to set a sufficiently high threshold c. The lower the threshold is, the larger the

field. However, if c is too small, firing will occur outside the place field due to the periodicity of

the activation map. The lowest threshold c that produces just one field, creates a field with a

size of merely around 314cm2 in our model. Thus, competitive learning cannot produce single

large fields. More generally, the periodic autocorrelation structure of the grid cell PV is prob-

lematic for any learning algorithm that one might use to find the weight vector wi that pro-

duces a place field with a certain radius, say R = 30cm (* 2800cm2) at ri. The weight vector

has to point into the direction of the PV p(ri) as well as into the directions of all the PVs at the

locations that are within 30cm distance. At the same time, the weight vector has to point away

from the directions of all the PVs outside the field. The challenge here is that the PV at ri is

nearly orthogonal to the PV at the locations r between 20cm and 28cm away (Fig 4C, purple

line), but correlated with the PV further away that are outside the field, e.g., at about 45cm.

While such weight vectors can be found (Fig 2D and 2G), these constraints make the solutions

highly sensitive to noise (Fig 2E and 2H).

Fig 3. Solution of the classifier when grid cells have large spacings or when weakly spatially modulated cells are added to the input. A:

Activation maps as in Fig 2 when the classifier is applied to a mixture of inputs from grid cells and weakly spatially modulated cells. B: Error rate as in Fig 2

when the classifier is applied to grid cell populations with a single large spacing (indicated by colored lines) or when weakly spatially modulated (wsm) cells

are added to the grid cells with mixed spacings.

https://doi.org/10.1371/journal.pone.0181618.g003
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Fig 4. Generating place cells in a feedforward neural network model. A: Three examples of CA3 cell firing rate maps, one in each row,

during learning (left column) and after learning (right column). B: Distributions of place field sizes in the CA3 population for different proportions

of grid cells in the EC input. Thick green line shows the simulation with the default parameter. Dashed black line shows distribution for the rat

CA3 [34]. C: Mean correlation of two input PVs as a function of the distance between their locations in space for different proportions of grid

cells in the EC input. D: Mean place field size and mean number of fields per CA3 cell. E: Number of active cells and number of place cells.

F-H: Similar to C-E, but varying the width σN of the smoothing kernel instead of the proportion of grid cells in the EC input.

https://doi.org/10.1371/journal.pone.0181618.g004
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A simple solution to obtain robust and large place fields would be to increase the grid spac-

ings in the input such that the second peak of the autocorrelation function appears outside the

environment. To estimate the grid spacing required for this to occur, we performed simula-

tions, in which all grid cells had the same large spacing, but different offsets. The orientations

varied only to a negligible extent (std. 3 degrees). Our results reveal that grid spacing of at least

1.6 m would be required to generate a robust place field with a 35 cm radius. (Fig 3B). While

such large spacing have been observed at the most ventral locations in MEC [67], the topo-

graphic projections from EC to the hippocampus [14] make it less likely that place cells in the

most dorsal regions receive many inputs from these grid cells. Even more problematic for this

simple solution is that the fact that multiple, spatially periodic place fields would appear if the

walls of the environment were removed and the animal was allowed to explore the regions

where the second, or further, peaks of the autocorrelation function occur.

In conclusion, our results suggest that it is rather unlikely that a linear transformation can

produce place fields with realistic sizes based solely on grid cell inputs. Additional network

mechanisms appear to be required to account for experimentally observed place field sizes.

Mixing grid cells and weakly spatially modulated cells

A possibility to generate larger place fields is to add another input besides grid cells in the feed-

forward network. This input could be provided by weakly spatially modulated cells, which are

abundant in the LEC [43–45] as well as in the MEC [38]. Adding inputs from weakly spatially

modulated cells to the network, which already includes grid cells with multiple spacings, allows

the classifier to find a robust solution for a place field with 35 cm radius (Fig 3A and yellow

line Fig 3B). Since multiple modules alone are not sufficient to generate large place fields

robustly (Fig 2H, blue line) and the addition of weakly modulated cells (Fig 3B, yellow line)

make robust large place fields possible, we conclude that the robustness of large fields is caused

by the weakly modulated cells and not the presence of multiple grid spacings.

We next asked whether a more biologically plausible feedforward model can learn to gener-

ate a realistic place cell population in a self-organized way (see Methods). To reproduce the

results of previous models, we first investigated the feedforward neural network model with

only grid cells in the EC inputs (fraction grid cells = 1.0). As expected the resulting place field

sizes fell well short of the experimentally observed ones (Fig 4B, purple vs. dashed black line).

Our model can learn to transform mixed EC inputs into place cells with realistic field sizes

(Fig 4). After a brief learning period, during which cells have several small fields, cells typically

exhibit a small number of larger fields (e.g., Fig 4A). As the fraction of weakly spatially modu-

lated cells increases, the size of resulting CA3 place fields increases (Fig 4B and 4D) and the

number of fields per cell decreases (Fig 4D, green line). The size distribution and number of

fields in the model matches the experimental results [34] best, when there is only a small frac-

tion (< 17%) of grid cells among the EC inputs. Place fields are realistically sized, because the

autocorrelation of the input PVs are single-peaked and wide (Fig 4C). For higher fractions of

grid cells, a second maximum appears in the autocorrelation, thus forcing a higher threshold,

which in turn leads to smaller place fields. A fraction of� 17% grid cells in the EC inputs is

consistent with data from the rat. Roughly half of EC consists of MEC and about one third of

MEC cells projecting to the hippocampus are grid cells [38]. So, grid cells account for about

1/6 of EC cells in the rat.

In our simulations, not all CA3 become active in the environment, only around one third

of CA3 cells do and almost all the active cells are place cells (Fig 4E). Curiously, the fraction of

one third matches experimental findings [68–71] quite well.
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Given the relative importance of weakly spatially modulated cells in generating realistic

place field sizes, we further investigate the dependence on their properties, in particular the

width of the smoothing kernel σN (see Methods). For the following analysis, we fix the propor-

tion of grid cells at 1/6. If the kernel is narrow, the rate maps appear salt-and-pepper-like (Fig

1D) and the spatial autocorrelation is therefore rather narrow and dominated by the grid

inputs (Fig 4F, blue and red lines). As a result, the field sizes are small, the mean number of

fields per cell is significantly larger than one (Fig 4G) and very few of the active cells are place

cells (Fig 4H). On the other hand, the autocorrelation of PVs is wide for larger kernel width.

Consequently, the mean size of hippocampal place fields is larger in these simulations, there

are fewer fields per cell (Fig 4G) and almost all active cells are place cells (Fig 4H). We choose

an intermediate value of σN = 6 cm as default, since it also roughly matches the spatial informa-

tion measured in LEC cells [44], but note that the exact procedure for generating the weakly

modulated cells is not important for the model to replicate realistic place field sizes, only the

spatial autocorrelation of PVs matters. In the following section all simulations are performed

with this default value and with 1/6 of the input being grid cells and the rest being weakly spa-

tially modulated cells.

Robustness and stability of place cell responses

Since robustness is an important property of information processing in the brain, we next

examine the model’s sensitivity to lesioning different types of EC inputs after the transforma-

tion has been learned. To facilitate the comparison with experimental results, we divide the EC

input equally into MEC and LEC inputs. Grid cells make up one third of MEC cells. In this

model, place fields appear largely preserved when all MEC, all grid cells or all LEC cells are

lesioned (Fig 5A), suggesting that a subset of EC inputs are sufficient to maintain spatial selec-

tivity in CA3. A systematic study, in which different fractions of input cells are lesioned selec-

tively, reveals that place cells in our model are robust to lesions of LEC and MEC, but is

sensitive to specific lesions of grid cells (Fig 5B). By adding grid cells, the model becomes more

sensitive to noise than a model that receives only weakly spatially modulated cells (green

dashed line in Fig 5B), confirming the analysis in Fig 2. Experimental studies indicate that, in

MEC-lesioned rats, hippocampal place cell responses continue to be spatially selective in famil-

iar environments, although their fields are broader and fewer cells are active [72, 73]. We

therefore study place field properties after EC lesions in our model. If the entire MEC is

lesioned, CA3 rate maps continue to be similar to those when the MEC input is present

(Fig 5A), but the number of fields decreases slightly (Fig 5C), field sizes are larger (Fig 5D) and

the number of active cells is smaller (Fig 5E). These modelling results are in good qualitative

agreement with the experimental observations. If grid cells in MEC are selectively lesioned in

our model, very similar effects are observed, suggesting that the experimental effect might be

specifically due to the absence of grid cell firing. Complete lesions of LEC lead to contrary

effects. The number of fields increases and the size decreases, which can be explained by the

resulting higher proportion of grid cells in the input. Lu and Leutgeb et. al. (2013) [74] did not

find changes in place field size in LEC lesioned rats, however the lesions consisted only of

around 40% of the LEC and thus, were not complete (see Disscusion). To conclude, our model

creates place cells that have realistic place field sizes, are robust and change their fields similarly

as observed in lesion studies.

Next, we tested the stability of CA3 place fields. Hippocampal place cells and cells in the

MEC appear to have stable spatial firing maps during one recording session and between ses-

sion in the same environment [4, 34, 44, 45]. By contrast, spatial firing is significantly less sta-

ble in LEC neurons especially in object-poor environments. Since LEC stability seems to
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depend on the properties of the environment, we parametrized the level of LEC stability (see

Methods). We find that the model produces stable place fields with a constant field size for all

stability levels (Fig 6, black line). Furthermore, lesioning the MEC leads to lower hippocampal

stability and larger place fields. These effects are more pronounced when LEC stability is low.

Lesioning the LEC had only minor effects. Thus, the pattern of stability in the model is in good

agreement with experimental findings obtained in object poor environments [72, 74]. More-

over, our model predicts that the effects of MEC lesions on hippocampal place field size and

stability are reduced in object rich environments, when LEC activity is more stable.

Generating realistic place field sizes in a recurrent CA3 network

We explore whether it is possible to generate realistic place field sizes based on grid cell inputs

alone in a different network architecture. The idea is as follows. Each place cell receives nar-

rowly tuned external inputs from grid cells, e.g., the cell depicted in the center of (Fig 7A,

dashed green bell-shaped curve). This Gaussian input current is an abstraction of a transfor-

mation from a population of grid cells. A possible mechanism for the generation of this current

Fig 5. Effect of lesioning different EC inputs. A: Examples of the firing rate map of three CA3 cells, one per row. Columns show firing

maps when no lesion is applied, the entire LEC is lesioned, the entire MEC is lesioned and when all grid cells are lesioned. B: Error rate as a

function of the number of lesioned cells. Note that the network consists of of 550 LEC cells and 550 MEC cells (including 183 grid cells). C-E:

Mean number of fields (C), place field size (D) and number of active cells when different EC inputs are lesioned. Standard error over ten

simulations is indicated by error bars.

https://doi.org/10.1371/journal.pone.0181618.g005
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is presented in the previous section. As the animal moves away from the center of the figure

towards the right, the external input shifts to other cells (solid green bell-shaped curve). How-

ever, the cell in the center now receives excitatory drive from its recurrent connections (Eq 9),

which receive external inputs. Therefore, the cells in the center continue to fire spikes even

though they are no longer driven by external input, thus broadening their spatial firing field

beyond the extent of the spatially modulated input (Fig 7B). Our simulations confirm that this

mechanism generates place fields that are mostly centered around the external input and that

closely match those observed experimentally (Fig 7C). We have verified previously that such a

network maintains localized bumps of activity in the absence of spatially selective external

inputs [62]. The presence of external inputs to CA3 in the current model forces the bump to

form mostly at the location of the external input. However, some cells occasionally exhibit

multiple place fields, which are the result of local instabilities. Since the place field centers are

distributed randomly in the environment, there are small heterogeneities in the connection

weight matrix Eq 9. As a result, the number and the strength of connections between excitatory

cells in some regions in the network can be abnormally high. The excitatory synaptic inputs to

the cells in these “hotspots” is higher than at other locations in the network. Besides, each cell

receives a biasing input current, Ibias (Eq 6). As a consequence, the activity bump in the net-

work does not always follow the external input that reflects the current location of the animal

and occasionally cells outside the bump of activity become active, too. In other words, the

bump trajectory will sometimes jump to parts of the network that do not correctly represent

the animal’s location.

To investigate the effect of the recurrent dynamics systematically, we study the distribution

of place field sizes as a function of the width of the connectivity kernel, σW (Fig 8A). The case

σW = 0 is equivalent to the feedforward network. In this case the size of place fields is deter-

mined solely by the width of the external input σext. If the external input consists of grid cells

only, the width is limited due to the structure of the spatial autocorrelation in grid cell PVs

(Fig 4c, purple line). We therefore use a small value, σext = 4cm. As expected, place fields are

Fig 6. Stability of CA3 cells. A: Stability of CA3 firing maps between two visits of the same environment as a function of the stability in

the LEC firing map. Lines of different colour show the result of lesioning different entorhinal inputs before the animal encounters the

environment the second time. Errorbars show standard errors across three simulations. B: Mean field size in CA3 as a function of LEC

stability.

https://doi.org/10.1371/journal.pone.0181618.g006
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larger for wider connectivity kernels. To see this effect more clearly and to compare our results

to the experimental data, we plot the cumulative fractions of the place field sizes for networks

with different σW (Fig 8B). Increasing the kernel width up to *20 cm, makes place field larger

(Fig 8C). Increasing the kernel width further does not have a strong effect on place field sizes,

but makes it more difficult to generate stable place fields at all. This latter effect is due to an

over-excitation in the system which results in multiple random active regions, which do not

resemble well-defined place fields. For a wide range of connectivity kernel widths, the resulting

distributions of place field sizes closely match the empirical data [34].

Other properties of place cells are reproduced by the recurrent network as well. For

instance, cells have 1–2 place fields in nearly all simulations (Fig 8C) in agreement with experi-

mental observations. The aforementioned network heterogeneity occasionally causes the cells

to become active in multiple locations. By increasing the connectivity kernel width, the local

structure of the network overcomes the effect of noise in the connectivity so that the average

number of place fields decreases.

Like for the feedforward networks, we also study the robustness of the place fields in the

recurrent network. We find that the network is robust to noise in the sense that when a ran-

domly selected subset of inputs are removed, the error rate grows sub-linearly (Fig 8D). The

Fig 7. Recurrent connectivity enlarges the firing field of a place cell. A: A one dimensional

representation of the CA3 network. Each cell receives a spatially selective input current (Eq 7) which is shown

by green vertical bars. The extent of this input is indicated for two example cells by green bell-shaped curves

(dashed and solid line). Because of the recurrent connectivity between the cells (red curve), the cell with a

place field in the center can be activated even when the animal is located outside the space from where it

receives spatial inputs, e.g., at the location of the solid green bell-shaped curves. B: Spatially modulated

spiking of a representative CA3 cell (black dots) as the virtual animal randomly explored the environment. The

external input current which determines the location of the place field center (Eq 7) has a Gaussian profile,

indicated by the colourmap. Because of the recurrent excitatory connections, the place field of the cell is larger

than the extent of the external input. C: Firing rate map of six place cells. The sizes of the detected place fields

are indicated in the top right corner of each panel (in cm2).

https://doi.org/10.1371/journal.pone.0181618.g007
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error rate is nonzero even when the external input is intact because firing fields < 200 cm2 are

not considered place fields and so are regarded as out-of-place-field firing when calculating

the error rate (see Eq 11).

Based on our results, recurrent connectivity between CA3 place cells driven by grid cell

inputs can account for the experimentally observed place field sizes. The spread of the recur-

rent connectivity is the determining element in the size and the stability of the resulting place

fields.

Discussion

We revealed that it is unlikely that robust place fields with realistic sizes are generated in a

feedforward network driven by grid cell inputs alone [75], because of its structured spatial

autocorrelation. This spatial structure is enhanced when grid cells express a common orienta-

tion [18] and experiments indeed show that grid cell orientations are clustered in rats [10, 46].

On the other hand, the grid symmetry reduces with increasing variation in the peak firing

Fig 8. Properties of place cells generated by recurrent CA3 dynamics. A: The distribution of field sizes in the network for different

connectivity kernel widths. Place fields are larger for wider connectivity kernels. B: Cumulative distributions of field sizes for different kernel

widths. The distributions are similar to experimental results for a range of kernel widths. C: The median place field size (blue line) increases as

a function of the kernel width. The average number of place fields of the cell in the network (green line) decreases with the kernel width. D:

Fraction of bins with erroneous activity as a function of the number of cells without spatial input.

https://doi.org/10.1371/journal.pone.0181618.g008
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rates of the firing fields of individual grid cells [17, 75] and this variation has been found in rat

MEC [2]. In this study, we adopt the conservative assumption that grid cell orientations are

only clustered module-wise and different modules have different mean orientations distrib-

uted along the entire 0 to 60 degrees. Moreover, we introduce some variation between peak

rates of individual firing fields, too. However, despite these symmetry breaking aspects, our

general feedforward model shows that transformations from grid cells to large place fields are

far from being robust. Although we have not mathematically proven that a robust transforma-

tion is impossible, our computational results leave only a narrow space for such a transforma-

tion to exist. It is thus likely that additional mechanisms have to come into play.

In some previous feedforward models, nonspatial input was present in addition to the grid

cell input [21]. However, these had only a small effect on the place field sizes and could not

generate realistic field sizes. [76] modelled the increase of hippocampal place field sizes along

the dorsal to ventral axis by increasing the spacings of grid inputs along this axis and also by

increasing the amount of nonspatial inputs at ventral locations. In this way, realistic place

fields sizes could be generated in the ventral hippocampus, but not in dorsal hippocampus [76,

Fig 5A]. Thus, both studies indicate that adding nonspatial input alone cannot account for

realistic place field sizes.

Note that the problem is not that feedforward networks cannot generate large place fields at

all, in fact, the abstract model we studied here does just that and it has been shown that a three

layered network can learn any continuous mapping (universal approximation theorem) [77].

The problem is that there has to be a plausible neural mechanism for learning the transforma-

tion and the transformation has to be robust to noise and partial lesions of the network. One

approach suggested that a place cell is the result of a Fourier transformation where grid cells

with a common spatial phase are the basis functions [18]. To produce large place fields, the

model relies on grid cells with very large grid spacings. One prediction of the model is that

lesioning grid cells with large spacings leads to contraction of place fields, whereas lesions of

cells with small spacings lead to an expansion of fields. A recent study tested this prediction

experimentally by inactivating grid cells at three different locations along the dorsoventral axis

of MEC, along which grid spacings increase systematically [78]. In contrast to the model pre-

dictions, inactivations at all MEC locations result in an expansion of place field size and a

decrease in the number of place fields. Contradicting interpretations of that data exist, which

defend the Fourier transformation model [78, 79]. However, both experimental findings are

predicted by our feedforward model that includes inputs from weakly spatially-modulated

cells.

Place cells have also been modelled as driven by cells carrying direct sensory information

[80–82] or by cells with diffuse spatial information and head direction [83]. Our feedforward

model moves beyond these studies by showing that place cells can be generated by a mixture

of diffuse inputs and grid cells, that these cells have realistic and robust place fields, that they

are temporally stable in conditions when large parts of the input are not, and by predicting

their behaviour after entorhinal lesions.

The boundary vector cell (BVC) model suggests that place cell firing arise through the

input from border cells in the MEC [84] in a feedforward network. The model can reproduce

the empirical observation that the firing locations of place fields tend to maintain fixed dis-

tances to one or more boundaries following changes to the geometry of a familiar environment

[9]. In principle, the model could produce realistic place field sizes, since border cells do

not have a repetitive structure in their PV autocorrelation as grid cells do. Although, to our

knowledge, this has not been shown explicitly. Here we use a more abstract cell class, the

weakly spatially modulated cells, which do not systematically express firing fields at borders.

Future work might examine whether adding BVC to MEC inputs can reproduce both realistic
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field sizes and appropriate responses when environmental borders are manipulated

simultaneously.

Limitations and future directions

One question that we did not address specifically in our computational study is how place

fields with realistic sizes emerge in CA1. Experimental results indicate that spatial responses in

CA1 are also driven by redundant inputs since CA1 place cells persist after inputs from either

CA3 [85, 86] or layer III of MEC [73, 87] were removed. Our CA3 model of the feedforward

network driven by grid cells and weakly spatially modulated EC cells can be applied to CA1 in

a straightforward manner. The EC-CA1 pathway could account for preserved CA1 place cell

firing after disconnection of CA3. CA1 could also inherit its spatial selectivity from CA3 via

plastic feedforward connections [88, 89], thus accounting for preserved place cells in CA1 after

lesions of MEC layer III. Mehta et. al. (2000) [88] suggested that spike-timing dependent plas-

ticity at the CA3-CA1 synapses leads to larger place fields in CA1 as compared to CA3 cells

and to the predictive shift of CA1 place fields with experience.

The current model of dorsal CA3 does not take into account the topography in the hippo-

campal formation, nor its anatomical structure. However, the grid spacing is organized topo-

graphically in the MEC [90]. Grid cells in the dorsal region of the MEC have small spacings

and the spacing increases towards the ventral part. There is also topography in the connectivity

pattern between EC and the CA regions of the hippocampus [47]. Whether this can account

for larger place fields in ventral place cells [16, 18, 91] or whether a gradient of non-spatial

input along the dorsal ventral axis is necessary [76] needs to be determined in our model.

Moreover, there is a mixture of MEC and LEC inputs to the CA1 place cells along the septo-

temporal axes [48]. Along the transverse axis there is a gradient of EC and CA3 inputs to CA1

[48, 92] as well as differences in place field characteristics [93]. While some studies hint at the

importance of accounting for anatomical features of the hippocampal formation [94, 95], it

remains unclear what their functional relevance might be for generating place-specific

responses.

In the models we studied here, we focused on the spatial correlates of the hippocampal neu-

rons’ spiking. Since in place cells, spatial responses and the timing of spikes are related through

theta phase precession, it will be important to extent the model to account for temporal fea-

tures of place cell firing. We have previously suggested that this temporal structure is perhaps

the most important aspect of hippocampal activity [96, 97]. In a recent experiment, [98]

observed that the spatial selectivity of place cells is abolished when the animal runs in a 2-D

virtual reality environment, even though its visual appearance were matched to a real-world

environment. The theta phase precession of their spiking activity, however, was not affected by

the virtual reality.

Redundant drivers of place cell activity

Place cells are surprisingly robust to MEC layer 3 [73], complete bilateral MEC [72], and par-

tial LEC [74] lesions. In addition, place cells are robust to degradation of grid cells [25–28].

While some of these results could be accounted for by the robustness of the feedforward grids-

to-places transformation [31], here we found that this model alone probably does not suffice

to account for the observed sizes of place fields.

We suggest here that the robustness of place cells to lesions might stem from the fact that

two redundant mechanisms exist for generating realistic place field sizes in CA3 cells: one rely-

ing on recurrent dynamics, and another one relying on weakly spatially-modulated cells. Both

approaches reproduce hippocampal firing characteristics such as place field size, fractions of
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active cells, and average number of fields and they are robust to input perturbations. We

hypothesize that the mechanisms are active in parallel and that this redundancy might account

for the robustness of place cell activity to a number of invasive manipulations of the circuitry

of the hippocampal formation.

Our model shows that although weakly spatially modulated EC cells have much lower spa-

tial information than grid cells do, they still can drive the spatial selectivity of place cells. Spatial

information might therefore not be the right measure to determine whether cells are driving

hippocampal place cell firing. To generate large single place fields, the crucial requirement on

the input are certain features in the spatial autocorrelation of its PVs. As long as nearby PVs

are correlated in a sufficient large radius and the autocorrelation does not exhibit large values

at larger distances, it can be transformed into place cells straightforwardly. Hence, a prediction

of this model is that the PV of cells that project to place cells are of this kind, which can be veri-

fied experimentally.

In seeming contradiction to our conclusion that weakly spatially modulated cells are essen-

tial for generating realistic place fields in hippocampus, [74] reported that rats with a partial

lesion of the LEC exhibit no differences in hippocampal field sizes in novel environments com-

pared to controls. However, the mean lesion size in that study was around 40% of the LEC,

which is equivalent to learning the transformation with a proportion of grid inputs of around
1=6

1=2þ0:6�1=2
� 0:21 in our model. The model produces slightly smaller fields in this case (Fig 4C),

but the difference is unlikely to reach statistical significance in the experiment. If, however, the

LEC lesion were complete and CA3 recurrent connections were silenced, our feedforward

model would predict significantly smaller place field sizes and more fields in CA3 (compare,

for instance, proportion of grid inputs 1/6 to 1/3 in Fig 4C). While this would be a difficult

experiment, it could be performed, in principle, with existing methods.

If, as our results suggest, grid cells are neither neccessary nor sufficient for the creation of

place fields of realistic size in the hippocampus, what are they good for? A grid cell population

can code for the animal’s location more accurately [99, 100] and more robustly [101] than a

place cell population and hence they could provide additional information to the hippocam-

pus. In line with this assumption, it has been suggested that grid cells are part of a path integra-

tion system in the MEC [16, 102] and they likely provide a spatial signal based on self-motion

cues when other sensory inputs are not available, i.e., when other EC inputs are silent [103].

Indeed, LEC cells are receptive to sensory cues such as objects or odours [39–42] and their rate

maps are less stable over time in object-poor environments as compared to grid cells [44, 45].

Thus, cells in the MEC, including grid cells, might be necessary for the formation of place cells

in conditions where sensory inputs are very poor or absent. However, in other conditions our

model shows, that weakly spatially modulated cells in the LEC alone are sufficient to generate

realistic place cells. This reasoning could account for another set of recent recording experi-

ments performed in novel environments. If the medial septum is inactivated, grid cells lose

their spatially periodic activity pattern [25, 26]. If this occurs in a familiar or a small novel

environment, place fields seem to be intact and stable [104, 105]. However, in a large novel

environment, medial septum inactivation abolished CA1 firing fields and prevents the emer-

gence of spatial stable firing [105]. To us these results suggest the following interpretation. In a

familiar environment, inputs from weakly spatially modulated cells alone can maintain estab-

lished place cell responses. The same inputs can generate a new spatial representation in a

small novel environment because there is a sufficient number of distinct sensory features to

uniquely identify a location. This is less likely, however, in a large novel environment, so that

the grid cell input is needed to represent the spatial location by providing ideocentric

information.
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In conclusion, we have identified a new challenge in the transformation from grid cells to

place cells, the place field size, and suggested two different mechanisms that can generate place

fields with realistic sizes. Both mechanisms might be active in parallel and might be dissociable

during different behavioural stages and through experimental manipulation.
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