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Graphical Abstract

1) Single-cell RNA-seq of organ-specific metastasis (liver, peritoneum, ovary,
lymph node) in GC was conducted.
2) Single-cell analysis determined phenotypes and functions of four malignant
epithelial subtypes in GC.
3)A 20-gene signature of lymphnode-derived exhaustedCD8+ T cellsmight fore-
cast lymph node metastasis, and targeting HLA-E-KLRC1/KLRC2 signaling sev-
ers as a novel clinical therapeutic opportunity for GC.
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Abstract
Background: Deciphering intra- and inter-tumoural heterogeneity is essential
for understanding the biology of gastric cancer (GC) and its metastasis and
identifying effective therapeutic targets. However, the characteristics of different
organ-tropism metastases of GC are largely unknown.
Methods: Ten fresh human tissue samples from six patients, including primary
tumour and adjacent non-tumoural samples and six metastases from different
organs or tissues (liver, peritoneum, ovary, lymph node) were evaluated using
single-cell RNA sequencing. Validation experiments were performed using his-
tological assays and bulk transcriptomic datasets.
Results: Malignant epithelial subclusters associated with invasion features,
intraperitoneal metastasis propensity, epithelial–mesenchymal transition-
induced tumour stem cell phenotypes, or dormancy-like characteristics were
discovered. High expression of the first three subcluster-associated genes
displayed worse overall survival than those with low expression in a GC cohort
containing 407 samples. Immune and stromal cells exhibited cellular hetero-
geneity and created a pro-tumoural and immunosuppressivemicroenvironment.
Furthermore, a 20-gene signature of lymph node-derived exhausted CD8+ T
cells was acquired to forecast lymph node metastasis and validated in GC
cohorts. Additionally, although anti-NKG2A (KLRC1) antibody have not been
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used to treat GC patients even in clinical trials, we uncovered not onlymalignant
tumour cells but one endothelial subcluster, mucosal-associated invariant T
cells, T cell-like B cells, plasmacytoid dendritic cells, macrophages, monocytes,
and neutrophils may contribute to HLA-E-KLRC1/KLRC2 interaction with
cytotoxic/exhausted CD8+ T cells and/or natural killer (NK) cells, suggesting
novel clinical therapeutic opportunities in GC. Additionally, our findings
suggested that PD-1 expression in CD8+ T cells might predict clinical responses
to PD-1 blockade therapy in GC.
Conclusions: This study provided insights into heterogeneous microenviron-
ment of GC primary tumours and organ-specific metastases and provide support
for precise diagnosis and treatment.

KEYWORDS
gastric cancer, HLA-E-KLRC1/KLRC2, metastasis, single-cell RNA sequencing, tumoural
heterogeneity

1 INTRODUCTION

Gastric cancer (GC) is the fourth-most diagnosed can-
cer and second-most common primary cause of cancer
death worldwide, with 1.03 million new diagnoses and
720 000 deaths every year.1 Asia has the highest GC inci-
dence with >70% of global cases, and China contributes
most to this burden.1 Most patients with GC are diag-
nosed at advanced and metastatic stages, with diseases
that are often resistant to drug therapy, and show inade-
quate improvementwith surgical treatment, leading to low
survival rates.2 Metastasis in different organs is the most
difficult and urgent issue facing GC diagnosis and treat-
ment. The lymph nodes, liver, peritoneum, lung, bone,
and ovary are common targets, wherein tumour cells can
invade distant sites via the blood, lymphatic system, and
intraperitoneal spread.3 This distinct organ-tropism in GC
metastases is influenced by the intrinsic properties of
tumour cells and the features of host regions.4 In metas-
tasis process, tumour cells will evolve fitness and exhibit
tropism toward to the specific organ by activation of par-
ticular genes and pathways, while the primary and host
microenvironment such as the immune cells recruited by
tumour also play a pivotal role in promoting metastasis
progression.4–6 Therefore, precise mapping of the organ-
specific metastatic features is of critical importance, espe-
cially for enabling development of specific therapeutic
strategies for different metastases as well as the identifi-
cation of potential biomarkers for clinical diagnosis. How-
ever, the characteristics of different organ-tropism metas-
tases of GC are largely unknown.
Since transcriptome profiling is widely adopted to

explore organ-tropism metastasis, several groups have

employed bulk RNA sequencing (RNA-seq) to identify
important genes that mediate metastasis to specific sites
or whose expression in primary tumours correlates with
metastatic recurrence in GC.7,8 For instance, Zhang et al.
mined the bulk RNA-seq data from The Cancer Genome
Atlas (TCGA) and identified a 28-gene signature between
lymphatic and non-lymphatic metastases7; Xie et al. iden-
tified BATF2 as a downregulated gene associated with
peritoneal recurrence after curative gastrectomy in GC.8
Nonetheless, these bulk methods cannot detect the cell
diversity and obscure the intra- and inter-tumoural com-
plexity in GC.
Recently, single-cell RNA sequencing (scRNA-seq)

technology has enabled accurate and in-depth studies
of intra- and inter-tumoural heterogeneity in various
cancers.9 Several single-cell signatures across inflam-
mation, premalignant lesions and early GC have been
revealed, including biomarkers of gastric early malignant
cells.9–11 Rare tumour types, intratumour subclones and
widespread reprogramming in the tumour microenvi-
ronment (TME) of primary GC were identified based
on scRNA-seq, supporting the heterogeneity of GC.6,10
More importantly, such single-cell resolution analysis
revealed the features of GC peritoneal dissemination by
investigation of peritoneal carcinomatosis.12,13 Specifically,
Yasuda et al. showed that inflammation driven senescent
cancer-associated fibroblasts enhance the peritoneal dis-
semination through JAK/STAT3 signalling12; Wang et al.
demonstrated that diversity in tumour cell lineage/state
compositions of GC peritoneal carcinomatosis.13 Collec-
tively, scRNA-seq is a powerful and unbiased tool for
analysing heterogeneous and functional subpopulations.
Herein, we investigated primary tumours and different
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metastases (liver, peritoneum, ovary, lymph node) of GC
to examine the intra- and inter-tumoural heterogeneity
of carcinoma cells and TME and to better understand the
different organ metastatic patterns with a special focus on
lymphatic metastases using scRNA-seq.

2 RESULTS

2.1 Single-cell transcriptional landscape
of primary and metastatic GC

We performed scRNA-seq analysis of 10 fresh human
tissue samples from six patients, including three primary
tumour samples (PT; i.e., PT1, PT2 and PT3), one adjacent
non-tumoural sample (NT; i.e., NT1), and six metastatic
samples (M). Among M, we obtained two liver metastasis
samples (Li; i.e., Li1 and Li2), two lymph nodes metastasis
samples (LN; i.e., LN1 and LN2), one peritoneal metastasis
sample (P; i.e., P1), and one ovary metastasis sample (O;
i.e., O1) during gastroscopy, biopsy or surgical resection
(Figure 1A and Table S1). PT1 and Li1 were from Patient
1; PT2 and NT1 were from Patient 2; O1 was from Patient
3; PT3, Li2 and LN1 were from Patient 4; LN2 was from
Patient 5; and P1was fromPatient 6. PT1, PT2, PT3, Li1, Li2,
LN1, andP1were intestinal-histologyGC samples,whereas
LN2 and O1 were mixed-histology GC samples. Enrolled
patients were diagnosed recently and had not been admin-
istered therapy. After quality filtering, 42 968 cells were
detected, with a median of 1639 genes per cell, among
which 12 014, 28 653 and 2301 cells were collected from PT,
M and NT, respectively. After dimensionality reduction
and unsupervised cell clustering, we identified epithelial
(1743; EPCAM, KRT19, CLDN4), stromal (1288; PECAM1,
CLO1A2, VWF), proliferative (1089; MKI67, STMN1,
PCNA),14–16 T (24 448; CD3D, CD3E, CD2), B (7708;
CD79A, IGHG1, MS4A1), natural killer (NK, 1173; KLRD1,
GNLY, KLRF1), and myeloid (5519; CSF1R, CSF3R, CD68)
cells as seven distinct lineages based on marker gene
expression (Figures 1B–E and S1A). Myeloid cells included
two distinct clusters, namely neutrophils and mononu-
clear phagocyte system cells (Figure S1B), whereas the
two distinct B-cell clusters were plasma and other B cells
(Figure S1C). Owing to the different dissociation efficiency
of different cell types,17,18 immune cells accounted for the
largest proportion (90.4%) among all samples, particularly
in the lymph node and liver (Figure S1A), which was also
observed in other scRNA-seq data of cancer.6,9,10,17,19 The
proportion of each cell lineage varied highly among differ-
ent primary tumours andmetastases (Figures 1F and S1A),
revealing a heterogeneous cellular status. In addition, we
compared our adjacent non-tumoural sample to another
three paired GC normal tissues6 and showed that NT1

was highly correlated with the three GC normal tissues
(R = .93), indicating that our adjacent non-tumoural sam-
ple could represent GC health cells (Figure S2A and B).

2.2 Four subclusters of malignant
epithelial cells and relationship between
their characteristics and metastasis and
survival

Malignant (1615 cells) and non-malignant (128 cells)
epithelial cells were defined using the malignant and non-
malignant scores10; 83% of non-malignant epithelial cells
were derived from NT (Figures 2A and S3A). Moreover,
in malignant epithelial cells, the expression of several
tumour-specific genes (CLDN4, CLDN7, TFF3; p < 2.22 ×
10–16) was significantly upregulated compared with that
in the non-malignant epithelium, whereas non-malignant
epithelial cells strongly expressed several genes associ-
ated with gastric mucus and digestive enzyme secretion
(MUC5AC, GKN1, PGC, LIPF; p < 7.4 × 10–9, Figure S3B).
Clustering analysis of malignant cells in PT and M

revealed four subclusters, G0–G3 (Figure 2B). Transcrip-
tional heterogeneity in malignant cells was detected in
the different samples as well as the different metastases
(Figures 2C and S3C). G0 composed the main type of
PT and most M (Figures 2C and S3C). Upon Ingenuity
pathway analysis (IPA), G0 cells showed characteristics
of tumour vascularisation and invasion, based on the
differentially expressed genes (DEGs) between G0 and
the other malignant epithelia. Specifically, several path-
ways, including angiogenesis and adhesion of vascular
endothelial cells, and formation of actin stress fibres,
were significantly enriched, based on diseases and bio
functions analysis in IPA (Figure 2E). Integrin signalling,
which might mediate cell–matrix contact and govern
tumour invasive and metastatic potential,20 was positively
regulated in G0 cells (Figure 2D). Vascular endothelial
growth factor A (VEGFA), the key factor in angiogenesis,
was markedly upregulated in G0 cells and activated in the
ILK pathway and IL-8 signalling (Figure 2D and Table S2).
Other genes related to cell invasion and angiogenesis, such
as ICAM-1, FOS, ITGB1, and ITGAV, were also upregulated
in the aforementioned pathways (Table S2). Therefore, G0
cells may have angiogenic and invasive properties. G1 cells
specifically expressed the epithelial–mesenchymal transi-
tion (EMT)-related genes SRGN, VIM, and LAPTM5A
(Figure S3D) and were found mainly in O and P
(Figure 2C). IPA showed that the pathways of mam-
mary tumours, genitourinary tumours and extracranial
solid tumours were strongly activated in G1 cells, in
which AREG, ARL4C, and ARID5B showed the greatest
contribution to activation (Figure 2E and Table S3). AREG
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F IGURE 1 Single-cell transcriptome profiles of GC primary tumour, metastasis and adjacent non-tumour samples. (A) scRNA-seq and
data analyses. Ten fresh human tissue samples from six patients were collected, including three primary GC samples (PT; i.e., PT1, PT2, and
PT3), one adjacent non-tumour sample (NT; i.e., NT1) and six metastasis samples (M). For the metastases, we obtained two liver tumour
samples (Li; i.e., Li1, Li2), two metastatic lymph nodes samples (LN; i.e., LN1, LN2), one peritoneal tumour sample (P; i.e., P1), and one ovary
tumour sample (O; i.e., O1) during gastroscopy, biopsy, or surgical resection. (B) t stochastic neighbour embedding (tSNE) projection within
each patient and sample origin. (C) tSNE showing seven cell types for the 42 968 cells. (D) Heatmap of highly variable genes for seven major
lineages. (E) Heatmap of marker genes for seven major lineages. (F) Proportion of each cell type in NT, PT, M, Li, LN, P, and O

and ARID5B can promote cell proliferation and migration
in GC,21,22 andARL4C is closely associated with peritoneal
dissemination.23 Thus, migration and EMT are the main
characteristics of G1 cells, and these cells aremore likely to
migrate via intraperitoneal spread. G2 cells were predomi-
nantly found in one LN (LN2) and PT3 (Figure 2C). p53 sig-
nalling was activated in G2 cells (Figure 2D), which would
induce apoptosis and suppress tumour growth. Marked

downregulation of JUN, PIK3R1, andMDM2 and upregula-
tion of CDKN2A (P19ARF) were observed in this pathway
(Figure 2D and Table S2), which might have decreased
proliferation and invasion in GC.24,25 Thus, G2 cells might
be dormancy-like tumour cells in GC. G3 cells weremainly
found in the PT (PT1, PT2) and M (O1, P1, LN2), except in
the Li (Li1, Li2). The SPINK1 general cancer pathway and
HGF signalling were activated in G3 cells in which the
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F IGURE 2 Four subclusters of malignant epithelial cells in GC and their characterisation associated with metastasis. (A) tSNE of 1615
malignant and 128 non-malignant epithelial cells. (B) tSNE of the four malignant epithelial clusters G0–G3. (C) Relative proportion of G0–G3
cells in PT (PT1, PT2, PT3), M, Li (Li1, Li2), LN (LN1, LN2), P (P1) and O (O1). (D) IPA results showing the top enriched canonical pathways in
G0, G2 or G3 cells based on the DEGs. z-score > 0 indicates that the pathway was activated; z-score < 0 indicates that the pathway was
inhibited; z-score = 0 indicates that the pathway was neither activated nor inhibited. (E) Dot plot showing the diseases and bio functions of
G0–G3 cells based on DEGs using IPA analysis. (F) Violin plot showing the expression of CD44 in G0–G3 cells. ****p < .0001. (G) Unsupervised
transcriptional trajectory of G0–G3 subsets predicted by Monocle 2. (H–J) High level of G0-, G1- and G3-associated genes predicted poor
prognosis in the TCGA-STAD.htseq_counts.tsv dataset (n = 407 patients). Log-rank p < .05 was considered statistically significant
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tumour malignancy-related genes RASD1, PIK3R1, JUN,
and FOS were significantly upregulated, indicating that
G3 promotes malignant progression in GC (Figure 2D and
Table S2). Regulation of EMT by the growth factor pathway
was also significantly enriched (Figure 2D) and EMT-
related genes (ZEB2, VIM and ID2) were markedly upreg-
ulated in these pathways, indicating that EMT progression
is induced in G3 cells (Table S2). The expression of CD44,
PROM1 (CD133), LGR5, SOX2, TFRC (CD71), CXCR4, and
JAG1, markers of cancer stem cells (CSCs),26–29 was also
significantly upregulated in G3 compared with that in the
other subclusters of malignant epithelial cells (Figures 2F
and S4A). CSCs play an important role in cancer cell
proliferation, migration and metastasis.30 Thus, we calcu-
lated the proliferation andmigration scores for subclusters
G0–G3 based on the expression of genes related to tumour
cell proliferation (MKI67, IGF1, ITGB2, PDGFC, JAG1, and
PHGDH)31,32 or migration (VIM, SNAI1, MMP9, AREG,
ARID5B, and FAT1).21,22,33,34 As shown in Figure S4B and
C, G3 cells showed the highest proliferation andmigration
scores compared with the other subclusters, suggesting
that G3 cells have an EMT-induced CSC phenotype.
Consistently, the pseudotime trajectory axis derived
from Monocle 2 showed the dynamic characteristics and
heterogeneity of malignant epithelial cells (Figures 2G
and S3E). Specifically, G3 cells with the EMT-induced
CSC phenotype were observed in the initial part followed
by G1 cells, which exhibited characteristics of EMT and
migration. Dormancy-like tumour G2 and proangiogenic
and invasive G0 cells were located in separate trajectory
branches, suggesting distinct differentiation states.
Survival analysis of cancer cell-associated genes was

performed using a stomach adenocarcinoma cohort from
TCGA dataset (TCGA-STAD.htseq_counts.tsv dataset,
n= 407). Patients with GC showing high expression of G0,
G1 and G3-associated genes (DST, CTGF; PIK3R1, ZNF331;
CXCR4, GADD45B) exhibited worse overall survival
(p < .05) than those with low expression (Figures 2H–J
and S3F–H). Furthermore, the clinical data verified that
patients with ovarian metastasis (Patient 3) with a higher
proportion of G1 and G3 cells had poor clinical prognosis
(Table S4).
To further delineate tumour phenotype and clonal sub-

structure, CopyKAT was applied to determine the copy
number variants (CNVs) in GC primary tumour and
metastases based on a previously published paper.35 Copy-
KAT can be used to delineate clonal substructure based on
the genomic copy number profiles.35 Since GC is a typical
epithelium-originated malignant tumour, CNVs in malig-
nant epithelial cells were investigated. Based on the differ-
ences in CNVs, four subclones (0-3) were identified in the
malignant epithelial cells (Figure S5A and B). Subclones
0 and 2 were mainly found in PT2 obtained from Patient

2 without metastases, whereas subclone 3 was found in
PT1 and Li1, both of which were obtained from Patient 1
with liver metastasis, and subclone 1 was mostly derived
from the remainingmetastasis samples (Figure S5C). Gene
Ontology (GO) analysis was performed based on the DEGs
to identify phenotypic differences among the subclones.
Multiple cancer hallmark pathways such as GC network,
transcriptional regulation by TP53, and cell population
proliferation were enriched in subclone 0 (Figure S5D),
whereas antigen processing and presentation, cellular
response to topologically incorrect protein, and hormone-
mediated signalling pathway were activated in subclone
2 (Figure S5E), showing the intra-tumoural heterogene-
ity in the primary tumour PT2. Subclone 3 was enriched
for multiple protein-related processes, including negative
regulation of proteinmodification process, positive regula-
tion of protein localisation, and activation of protein kinase
B activity (Figure S5F), showing unique CNVs in Patient
1 with distal gastric adenocarcinoma and liver metasta-
sis. Subclone 1 was enriched for DNA damage pathways
such as DNA damage recognition in GG-NER and cellular
response to DNA damage stimulus (Figure S5G), suggest-
ing DNA abnormality in GC metastasis.
Furthermore, we investigated the malignant score per-

formance for non-epithelial cells by calculating the malig-
nant and non-malignant scores.10 Figure S6A shows that
97% of non-epithelial cells were non-malignant, whereas
3% of non-epithelial cells were malignant. Most of these
malignant non-epithelial cells were found inmyeloid cells,
stromal cells and proliferative cells (Figure S6B and C).
In line with these findings, several tumour-related genes,
such as CCL7 and CSF2, used to calculate the malig-
nancy score (Table S5 lists the genes used for calculat-
ing the malignancy score) were found to be expressed
in the non-epithelial cells in GC36,37; this may be the
reason 3% of non-epithelial cells were malignant. More-
over, sinceGC is a typical epithelium-originatedmalignant
tumour,38 we detected the expression of epithelial mark-
ers on these malignant non-epithelial cells. Compared
with malignant epithelial cells, malignant non-epithelial
cells rarely expressed the epithelial marker genes EPCAM,
KRT18, orKRT19 (Figure S6D). In contrast, thesemalignant
non-epithelial cells expressed their own canonical marker
genes, illustrating that these cells were not GC tumour
cells.

2.3 T and B cells mediate various
immune responses during GC progression

T and B cells made up a large proportion of cells in
all samples. T lymphocytes are involved in many dif-
ferent types of immune responses and targeted by many
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immune-checkpoint inhibitors. In total, 24 448 T cellswere
subjected to unsupervised clustering to reveal subtypes.
Eleven subclusters were identified with unique signature
genes, including five CD8+ subclusters, five CD4+ sub-
clusters and one unknown subcluster (Figures 3A, 3B and
S7A–C). Five CD4+ subclusters were composed of naïve
CD4+ T cells (CCR7, LEF1), regulatory T cells (Tregs;
CTLA4, FOXP3), exhausted CD4 T cells (CXCL13, TIGIT),
effector memory CD4+ T cells (CD4+ TEM; CCL5, ANXA1,
GZMA) and GADD45B+ T helper type 1 (Th1)-like CD4+
T cells (GADD45B, TNF).39–44 For CD8+ subclusters, naïve
CD8+ T cells (LEF1, SELL), cytotoxic CD8+ T cells (GNLY,
GZMB), exhausted CD8+ T cells (CTLA4, LAG3, TIGIT),
effectormemory CD8+ T cells (CD8+ TEM;GZMK,CXCR4,
EOMES) and mucosal-associated invariant T (MAIT)
cells (SLC4A10, KLRB1) were the main components
(Figure S7D, Table S6).39,40,45 As shown in Figure 3B,
tumour samples (PT and M) were enriched in exhausted
CD4+ T cells and Tregs, whereas the proportion of CD4+
TEM, CD8+ TEM and cytotoxic CD8+ T cells was slightly
reduced inM compared with the level in NT as expected,46
indicating a suppressive immune microenvironment cre-
ated during tumour progression andmetastasis. Moreover,
compared with that in NT1, the proportion of cytotoxic
CD8+ T cells was higher in PT1 and PT2 and lower in
PT3 (Figure S7C), thereby illustrating the inter-tumoural
heterogeneity. Similar phenomena were observed in the
individual patients with other cancers.47,48 In addition,
more MAIT cells were found to appear in M than in PT
and NT. Normal MAIT cells exhibit an effector mem-
ory T-cell phenotype and induce cytotoxic responses49;
however, only MAIT cells in NT and PT expressed the
Th1 cytokine IFNG, with almost no expression detected
in the MAIT cells of M (Figure 3C). Additionally, only
the MAIT cells in PT highly expressed GZMB, which
encodes a protein that can kill infected cells,49 with MAIT
cells in M showing no expression of GZMB (Figure 3C).
Similar results were found in the patients with colorectal
and hepatocellular carcinomas, as the cytotoxic effector
gene GZMB was highly expressed in the MAIT cells
isolated from primary tumours compared with that in
tumour-adjacent normal tissues, which shows a protective
immune response against tumours.50,51 In contrast, MAIT
cells in M highly expressed KLRG1 (Figure 3C), which is
associated with T-cell dysfunction.52 Immunofluorescence
staining showed that MAIT cells appeared both in PT and
M, with a higher number in M (Figure 3D).
To verify the characteristics of T-cell subclusters and

decipher the molecular relationship between them and
other cell subclusters, a crosstalk network was constructed
using potential receptor–ligand pair interactions. A strong
cell–cell interaction (CCI) between cancer subclusters
(G0, G1 and G3) and cytotoxic/exhausted CD8+ T cells

and/or NK cells was predicted based on the HLA-E-
KLRC1/KLRC2 pair (Figure 3E). HLA-E-KLRC1 serves as
a novel checkpoint and functions as an acquired resis-
tance mechanism in the TME.53 The expression level of
KLRC1/KLRC2 was detected in cytotoxic/exhausted CD8+
T and NK cells. NK cells showed the highest expres-
sion of KLRC1, whereas cytotoxic CD8+ T cells exhibited
the highest expression of KLRC2, and exhausted CD8+ T
cells displayed moderate expression of these two genes
(Figure S7E). These observations are in line with previ-
ous findings.54–58 NKG2A (KLRC1), an immune inhibitor
receptor, had been observed on NK and T cells.54 In TME,
more than half the NK cells have been shown to express
KLRC1,54,55 with a substantial fraction of intratumoural
CD8+ T cells showing upregulatedKLRC1, especially those
harboring tissue-resident signature or the exhausted CD8+
T cells.55,56 NKG2C (KLRC2) has also been investigated
on NK cells, natural killer T (NKT) cells, γδ T cells, and
CD8+ αβ T cells.57,58 Although data on NKG2C in tumour
are limited, KLRC2 was identified as one of the protective
genes in lower-grade gliomas,58 which was in line with its
high expression in the cytotoxic CD8+ T cells in this study.
CCI analysis also predicted that the ligand and receptor
pair HLA-E-KLRC1 is involved in the interaction between
MAIT cells in M/PT and cytotoxic/exhausted CD8+ T cells
as well as that between MAIT cells in M/PT and NK cells
(Figure 3E).
The expression of multiple inhibitory receptors on T

cells before treatment might help to predict the outcome
of checkpoint blockade therapy in patients with cancer.
Thus, we further correlated the expression of PDCD1 in
CD8+ T cells with the response and clinical outcome.
Patients 6 (P1) and 5 (LN2) exhibited high expression of
PDCD1, whereas others expressed low PDCD1 expression
in CD8+ T cells (Figure 3F). Upon tracking the case (Table
S4), Patient 3 (O1), who exhibited low levels of PDCD1
in CD8+ T cells, showed no improvement after using a
PD-1 inhibitor, camrelizumab, combined with paclitaxel-
albumin and tegafur for two periods, although the patient
had a programmed cell death ligand 1 (PD-L1) combined
positive score (CPS, ratio of the number of all PD-L1-
expressing cells to the number of all tumour cells) ≥ 1.
Further, Patient 6, who expressed high levels of PDCD1 in
CD8+ T cells, showed a better response after PD-1 inhibitor
(camrelizumab) and paclitaxel-albumin combined ther-
apy. Immune-checkpoint molecules PD-1, LAG3, CTLA4,
TIGIT, and HAVCR2 (TIM-3) have been identified and
studied in various cancers including liver hepatocellu-
lar carcinoma, lung adenocarcinoma, stomach adenocar-
cinoma, ovarian cancer, and peritoneal carcinoma.59,60
These immune-checkpoint molecules have been reported
in the different metastatic organs of GC.61,62 The expres-
sion of these immune-checkpoint molecules in CD8+ T
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cells in the samples from the same patients was similar
(Figure S8 and Table S7). PT1 and Li1 were from Patient
1, and both samples showed LAG3 and TIGIT expression
in CD8+ T cells, with PT1 also showing HAVCR2 expres-
sion in CD8+ T cells. PT2 andNT1were from Patient 2, and
both expressed LAG3 and TIGIT in CD8+ T cells, whereas
PT2 also showed CTLA4 expression in CD8+ T cells. PT3,
Li2, and LN1 were from Patient 4 where only Li2 showed
expression of TIGIT in CD8+ T cells, whereas PT3, Li2, and
LN1 did not show expression of other immune-checkpoint
molecules in CD8+ T cells. Patients 3, 5 and 6 only had
one sample; nonetheless, Patient 6 showed expression of
all five immune-checkpoint molecules in CD8+ T cells,
Patient 5 showed expression ofPDCD1,LAG3, andTIGIT in
CD8+ T cells, whereas Patient 3 did not expression of these
immune-checkpointmolecules inCD8+ T cells. These data
indicated that Patients 1, 2, 5, and 6 might benefit from
combinational blockade of specific co-inhibitory receptors,
such as TIGIT and LAG3.
Next, we clustered 7708 B cells into five cell lineages

annotated using marker gene expression (Figures 3G
and S7F). The proportion of each B-cell type varied
greatly between different samples (Figures 3H and S7G),
indicating the heterogeneity of humoral immunity in
GC primary tumours and different metastases. A special
group of B cells, expressing both the typical surface
markers CD79A, MS4A1 (CD20), CD19, CD40 of B lym-
phocytes and the marker CD3D of T lymphocytes,63,64
were named the T cell-like B cells and detected among
most samples (Figures 3H, S7G and S7H). The proportion
of these cells was the highest in M and lowest in NT
(Figures 3H and S7G). The T cell-like B cells in GC was
further confirmed in the metastatic lymph node LN2
and two new GC metastases we obtained (LN3 from the
patient who had GC with lymph node metastasis; O2
from the patient who had GC with ovary metastasis) with
the marker genes CD19 and CD3D (Figure S9). Pathway
analysis of T cell-like B cell-associated DEGs revealed
that binding of leukocytes/lymphocytes, and cytotoxicity
of NK cells/lymphocytes were significantly enriched,
indicating the interaction of T cell-like B cells and these
clusters (Figure 3I). CCI analysis showed that the ligand

and receptor pair HLA-E-KLRC1/KLRC2 was predicted
to be involved in the interaction between T cell-like B
cells and NK cells and between T cell-like B cells and
cytotoxic/exhausted CD8+ T cells (Figure 3J).

2.4 Endothelial cells promote
angiogenesis and create immune resistance

In this study, 399 cells were identified as endothelial cells
with concordant expression of canonical marker genes
(Figure S10A). Subclustering of endothelial cells revealed
four clusters, E0–E3 (Figures 4A and S10B). E0 cells
specifically expressed IGFBP5, STC1, and IGFBP3 were
found in PT and M but not in NT (Figures 4B, S10B and
C). IGFBP3 and STC1 influence angiogenic sprouting;
proangiogenic VEGFA and TGF-β are upstream regulatory
factors of IGFBP5. According to IPA, both mTOR and
IGF-1 signalling, which are tightly related to tumour
invasion in GC,65 were positively regulated in E0 cells, and
diseases and biofunctions analysis showed that E0 cells
may increase the invasion and migration of tumour cells
(Figure 4C and D), indicating that E0 cells promote GC
invasion. E1 cells weremost abundant in PT andM (Figure
S10C). IPA also showed that E1 cells were closely associ-
ated with the regulation of the T-cell exhaustion signalling
pathway (Figure 4D). Notably, the gene expression net-
work of the T-cell exhaustion signalling pathway showed
that FOXO1, FOXP1, and JUN were activated (Table S2),
and these genes were related to the inhibition of CD8+ T-
cell effector andmemory functions and induction of T-cell
unresponsiveness in cancer,66 supporting the notion that
E1 cells suppress the immune response. Most endothelial
cells in NT were E2 cells (88%), which displayed lower
activity than other three subclusters, suggesting that
they were normal endothelial cells (Figure 4C and D).
E3 cells were found only in LN and O (Figures 4B and
S10C). The white adipose tissue browning pathway was
activated in E3 cells, in which the expression of the VEGF
receptor-encoding gene NRP1 and fibroblast growth factor
receptor-encoding gene FGFR1 were significantly upreg-
ulated (Figure 4D and Table S2). In addition, the STAT3

F IGURE 3 Various immune responses are mediated by T and B cells during GC progression. (A) tSNE of T cells. Tregs: regulatory T
cells; CD4+ TEM: effector memory CD4+ T cells; GADD45B+ Th1-like CD4+ T cells: GADD45B+ T helper type 1-like CD4+ T cells; CD8+ TEM:
effector memory CD8+ T cells; MAIT: mucosal-associated invariant T. (B) Relative proportion of each T cluster in NT, PT and M. NT: NT1; PT:
PT1, PT2, PT3; M: Li1, Li2, LN1, LN2, O1, P1. (C) Violin plot showing expression of IFNG, GZMB, and KLRG1 in MAIT cells in different
samples. *p < .05; ***p < .001; ****p < .0001; ns means p > .05. (D) Immunofluorescence staining indicates the co-expression of CD3, TCR
Vα7.2, and DAPI (nuclei) on MAIT cells in M and PT. (E) Bubble plots exhibiting significant interactions between cancer cells and T/NK cells
as well as MAIT cells in M/PT and T/NK cells by the ligand–receptor pair HLE-A-KLRC1/KLRC2. (F) Violin plot showing the expression of
PDCD1 in CD8+ T cells across different patients. ****p < .0001. (G) tSNE of B cells. (H) Relative proportion of each B cluster in NT, PT, O, P, LN,
and Li. (I) IPA results showing the diseases and bio functions in T cell-like B cells based on the DEGs. (J) Bubble plots exhibiting significant
interactions between T cell-like B cells and other cell groups by the ligand–receptor pairs HLA-E-KLRC1/KLRC2
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F IGURE 4 Endothelial cells promote angiogenesis and create immune resistance in GC. (A) tSNE of the four endothelial cell clusters
E0–E3. (B) Relative proportion of E0–E3 from NT, PT, and M. (C) Dot plot showing the diseases and bio functions of E0–E3 based on DEGs by
IPA. (D) Violin plots showing the pathway scores of top enriched canonical pathways (IPA) in E0–E3 based on the DEGs. *p < .05; ***p < .001;
****p < .0001. (E) Bubble plots exhibiting significant interactions between endothelial cells and other cell groups by ligand–receptor pairs.
(F–G) High levels of E0- and E3-associated genes predicted poor prognosis in the TCGA-STAD.htseq_counts.tsv dataset (n = 407 patients).
Log-rank p < .05 was considered statistically significant

pathway was markedly activated in E3 cells (Figure 4D),
which promoted invasion and lymphangiogenesis in GC
cells.67 Functional analysis via IPA showed that E3 cells
increased angiogenesis and vasculogenesis (Figure 4C).
Thus, E3 cells might be associated with angiogenesis,
lymphangiogenesis, and tumour cell invasion. Figure 4E
shows a dominant crosstalk between endothelial cells and
G0 cells through angiogenesis signalling, particularly for
E0 and E3, which receive potential angiogenic stimulatory
signals from angiogenic G0 cells through VEGFA and its
receptor FLT1 (also known as VEGFR1), key promoters of
angiogenesis in cancer, including GC. The ligand–receptor
pair HLA-E-KLRC1/KLRC2 was involved in interac-

tions between E1 and cytotoxic/exhausted CD8+ T cells. A
strong interaction betweenE1 andT cells (exhaustedCD4+
and CD8+ T cells) was also predicted via the CXCL12-
CXCR4 pair, which is the mechanism of immune resis-
tance in GC68 and in line with the immunosuppressive fea-
ture of E1. Furthermore, we assessed the clinical impact of
the characteristic signature of E0 and E3 using a stomach
adenocarcinoma cohort (TCGA-STAD.htseq_counts.tsv
dataset, n = 407). Patients with high E0-signature gene
expression (CD93 and ADAMTS1) showed worse overall
survival than those with low expression (p < .001), similar
to that for patients with high E3-signature gene expression
(VWF and APOD; p < .001; Figure 4F and G).
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2.5 Inflammatory cancer-associated
fibroblasts (iCAFs) are associated with GC
growth and invasion

We clustered 889 fibroblast cells into two distinct sub-
clusters after unsupervised cell clustering (Figures 5A–5C,
S10A andD). Subcluster F0was the primary fibroblast type
in PT and M and strongly expressed PDGFRA and CXCL12
(Figure 5D), similar to that in the iCAFs described in
bladder urothelial carcinoma.69 F1 cells highly expressed
RGS5 and ACTA2 (Figure 5D) and were identified as the
myo-cancer-associated fibroblasts (mCAFs).69 Similar to
F0, the proportion of F1 cells was diverse in different sam-
ples (Figure 5B). We conducted GO enrichment analy-
sis to explore iCAF and mCAF functions based on the
upregulated DEGs between these two types and found
that the biological functions extracellular matrix/structure
organisation and cell–substrate adhesion were enriched
in both types, whereas mCAFs were enriched in the
muscle-related processes and iCAF-associated terms indi-
vidually focused on extracellular matrix disassembly, the
regulation of leukocyte migration, and the regulation of
cell growth and angiogenesis (Figure 5E). MMP2 and
MMP14, affecting the top enriched biological functions,
were mainly expressed in iCAFs (Figure 5F and Table S8)
and can promote extracellular matrix degradation and
tumour cell invasion.70 CXCL12was also a specific marker
in iCAFs (Figure 5D), and its high expression in CAFs
could promote GC cell invasion and EMT.68 To confirm
whether iCAFs can regulate cell growth and angiogene-
sis, the expression of various growth factor-encoding genes
(VEGF, IGF, and FGF families) was analysed in iCAFs
and mCAFs; iCAFs expressed more (Figure 5G), suggest-
ing that they can promote GC growth. An analysis of CCI
(Figure 5I) showed that the ligand–receptor pair CXCL12-
CXCR4 was involved in the interactions between iCAFs
and T, B, or myeloid cells, which is a mechanism of
immune resistance in GC.68 Another ligand–receptor pair,
CXCL1/CXCL8/CCL2/CCL5-ACKR1 was predicted to act
between iCAFs and E1, which might regulate GC tumour
progression.68 Moreover, patients with GC and higher
iCAF signature gene expression showed worse overall sur-
vival (p < .05) than those with low expression (Figure 5H).

2.6 Diversity within the myeloid cell
lineage in GC

Subclustering of myeloid cells is shown in Figure S11A;
1801 mononuclear phagocyte system cells [326 dendritic
cells (DCs), 894macrophages and 581monocytes], 139mast
cells, and 3579 neutrophils were identified by clustering
with canonical marker gene expression (Figure S11B and

C). The macrophages and monocytes were transcription-
ally different in the same sample (Figure S12).
DCs were re-classified into classical DC1 (cDC1), classi-

cal DC2 (cDC2), plasmacytoid DCs (pDCs) and activated
DCs, with differential proportions among all samples,
showing heterogeneity in GC (Figures 6A and S11D).
cDC1 and cDC2 were enriched in PT and M, whereas the
proportion of activated DCs was large in NT (Figure 6B).
Interestingly, pDCs were rarely found in NT but appeared
in LN and some PT (Figure 6B). pDCs highly expressed the
granzyme gene GZMB and leukocyte immunoglobulin-
like receptor family genes LILRA4 and LILRB4 and lost
expression of CD86, CD80, CD83, and LAMP3 (Figure 6C),
demonstrating an immunosuppressive phenotype.71 The
results generated from CCI analysis predicted that the
ligand–receptor pair HLA-E-KLRC1 was also involved in
pDCs and NK cells (Figure S11E).
Four subclusters of macrophages (Ma0–Ma3) were

transcriptionally heterogeneous (Figure 6D and E).
Macrophages are commonly divided into two distinct
subsets: M1 and M2.72 We investigated the expression
of M1 (e.g., TNF, CXCL9, CXCL10, and IL12A) and M2
(e.g., TGFB1, CD163, CCL18, and MRC1) signature genes
in Ma0–Ma3.73 The four subclusters of macrophages did
not show distinct M1 or M2 signature expression profiles
(Figure S13A). Instead, they had similar expression pat-
terns for bothM1 andM2 signature genes; thus, we further
calculated the M1 and M2 signature scores of Ma0–Ma3
subclusters based on these genes. As shown in Figure S13B,
Ma1 and Ma3 subclusters displayed a higher M1 signature
score with no obvious tendency in Ma0 and Ma2, indicat-
ing that Ma1 andMa3 cells might be more inclined to have
an M1 signature. Subsequently, the biological functions of
Ma0–Ma3 were determined via their DEGs. Ma0 cluster
was populated in PT and highly expressed VEGFA and
SPARC (Figure 6F), which are essential macrophage
genes that induce angiogenesis and cancer cell migration.
CCI analysis predicted that E0–E3 cells receive potential
angiogenic stimulatory signals from Ma0 through VEGFA
and its receptors FLT1/KDR (Figure S11E). Therefore, Ma0
might be an angiogenesis-associated macrophage type.
Ma1 cells were mainly detected in M particularly P, Li,
and LN (Figure 6E). Ma1 cells expressed DEGs including
HLA-DPB1 and HLA-DPA1 (MHC-II) (Figure 6F), which
are associated with a pro-inflammatory phenotype.74 The
remaining clusters presented origin-specific heterogene-
ity and various macrophage characteristics, including
FABP5+ Ma2 cells from O and pro-inflammatory Ma3
cells (TNF+, IL1B+)74 from P (Figure 6E and F). The
FABP5 expression in Ma2 is closely associated with
immunosuppression.75 Monocytes were assigned to two
known types, CD14+ CD16 (FCGR3A)− classical mono-
cytes (Mo1 and Mo3) and CD14+ CD16+ intermediate
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F IGURE 5 iCAFs could be identified in the TME of GC and are associated with tumour invasion. (A) tSNE of iCAFs (F0) and mCAFs
(F1). (B) Relative proportion of iCAFs and mCAFs in NT, PT, O, P, LN, and Li. (C) Heatmap of DEGs between iCAFs and mCAFs. (D) Dot plot
showing iCAFs expressing PDGFRA and CXCL12 and mCAFs expressing RGS5 and ACTA2. (E) GO enrichment analysis showing the top
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monocytes (Mo0 and Mo2; Figure 6G–I). PT contained
large amount of Mo0, Mo1, and Mo3 monocytes. In con-
trast, M particularly O and Li were enriched in Mo2 cells
(Figure 6H). IPA showed that Mo2 cells had increased
functions of engulfment and cell death of tumour cells
(Figure S11F); thus, Mo2 cells might be responsible for
cytotoxic effects toward tumour cells. Subclustering of
neutrophils revealed six clusters (Figure 6J and K). One
subcluster, N0, was mainly found in PT, and Li and LN
expressed high levels of LYZ (Figure 6J and L). Lysozyme
encoded by LYZ is an antimicrobial peptide secreted
by Paneth cells which are related to autophagy and the
maintenance of immune homeostasis.76 Consistently,
IPA showed that the function of engulfment and phago-
cytosis was increased in N0 cells, indicating that they
are Paneth-like cells in GC (Figure S11G). The existence
of Paneth-like cells in GC was further confirmed in the
primary tumour sections by RNAscope with the marker
genes LYZ and NAMPT (Figure 6M). Qrigin-specific
heterogeneity and diverse neutrophils characteristics were
also detected in the remaining subclusters (Figure S11G).
N2 cells, predominantly found in M, especially in P and
LN, highly expressed CXCR4 (Figure S11H), one of the
marker genes of pro-tumoural neutrophils.77 It reported
that the CXCR4+ neutrophils could promote tumour
migration and support metastasis.78,79 Consistently, IPA
showed that the pathways of invasion of tumour cell lines,
angiogenesis, and vasculogenesis were strongly activated
in N2 cells based on the DEGs between N2 and other
neutrophils (Figure S11G). Therefore, N2 cells might be
the pro-tumoural neutrophils with pro-angiogenic and
pro-invasive properties. N5 cells were mainly found in O
(Figure 6J), whereas PLCG2, which controls the recruit-
ment and infiltration of neutrophils to the inflammatory
microenvironment, was highly expressed in N5 cells
(Figure S11H).80,81 Functional analysis via IPA showed
that cell death of epithelial cells was activated in N5 cells,
whereas invasion and migration of tumour cell lines and
angiogenesis were inhibited, based on the DEGs between
N5 and other neutrophils (Figure S11G). Therefore, N5
cells might be recruited to the ovary metastasis site and
inhibit tumour progression. Tumour-derived granulocyte-
macrophage colony-stimulating factor (GM-CSF) can
activate neutrophils and induce PD-L1 expression, which
in turn suppresses T-cell immunity via its interaction with

PD-1 on T cells and results in GC cell growth.82,83 Thus, we
investigated the expression of PD-L1 (CD274) in the neu-
trophil subclusters. N1 cells highly expressed PD-L1, while
other neutrophil subclusters rarely expressed this gene
(Figure S14A), indicating that N1 cells might be activated
by tumour-derived GM-CF. Consistently, CCI analysis
exhibited that N1 cells could receive GM-CSF fromG2, G3,
E0, and MAIT cells through the ligand–receptor pair of
CSF2 (i.e., GM-CSF) andCSF2RA/CSF2RB/CSF1R/CSF3R
(Figure S14B). Additionally, the ligand–receptor pair PD-
L1/PD-1 was involved in the interactions between N1
and T-cell clusters (i.e., exhausted CD8+ T, cytotoxic
CD8+ T, exhausted CD4+ T, CD8+ TEM, CD4+ TEM, Treg,
and MAIT cells; Figure S14C), indicating that N1 cells
might suppress T-cell immunity through PD-L1/PD-1
interactions. CCI analysis also predicted macrophage
subclusters, monocyte subclusters, and neutrophils sub-
clusters interacted with cytotoxic/exhausted CD8+ T cells
and/or NK cells through the ligand–receptor pair HLA-E-
KLRC1/KLRC2 (Figure S11I). Due to the immunosuppres-
sion and pro-angiogenesis functions of tumour-associated
macrophage, we performed an in vitro experiment by
isolating the macrophages (monocyte-derived) and NK
cells from human peripheral blood mononuclear cells and
co-culturing them to investigate the role of HLA-E-
KLRC1 signalling (detailed methods were shown in the
Supplementary Materials). As a result, the amount of
interferon (IFN)-γ was significantly improved following
anti-NKG2A antibody treatment compared with the
isotype (Figure S15), indicating that targeting the HLA-
E-KLRC1 signalling might be a novel clinical therapeutic
opportunity in GC.
Myeloid-derived suppressor cells (MDSCs) represent

a heterogeneous population of immature myeloid cells
including monocytic MDSCs (M-MDSCs), granulocytic or
polymorphonuclear MDSCs (G-MDSCs), and immature
or early-stage MDSCs (e-MDSCs), which have immune
suppression properties in cancer.84–86 M-MDSCs are
morphologically and phenotypically similar to monocytes
and are identified as CD33+CD11b+CD14+HLA-DR–/low in
humans. Meanwhile, G-MDSCs are morphologically simi-
lar to neutrophils and are defined as CD33+CD11b+CD15+
Lox-1+CD14–HLA-DR–/low, and e-MDSCs are defined as
CD33+CD11b+HLA-DR– CD14– CD15–.84–86 As MDSCs
can be identified as distinct clusters within the lineages

enriched functions in iCAFs and mCAFs based on the DEGs. The functions in the red frame mean the common functions between iCAFs and
mCAFs; functions in the blue frame represent unique functions of iCAFs or mCAFs. (F) Violin plot showing the expression ofMMP2 and
MMP14 in iCAFs and mCAFs. ****p < .0001. (G) Dot plot showing the expression level of growth factors across iCAFs and mCAFs. (H) High
levels of iCAF-associated genes, PDGFRA andMMP2, predicted poor prognosis in the TCGA-STAD.htseq_counts.tsv dataset (n = 407
patients). Log-rank p < .05 was considered statistically significant. (I) Bubble plots exhibiting significant interactions between iCAFs and
other cell groups by ligand–receptor pairs of cytokines
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of neutrophils, monocytes, macrophages, and DCs,87–90
we rechecked these lineages using the marker genes of
MDSCs. As shown in Figure S16A, Ma2 was identified as
M-MDSCs. Moreover, functional analysis using IPA, based
on the DEGs that were identified between Ma2 and other
macrophages, revealed that the Ma2 cells activated the
T-cell exhaustion, inducible nitric oxide synthase (iNOS),
and VEGF signalling pathways, as well as increased the
production of nitric oxide (NO) and reactive oxygen
species (Figure S16B). This was in line with the character-
istics and immunosuppressive functions of M-MDSCs.84,85
Therefore, Ma2 cells might be the M-MDSCs that induced
immunosuppressive activity in GC.Moreover,OLR1 (LOX-
1) is highly associated with G-MDSCs at the tumour site,
whereas G-MDSCs has a unique gene expression profile
compared with neutrophils.91 Based on the expression of
OLR1 (LOX-1), only N0 (Paneth-like cells) and N3 clusters
were defined as OLR1+ neutrophils (Figure S16C). Mean-
while, IPA showed that engulfment and phagocytosis
was positively regulated in N0 cells (Paneth-like cells;
Figure S11G). Since G-MDSCs have lower phagocytic
activity,92 the N0 cells (Paneth-like cells) may not be
G-MDSCs in our GC samples. In N3 cells, IPA revealed
that the pathways of iNOS signalling, IL-6 signalling, and
oxidative phosphorylation were activated (Figure S16D),
whereas migration of tumour cell lines and epithelial–
mesenchymal transition were positively regulated, and
the phagocytosis of cells and cytotoxicity of lymphocytes
were inhibited (Figure S16D and E). These findings were
consistent with the characteristics and immunosuppres-
sive functions of G-MDSCs.93,94 Therefore, N3 cells may
indeed be G-MDSCs in our GC samples.

2.7 T and B lymphocyte subclusters
vary among different organ metastases and
a 20 gene signature of lymph node-derived
exhausted CD8+ T cells was validated to
predict lymph node metastasis

Tumour-infiltrating T or B lymphocytes play critical roles
in cancer development and metastasis95; thus understand-

ing the infiltrating status of these immune cells in the
GC metastases of different organs might develop specific
diagnostic and therapeutic strategies for organ-specific
metastases. Herein, each subpopulation of T or B lym-
phocytes was re-clustered with unsupervised method. The
resulting data were coloured with unsupervised cluster
number or metastasis type to explore organ-specific
metastatic features of lymphocytes in GC. As shown in
the Figures 7A and S17A, different organ metastases were
transcriptionally heterogeneous in most T subclusters and
some B subclusters as they were clearly separated from
each other in t stochastic neighbour embedding (tSNE)
plots. For instance, in exhausted CD8+ T cells, different
organ metastases-derived cells were clustered in different
subsets. Similar trends were found in CD8+ TEM, CD4+
TEM, Tregs, GADD45B+ Th1-likeCD4+ T cells, naïveCD4+
T cells, switch memory B cells, and T cell-like B cells,
suggesting that these subclusters displayed different phe-
notypes when present in different organmetastases in GC.
The incidence of lymph node metastasis in early GC is

extremely high with the percentage of 8.7–24.6% and the
lymph node status has been found to be closely related
to disease prognosis96; thus it is of great significance to
identify the signature of lymph node metastasis at the
single-cell resolution. Therefore, we sought to generate
gene expression signatures of lymph node-derived T or B
subclusters in GC.We performed single-cell DEGs analysis
on eachTorB subpopulation between lymphnode-derived
and non-lymph node-derived subsets, followed by select-
ing top 20 upregulated DEGs of lymph node-derived sub-
set. After this process, the 20-gene signature in each lymph
node-derived T or B subcluster was obtained. As shown in
Figures 7B and S17B, in exhausted CD8+ T cells, expression
of the top 20 upregulated DEGs of the lymph node-derived
subset was higher in LN than in other metastases, which
were also higher expressed in PT3 (the primary tumour
sample from the patient who had lymph node metastasis)
compared with other primary tumour, suggesting the 20-
gene signature reflects the patterns of metastatic spread
from the primary site to lymph node. A consistent trend
was also observed in the CD8+ TEM, CD4+ TEM, Tregs, and
exhausted CD4+ T cells, as the expression of the top 20

F IGURE 6 Myeloid cells are abundant during GC progression. (A) tSNE of dendritic cells (DCs) in NT, PT, and M. (B) Counts and
relative proportions of each DC cell cluster in NT, PT, O, P, LN, and Li. (C) Violin plots showing the expression of GZMB, LILRA4, LILRB4,
LAMP3, CD68, CD80, and CD83 in each DC cluster. *p < .05; **p < .01; ***p < .001; ****p < .0001; ns means p > .05. (D) tSNE of macrophage cells
(Ma) in NT, PT, and M samples. (E) Counts and relative proportions of each macrophage cell cluster in NT, PT, O, P, LN, and Li. (F) Violin
plots showing the expression of VEGFA, SPARC, HLA-DPB1, HLA-DPA1, FABP5, TNF, and IL1B in macrophage clusters (Ma0-Ma3). **p < .01;
***p < .001; ****p < .0001; ns means p > .05. (G) tSNE of monocyte clusters (Mo0-Mo3) in NT, PT, and M. (H) Counts and relative proportions of
each monocyte cell cluster in NT, PT, O, P, LN, and Li. (I) Violin plots showing the expression of CD14 and FCGR3A (CD16) in monocyte
clusters. *p < .05; ***p < .001; ****p < .0001; ns means p > .05. (J) Counts and relative proportions of each neutrophil cluster in NT, PT, O, P, LN,
and Li. (K) tSNE of neutrophils clusters (N0-N5) in NT, PT, and M. (L) Violin plots showing the expression of LYZ in each neutrophil cluster.
****p < .0001. (M) RNAscope staining indicates the co-expression of LYZ, NAMPT, and DAPI (nuclei) on Paneth-like cells in PT
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F IGURE 7 T and B lymphocyte subclusters vary among different organ metastases. (A) tSNE of CD8+ TEM, exhausted CD8+ T, CD8+

TEM, and Tregs coloured with metastasis type and unsupervised cluster number. (B) Heatmap of top 20 DEGs in exhausted CD8+ T cells in the
different samples. (C) The violin plot shows a significant difference in the mean score of the 20-gene signature from lymph node-derived
exhausted CD8+ T cells between the non-lymph node metastasis (n = 17 intestinal-histology and mixed-histology patients) and lymph node
metastasis (n = 146 intestinal-histology and mixed-histology patients) groups in the primary GC dataset (GSE62254). The box plots represent
the median, bottom and top quantiles, whiskers correspond to 1.5× the interquartile range. Log-rank p < .05 was considered statistically
significant. (D) Prognostic significance of the 20-gene signature in exhausted CD8+ T cells derived from the lymph node metastasis samples
was validated in the GC dataset (GSE84437, n = 433 patients). Log-rank p < .05 was considered statistically significant

upregulated DEGs of each subset was high in LN and PT3,
but was low in the other T or B subpopulations. Then, the
20-gene signatures of CD8+ TEM, exhausted CD8+ T cells,
Tregs, CD4+ TEM, and exhausted CD4+ T cells were vali-
dated in an independent GC cohort (GSE62254). For each
tumour sample in these data, a score of 20-gene signature
from lymph node-derived T subpopulation was calculated
using bulk RNA-seq data with a similar method described
previously,13 and sample was categorised into either the
primary GC with lymph node metastasis or the primary
GC without lymph node metastasis (including other type
metastases and the primary tumour without any metas-
tases) group. In Figure 7C, only the score of the 20-gene sig-

nature from lymph node-derived exhausted CD8+ T cells
was significantly higher in the primary GC with lymph
node metastasis compared with that in the non-lymph
node metastasis set (p < .05). Furthermore, the prognostic
significance of this 20-gene signature in exhausted CD8+
T cells derived from the lymph node metastasis samples
was evaluated in a large-scale GC cohort (GSE84437). The
results showed that patients with high scores of this 20-
gene signature in exhausted CD8+ T cells derived from the
lymphnodemetastasis samples, had a significantly shorter
survival than those with lower scores (p< .01) (Figure 7D),
indicating great potential of this 20-gene signature to prog-
nosticate patient survival.
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3 DISCUSSION

Intra- and inter-tumour heterogeneity in the primary
tumour and different metastases limit the effects of
chemotherapy and immunotherapy on GC, thereby hin-
dering treatment and outcome prediction. Therefore, a
comprehensive understanding of the biological hetero-
geneity in primary GC and metastases is urgently needed.
Herein, using scRNA-seq, both heterogeneity and core
gene expression signatures for specific carcinoma cell
subtypes were illustrated, and a distinct and dynamic
TME was identified in the primary tumour and different
metastases.
We have identified a high degree of carcinoma cell het-

erogeneity during GC progression by identifying diverse
malignant epithelium subsets and their distinct roles.
Notably, a rare cell type,G3,with strongEMTand stemness
signatures was identified in PT and different M. Mount-
ing evidence suggests that EMT induction strongly affects
tumour progression, facilitating cancer cell invasion and
metastasis to distant sites generating stem-like cells, which
is associatedwith drug resistance in cancer.97 Consistently,
clinical data showed that Patient 3 (O1), with a higher
proportion of G3 cells, exhibited resistance to the PD-1
inhibitor and paclitaxel-albumin combined therapy. More-
over, G1 cells exhibited EMT characteristics with peri-
toneal dissemination andwere only found in the ovary and
peritoneal metastases. A high frequency of ovarian metas-
tasis with peritoneal dissemination has previously been
reported,98 indicating that G1 cells are a characteristic of
these metastases. Two branches, invasive and angiogenic
G0 and dormancy-likeG2, appeared in the trajectory graph
reflecting different states of malignant epithelial cells.
Dormant cancer cells have been investigated in primary
tumours andmetastases like in breast cancer and GC.99,100
These cells enter dormancy, evade therapies and are highly
associated with local recurrence or metastasis, which has
become a new challenging area in cancer therapy.100 We
found that high expression of G0-, G1- or G3-associated
genes can predict poor survival for patients with GC, sug-
gesting that these three subclusters are more aggressive
and that these core gene signatures could serve as biomark-
ers of prognosis. We used CopyKAT to detect CNVs in
malignant epithelial cells in GC primary tumour sites and
metastases.Most of themetastases shared similar subclone
1 except one liver metastasis from Patient 1 who had distal
gastric adenocarcinoma with liver metastasis. Moreover,
CNVs inmalignant epithelial cells showed inter- and intra-
tumour heterogeneity of subclones between the GC pri-
mary tumour sites and metastases.
An immunosuppressive characteristic was observed in

MAIT in M and T cell-like B cells. In contrast to previ-

ous studies showing that MAIT cells kill tumour cells,
recent studies reported that MAIT cells exhibit tumour-
promoting effects by suppressing T and/or NK cells in
lung cancer,101 and MAIT cells with an exhausted phe-
notype would indicate poor outcome in hepatocellular
carcinoma.102 Consistently, MAIT cells in M presented
a diminished effector-memory T-cell phenotype with no
cytotoxic responses compared with those in PT and NT.
Meanwhile, a higher proportion of T cell-like B cells was
identified in M, which was in line with a previous find-
ing that the percentage of T cell-like B cells in the periph-
eral blood of patients with GC metastases is significantly
higher than those in patients without metastases,103 indi-
cating that T cell-like B cells might play some roles in GC
metastasis. This study suggested that T cell-like B cells are
associated with the inhibition of T and NK cell effects and
the binding of endothelial cells. Althoughmore functional
assays are warranted, MAIT and T cell-like B cells might
provide a new approach for GC anti-tumour therapy. We
also found that PD-1 expression in CD8+ T cells might pre-
dict the clinical response to PD-1 blockade in GC, which
is consistent with that in other cancer types like hepa-
tocellular carcinoma.104 More importantly, based on the
clinical data (Patients 3 and 6), the expression of PD-1 in
CD8+ T cells could be more predictive and suitable than
the CPS for identifyingGC patients whowill respond effec-
tively to anti-PD-1 therapy. Additionally, previous studies
have indicated that the simultaneous blockade of mul-
tiple inhibitory receptors leads to the synergistic rever-
sal of T-cell dysfunction and improves the disease control
ratio in cancer.105,106 Based on the high expression of sev-
eral inhibitory receptors (Figures 3F and S8), combinato-
rial therapy targeting specific co-inhibitory receptors may
exert beneficial clinical effects for patients 1, 2, 5, and 6.
A heterogeneous cellular milieu with active crosstalk

between stromal cells and other cell clusters was also high-
lighted. E0 and E3 cells can receive the potential angio-
genic signals, VEGFA, fromG0 andMa0 cells via VEGFR1,
illustrating a pro-metastatic microenvironment for GC
progress. More importantly, both E1 cells and iCAFs were
found to acquire immunosuppressive properties related to
CXCR4+ immune cell recruitment into the stroma. There-
fore, CXCR4 antagonists such as AMD3100 which is fre-
quently used in GC to block the CXCL12/CXCR4 axis
might be effective against E1 cells and iCAFs.68
Furthermore, Ma2 cells, which were found in GC pri-

mary tumours and sites of metastases, were identified as
M-MDSCs. Recently, MDSCs have been detected in vari-
ous cancers and are a promising target for cancer therapy,
includingmelanomas, as well as lung and breast cancers.85
The main functions of MDSCs are to escape immune
surveillance and affect tumour angiogenesis and TME to
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promote tumour progression.85,107 M-MDSCs often upreg-
ulate NO and produce immunosuppressive cytokines,
such as TGF-β, to suppress T cells,84,85,108 which were
also observed in this study. Therefore, targeting MDSCs
might be a novel approach for GC treatment. Notably,
one neutrophil cluster, Paneth-like cells, was found in GC
primary tumours and metastases. Although Paneth-type
granules have been reported in lymphatic and intraperi-
toneal metastasis in synchronous cancers of the oesopha-
gus and ampulla of Vater and in primary GC,109,110 this is
the first report of their existence in lymph node and liver
metastasis of GC.Although the detailed roles of this cluster
remain unclear, their function could be related to engulf-
ment and phagocytosis (Figure S11G). Another subcluster
of N1 was activated by tumour-derived GM-CSF, which
then suppressed T-cell immunity through the PD-L1/PD-1
interaction. This is consistent with previous research that
demonstrated PD-L1 expression on tumour-activated neu-
trophils in GC,82 and provides a potential strategy to over-
come immune suppression in GC. Additionally, N3 cells
were identified asG-MDSCs, showing immunosuppressive
and tumour-promoting properties. Thus, G-MDSCmay be
targeted for GC therapy in the future.
Importantly, HLA-E-KLRC1/KLRC2 signalling was pre-

dicted to function between many cell subsets in the TME.
Normally, tumour cells expressing HLA-E activate the
KLRC1 receptor in cytotoxic lymphocytes and protect
themselves from lysis.53 In this study, not only the cancer
subclusters (G0, G1, and G3) but the E1, MAIT inM, T cell-
like B cells, pDCs, Ma0–Ma3, Mo0–Mo3, and N0–N5 were
predicted to express HLA-E binding KLRC1/KLRC2 in
cytotoxic/exhausted CD8+ T cells and/or NK cells, which
might induce immunosuppression to promote GC metas-
tasis. Consistently, a previous study showed that epithe-
lial cancer cells, as well as tumour DCs and macrophages,
contributed to HLA-E enrichment in adenocarcinoma
including esophageal, colorectal, lung, and kidney can-
cer, and this enrichment related to KLRC1 upregulation
on tumour-infiltrating CD8+ T lymphocytes.111 In a pre-
vious study, which isolated mixtures from GC patient
tumour tissue samples with at least 5% of NKG2A+
(KLRC1) tumour-infiltrating T lymphocytes (TILs), HLA-
E-KLRC1 interaction negatively affected IL2 receptor–
dependent CD8+ TIL proliferation and contributed to
CD8+ TIL dysfunciton.111 Another study showed that
when human colorectal tumour spheroids from colorec-
tal tumour patients were co-cultured with CD8+ T and
NK cells, the expression of HLA-E was strongly induced,
with tumour cells evading the immune response through
HLA-E-KLRC1.112 Besides, haematological malignant cells
co-cultured with NK cells under cytomegalovirus infec-
tion increased NKG2C+ (KLRC2) NK cell expansion and

enhanced their anti-tumour cytotoxicity.113 The present
study found that the amount of IFNγ was significantly
improved following anti-NKG2A antibody treatment com-
pared with the isotype (Figure S15) when co-culture of
macrophages and NK cells. Anti-KLRC1 (NKG2A) mon-
oclonal antibody (Monalizumab) has been proposed as a
novel checkpoint inhibitor used in clinical trials to treat
several carcinomas.56 Currently, there is no such antibody
used to treat GC patients in clinical trial, and thus using
anti-KLRC1 (NKG2A) monoclonal antibody in GC is a
potentially effective treatment strategy.
More intriguingly, a 20-gene signature of lymph node-

derived exhausted CD8+ T cells was discovered and vali-
dated to predict lymph node metastasis in GC. Although
evidence has shown that exhausted CD8+ T cells closely
related to lymph node metastasis in breast cancer and
melanoma,114 this study was the first time to use the gene
signature of lymph node-derived exhausted CD8+ T sub-
cluster to forecast lymph node metastasis in GC. In the
top 20upregulatedDEGs of lymphnode-derived exhausted
CD8+ T cells (Figure 7B),CXCL13,CXCR4,CH25H,HSPD1,
HSP90AA1, and ATF3 have been confirmed to promote
lymph node metastasis in several cancer types.115–120 Espe-
cially, previous studies uncovered that the serum expres-
sion level of CXCL13 in GC patients with lymph node
metastasis was significantly higher than that in thosewith-
out lymphnodemetastasis115 and overexpression ofCXCR4
in primary gastric cancers was certified as an independent
risk factor for lymph node metastasis,116 while HSP90AA1
was correlated with MMP9 to promote cell invasion and
lymph node metastasis in GC patients.119 Thus, these data
further support our findings and highlight the clinical
value of the 20-gene signature in exhausted CD8+ T cells
derived from the lymph node metastasis samples to diag-
nose and prognose lymph node metastasis of GC.
In summary, this is the first study to provide insight

into the intra- and inter-tumour heterogeneity of GC pri-
mary tumour and different organ metastases at a single-
cell resolution level, illustrating correspondence between
cancer cells and TME.We defined the population structure
and cellular status underlying GC progression and corre-
lated several marker genes of distinct subsets to clinical
outcomes in humans. The functional relevance of distinct
subclusters for GC progression was also revealed. Since
there are various methods to detect somatic mutations and
distinct subclones from scRNA-seq data,121–123 it is acces-
sible and worthwhile to perform the parallel profiling of
the genetic and transcriptional heterogeneity of this GC
data in the future, which will provide valuable informa-
tion regarding the somatic mutation evolution and func-
tionality in primary andmetastatic GC. Although the sam-
ple size of scRNA-seq analysis was small, our findings
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were validated in several bulk RNA-seq cohorts with more
than 1100 patients. Our study provides insight into GC
biology and will promote personalised medicine for this
disease.

4 METHODS

4.1 Human specimens for scRNA-seq
analysis

All procedures performed in studies involving human par-
ticipants were in accordance with the ethical standards
of the Institutional Review Board at First Affiliated Hos-
pital, Zhejiang University School of Medicine (No. 2018–
309) andwith theHelsinki Declaration (as revised in 2013).
Written informed consent was obtained from the patients.
In this study, patients diagnosed with GC were enrolled
and 10 samples from six patients were totally collected
(Table S1). Histological types were determined using the
pathological results. Freshly resected biopsieswere divided
into two parts. One part was processed for the scRNA-seq
experiment, and the other part was used for pathological
and histological assessments. All the fresh samples were
preserved in Tissue Storage Solution (Miltenyi Biotech,
Germany) and processed within 48 h.

4.2 Sample dissociation

Briefly, tissues were washed twice using PBS supplied with
10% BSA (Sigma, USA), minced into small pieces with
the size of 2–4 mm3, and then dissociated using a Human
Tumor Dissociation kit (Miltenyi Biotech, Germany).
The only exception was the liver biopsy sample which
was dissociated with the Mouse Liver Dissociation kit
(Miltenyi Biotech, Germany) based on the cell viability
results of preliminary experiment. The cell suspensionwas
further filtered through 70 μm SmarterStrainers (Miltenyi
Biotech, Germany). Red blood cells were removed using
a Red Blood Cell Lysis Solution (10×) (Miltenyi Biotech,
Germany). Dead cells were eliminated using a Dead Cell
Removal Kit (Miltenyi Biotech, Germany) to increase
the efficiency of sorting robust, and the live cells were
washed twice, re-suspended and then used for single-cell
experiments.

4.3 Library preparation and single-cell
RNA sequencing

Library preparation was performed according to the
Chromium Next GEM Single Cell 3ʹ Reagent Kits v3

(10x Genomics, USA). The libraries were then pooled and
sequenced on a Novaseq6000 (Illumina, USA).

4.4 Single-cell RNA expression
quantification, quality control and cluster
analysis

Raw sequencing data from 10x Genomics were aligned
and quantified using the CellRanger (10x Genomics)
suite (version 3.0.2). The human genome GRCh38 was
used as the reference genome and the CellRanger count
module was used to map reads. Raw gene expression
matrices for each experimental condition were imported
in R software (version 3.6.3) using Seurat R package
(version 3.1.5).124 We excluded cells with the following
criteria: less than 200 unique genes expressed, more
than 5000 unique genes expressed or more than 20% of
reads mapping to mitochondria. The gene expression
matrices of the remaining 42 968 cells were normalized
through a global-scaling method with a default scale
factor and natural-log transformed using log(1+x). For
further downstream analysis, variably expressed genes
were selected using the FindVariableGenes function in
Seurat. Then we combined all samples by the function of
IntegrateData and the integrated data was scaled through
the function of ScaleData, aiming to remove the unwanted
sources of variation. We performed cell cycle scoring and
regression to assess the effects of cell cycle heterogeneity
on our data analysis, based on the online method of Seurat
(https://satijalab.org/seurat/articles/cell_cycle_vignette.
html). Each cell was assigned a cell cycle score calculated
by the function of CellCycleScoring() based on its expres-
sion of G2/M and S phase markers. Then, each cell was
allocated different phases (G2/M, S, or G1) according to
its cell cycle score. While scaling the data, cell cycle scores
were set as variables to regress out and were individually
regressed against each feature using a linear model to
remove cell cycle effects. The resulting residuals of the
model were scaled and centred; cell cycle heterogeneity
did not contribute to the PCA results, since the cell cluster-
ing was not separated by cell cycle phases with or without
cell cycle regression (Figure S18A and B). More impor-
tantly, the cell clustering was almost the same between the
data with and without cell cycle regression (Figure S18C),
indicating that cell cycle heterogeneity had few effects on
the analysis. Therefore, we classified cell types without cell
cycle effects removal. Then, we selected the most signif-
icant 20 principal components, via principal component
analysis and used them to perform tSNE dimensional-
ity reduction. Cell clustering was performed using the
‘FindClusters’ function in Seurat, and the clusters were
annotated by the expression of canonical marker genes.

https://satijalab.org/seurat/articles/cell_cycle_vignette.html
https://satijalab.org/seurat/articles/cell_cycle_vignette.html
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4.5 Division of non-malignant and
malignant epithelial cells

The bulk RNA-seq data of stomach adenocarcinoma
(dataset ID: TCGA-STAD.htseq_counts.tsv) were down-
loaded from TCGA database and adopted to recognise
non-malignant cells and malignant epithelial cells. The
top 50 DEGs (adjusted p value < .01) in tumour tis-
sues in TCGA data were selected to calculate malignant
scores, whereas top 50 DEGs (adjusted p value < .01) in
normal tissues were selected to calculate non-malignant
scores, using ‘AddModuleScore’ function in Seurat R pack-
age (Table S5).10 Using the malignant and non-malignant
scores,10 the initial putative malignant and non-malignant
epithelial cells were defined. Specifically, malignant score
minus non-malignant score in each epithelial cell was cal-
culated, and the score was ranked from small to large to
fit the growth curve. Then, cells were divided as malig-
nant with higher score (> -0.02) or non-malignant with
lower score (< -0.02) based on the largest gap near the
inflection point of the growth curve. The bias in the initial
step was due to non-epithelial cells retained in TCGA tis-
sues. Therefore, in the following steps, themalignant/non-
malignant scores of each epithelial cell were re-calculated,
and the top 50 highly expressed genes (adjusted p
value < .01) in putative malignant epithelial cells were
selected to calculate malignant scores, whereas the top 50
DEGs (adjusted p value < .01) in putative non-malignant
epithelial cells were selected to calculate non-malignant
scores. The recognition process was repeated as described
earlier until the classification result was consistent.

4.6 Inference of developmental
trajectory

The cell state transitions were analysed using the Mono-
cle2 algorithm.125 The function of ‘newCellDataSet’ with
the parameter ‘expressionFamily’ of ‘negbinomial.size’
was used to create a CellDataSet object. The function
of dispersion table was performed to determine genes
expression, and genes which were detected in less than 10
cells and had a lower expression than 0.001 were filtered
out. After dimension reduction, the highly variable genes
selected using the FindVariableFeatures function in Seurat
with the method of ‘vst’ were provided to Monocle to infer
the cell trajectory.

4.7 CopyKat performed in malignant
epithelial cells

We applied CopyKAT to malignant cells with default
parameters and extracted inferred copy number profiles

of genes per cell.35 The matrix of copy number alteration
results was passed to ‘Seurat’ R package to create a new
assay for subsequent analysis. After data processing and
dimension reduction, all cells were clustered into subpop-
ulations based on the inferred copy number profiles; the
function of FindAllMarkers() was used to identify genomic
regions with copy number differences of each subpopu-
lation. To annotate the biological function of subpopula-
tions, we performed GO analysis on DEGs withMetascape
(http://metascape.org).

4.8 Calculate the scores of 20-gene
signatures from lymph node-derived
subpopulations

Each subpopulation of T and B cells was re-clustered with
the K-nearest neighbour graph and Louvain algorithm.
For each subpopulation, if more than 90% cells in a clus-
ter came from LN, we defined the cluster as lymph node-
derived subcluster and the top 20 upregulated DEGs of this
cluster were chosen for the score calculation. The expres-
sion matrix was extracted from normalised bulk matrix
of large-scale primary GC (GSE62254) and the samples of
intestinal type and mix type were reserved. For each sam-
ple in this dataset, score of 1 or –1 was assigned for each
of the top 20 upregulated DEGs of lymph node-derived
subpopulation based on its relative expression (> median
value, the score was assigned 1; ≤ median value, the score
was assigned –1).13 After that, the scores of each sample
were summed, which constituted the signature score.

4.9 Survival analysis

RNA-seq and clinical data of stomach adenocarcinoma
patients (cancer study id: stad tcga) were obtained from
TCGA using cgdsr R package. The tumour samples were
divided into two groups along with low (25%) and high
(75%) target gene expression for all patients. Survival anal-
ysis was performed using the Kaplan–Meier formula in
R package ‘Survival’, and finally, the survival curve was
visualised using the ggsurvplot function of the R pack-
age ‘survminer’. We also download another large-scale pri-
mary GAC dataset (GSE84437) and divided all samples
into two groups along with low (20%) and high (80%)
score of 20-gene signature from lymph node-derived CD8+
T cells. Survival analysis and visualisation were imple-
mented through the R package.

4.10 Cell–cell communications analysis

CellPhoneDB126 was used to analyse cell–cell communica-
tions. The genes that expressed in less than 10 cells were

http://metascape.org
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filtered and the filtered gene expression matrix was
imported into CellphoneDB (version 2.1.4). We used per-
mutation tests to provide the significance and used default
on method parameters. After the results of cell–cell com-
munications were obtained, the ligand–receptor pairs,
with no significant mean among all pairs of cell subsets,
were filtered out.
CellTalkDB v1.0 was also used to identify signifi-

cantly enriched ligand–receptor pairs and infer cell–cell
communications.127 The tool is based on a comprehensive
database of ligand–receptor interaction pairs that have
been identified in both humans and mice. The interaction
pairs are thenmanually verified using the known protein–
protein interactions that are available on the STRING
database. Using CellTalkDB v1.0, the proteins that were
expressed in more than five cells were selected and the
threshold of enriched ligand–receptor pair score was set
to 0.1.

4.11 IPA

The FindAllMarkers function in Seurat was used to
calculate the DEGs list of each cell subset with the
following settings: min.pct = 0.2, only.pos = FALSE,
min.pct = 0.2 and logfc.threshold = 0.2. The DEGs of
each cell subset were obtained by comparing the cell
subset with other cells and they were filtered with a
cutoff of the adjusted p value < .05 (Wilcoxon test).
The canonical pathways and diseases and bio functions
of the filtered DEGs were analysed using IPA (QIA-
GEN Inc., https://digitalinsights.qiagen.com/products-
overview/discovery-insights-portfolio/analysis-and-
visualization/qiagen-ipa/).

4.12 GO enrichment analysis

The top 100 upregulated DEGs of each cluster were
then used to perform GO analysis using clusterProfiler R
package,128 and the functional gene sets belonging to bio-
logical process were focused on this study. The q value was
used to select the significantly enriched results with a cut-
off value of .05. The results of GO enrichment analysis are
filtered according to the q value (qvalueCutoff = .05).

4.13 Scoring the proliferative and
migrative capacities of G0–G3 cells

The proliferation scores of G0–G3 cells were generated
according to the expression of signature genes that rep-
resent tumour proliferation ability (MKI67, IGF1, ITGB2,

PDGFC, JAG1, and PHGDH),31,32 while the migration
scoreswere determined bymeasuring the expression of sig-
nature genes that indicate tumour migration ability (VIM,
SNAI1, MMP9, AREG, ARID5B, and FAT1).21,22,33,34 Both
functional scores were defined as the average normalised
expression of the corresponding genes based on previous
literature.129

4.14 Scoring M1 andM2 signatures of
Ma0–Ma3 cells

The M1 or M2 signature score of Ma0–Ma3 cells were gen-
erated according to the expression ofM1 (e.g. TNF,CXCL9,
CXCL10, and IL12A) or M2 (e.g. TGFB1, CD163, CCL18,
and MRC1) signature genes.41 Both signature scores were
defined as the average normalised expression of corre-
sponding genes based on previous literature.129

4.15 Calculating the correlation
coefficient between NT1 and the three GC
normal tissue samples

Cell Ranger outputs of three GC normal tissue samples
previously reported6 were downloaded from https://dna-
discovery.stanford.edu/ and transmitted to the Seurat R
package. Three GC normal tissue samples were filtered
for the parameters thresholds in the article and combined
into one large sample, named ‘CCR’. The top 20 DEGs
between normal (CCR andNT1) and tumour (O1, PT1, PT2,
PT3, Li1, Li2, LN1, LN2, and P1) samples were identified
using FindAllMarkers() for correlation analysis between
samples using spearman coefficient based on the average
expression of the selected genes. The sum of counts across
genes was used to perform correlation analysis between
CCR andNT1. Sums were transformed using log(1+x), and
Pearson’s correlation coefficient was used to calculate the
correlation between the two samples.

4.16 Multicolor RNA−in situ
hybridisation (RNAscope)

Briefly, bake slides of patient tissues were obtained
from The First Affiliated Hospital, Zhejiang Univer-
sity School of Medicine. The slides were pretreated
using the RNAscope R© target retrieval reagents (322000),
RNAscope R© H202 and protease reagents (PN 322381)
(Advanced Cell Diagnostics, USA). Then, they were incu-
bated with the probes targetingNAMPT (599311, Advanced
Cell Diagnostics, USA), LYZ (421441, Advanced Cell
Diagnostics, USA), positive control probe-Hs (320861,

https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://dna-discovery.stanford.edu/
https://dna-discovery.stanford.edu/
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Advanced Cell Diagnostics, USA), and negative con-
trol probe (320871, Advanced Cell Diagnostics, USA).
The RNAscope R© multiplex fluorescent v2 detection kit
(PN 323110) and RNAscope R© wash buffer (PN 310091)
(Advanced Cell Diagnostics, USA) was used to detect tar-
get genes according to manufacturer recommendations.

4.17 Immunofluorescence staining

Bake slides of patient tissues were washed with PBS,
permeabilised with 0.3% Triton X-100 in PBS, and then
blocked in 5% BSA followed by overnight incubation with
primary antibodies at 4◦C. The primary antibodies used for
immunostaining were human anti-CD3 (ab699, Abcam,
UK), human anti-CD19 (ab134114, Abcam, UK), and puri-
fied anti-human TCR Vα7.2 (351702, Biolegend, USA).
After washing, sections were incubated with secondary
antibodies at room temperature for 2 h. Images were taken
by an Olympus fluorescence microscope (BX61, OLYM-
PUS, Japan) and a confocal microscope (Lecia TCS SP8).

4.18 Statistical analysis

All statistical analyses and graph generation were per-
formed in R (version 3.6.3). A Student’s t-test was used to
analyse data.
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