
nutrients

Review

Zinc, Magnesium, Selenium and Depression:
A Review of the Evidence, Potential Mechanisms
and Implications

Jessica Wang 1,†, Phoebe Um 1,†, Barbra A. Dickerman 2 and Jianghong Liu 1,* ID

1 University of Pennsylvania School of Nursing, Philadelphia, PA 19104, USA; jeswang@sas.upenn.edu (J.W.);
phoebeum@sas.upenn.edu (P.U.)

2 Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; bad788@mail.harvard.edu
* Correspondence: jhliu@nursing.upenn.edu; Tel.: +1-(215)-898-8293
† Co-first authors.

Received: 5 April 2018; Accepted: 3 May 2018; Published: 9 May 2018
����������
�������

Abstract: Micronutrient deficiency and depression are major global health problems. Here, we
first review recent empirical evidence of the association between several micronutrients—zinc,
magnesium, selenium—and depression. We then present potential mechanisms of action and
discuss the clinical implications for each micronutrient. Collectively, empirical evidence most
strongly supports a positive association between zinc deficiency and the risk of depression and
an inverse association between zinc supplementation and depressive symptoms. Less evidence is
available regarding the relationship between magnesium and selenium deficiency and depression,
and studies have been inconclusive. Potential mechanisms of action involve the HPA axis, glutamate
homeostasis and inflammatory pathways. Findings support the importance of adequate consumption
of micronutrients in the promotion of mental health, and the most common dietary sources for
zinc and other micronutrients are provided. Future research is needed to prospectively investigate
the association between micronutrient levels and depression as well as the safety and efficacy of
micronutrient supplementation as an adjunct treatment for depression.
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1. Introduction

Micronutrient deficiencies and depression are major global health problems, with more than
two billion people in the world estimated to be deficient in key vitamins and minerals [1] and more
than 300 million people suffering from depression [2]. Micronutrients have been consistently linked
with health outcomes such as cognitive functioning [3,4], cancer [5,6], obesity [7,8], and immune
functioning [9,10]. However, the role of micronutrients in the etiology and progression of depression
remains unclear. Given that micronutrient deficiency is both prevalent and modifiable, even a modest
association with risk of depression would be of public health interest.

Micronutrient deficiencies may play a role in the development of depression, and several studies
have explored micronutrient supplementation as an adjunct to antidepressant therapy. Zinc and
magnesium have been most commonly studied with respect to depression, and it has been suggested
that these micronutrients might influence depression through similar biological mechanisms. Recent
studies have suggested that selenium may also play a role in the development of depression, although
evidence is sparse and inconsistent.

The aim of the present review is to (1) examine empirical evidence of the association between
micronutrients (zinc, magnesium, selenium) and depression; (2) discuss possible mechanisms of action;
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and (3) explore the clinical implications of such findings. As micronutrient deficiency and mental
health are of great global public health importance, understanding the possible roles of micronutrients
in depression will help elucidate the mechanisms underlying this condition and inform primary and
secondary prevention strategies.

2. Zinc

Zinc is an essential trace element important for many biochemical and physiological processes
related to brain growth and function [11,12], as well as cellular metabolism [13,14]. Zinc is acquired
through dietary intake of foods such as red meat, oysters and crab, and zinc deficiency can occur
with reduced intake, insufficient absorption, and/or increased zinc utilization or expenditure.
Normal serum zinc levels range from 0.66 to 1.10 µg/mL in adults [15]. The balance of intracellular and
extracellular zinc levels is crucial for maintaining zinc homeostasis in many brain regions, including
those involved in the physiopathology of depression, such as the hippocampus, amygdala, and the
cerebral cortex [13,14,16].

An association between zinc and depression was first suggested in the late 1980s [17]. Since then,
the association between zinc and depression has been extensively studied in both animals and humans.
Rodent studies have reported associations between zinc deficiency and depressive symptoms [18–21].
Researchers have also reported lower serum zinc levels in animals more resistant to antidepressant
treatment [18,20]. Observational studies have supported these findings [14,22–24]. A meta-analysis
of 17 observational studies found that blood zinc concentrations were approximately 0.12 µg/mL
lower in depressed subjects than in control subjects [25]. Cross-sectional studies among female
adolescents [22,23], postmenopausal women [26] and patients on hemodialysis [27] have reported
a positive association between zinc deficiency and depression severity. Interestingly, in their 2012
cross-sectional study, Maserejian et al. [14] found an association between zinc deficiency and depressive
symptoms among women, but not men. A prospective cohort study similarly found no significant
association between dietary zinc intake and the risk of depression among middle-aged men [28].

Intervention studies in both humans and rodents involving dietary or supplemental zinc have
reported antidepressant-like and mood-enhancing activities of zinc [29–31]. In animal models,
adult rats fed a zinc-deficient diet demonstrated more depressive symptoms than adult rats fed
a zinc-sufficient diet, as assessed by the forced swim test, the tail suspension test as well as
demonstrated anorexia and anhedonia [20,21]. Similarly, depressive symptoms induced in mice
through chronic restraint stress (CRS) were alleviated by treatment by zinc (30 mg/kg) or imipramine,
a traditional antidepressant [32]. Randomized controlled trials among individuals with depression
have demonstrated decreases in depressive symptoms when supplementing antidepressant drug
treatments with zinc compared to antidepressants alone [29,31]. Among healthy young women, those
who received zinc and multivitamin supplements showed greater reductions in depression-dejection
scores of the Profile of Moods State (POMS) assessment than those who had only received multivitamin
supplementation [30].

2.1. Mechanisms

The potential mechanisms underlying the association between low serum zinc and depression
remain unclear, but may involve the regulation of neurotransmitter, endocrine and neurogenesis
pathways. Such mechanisms are outlined in Table 1.

In the hippocampus and cortex, zinc ions regulate synaptic transmission or act as
neurotransmitters [33], modulating many ligand- and voltage-gated ion channels [34–40]. Disruption
of zinc homeostasis in these regions has been implicated in many disturbances in cognition, behavioral
and emotional regulation [41] through mechanisms of decreased neurogenesis [42,43] and neuronal
plasticity [43].

Zinc deficiency has also been implicated in the endocrine pathway of depression. Takeda et al. [44]
reported that a zinc-deficient diet induced high levels of serum cortisol concentration in rats.
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Persistently high levels of cortisol have been implicated in the development of depression via
hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis [45,46]. Increased plasma cortisol
levels could, therefore, potentially mediate the relationship between zinc deficiency and depression.

Further, recent research has highlighted the role of zinc transporters (ZincTs) and zinc-sensing
GPR39 receptors in the development and treatment of depression [47]. Zinc transporter-3 knockout
mice lack vesicular zinc and demonstrated fewer proliferating progenitor cells and immature
neurons [48]. A reduced hippocampal volume has been extensively reported in association with
depression [49,50], thus implicating the disruption of Zinct-3-dependent neurogenesis in the etiology
of depression. In addition, GPR39 receptors have been increasingly associated with the serotonergic
system, as recent studies have established links between GPR39 proteins and serotonin synthesis [51]
and receptor signaling [52]. Moreover, GPR39 receptors have also been reported to play a role in the
action of antidepressants. GPR39 knockout mice have been shown to be resistant to the normalizing
effects of imipramine and escitalopram in the forced swim test (FST) [53]. Moreover, studies have
shown that the binding of zinc to GPR39 receptors activates downstream cyclic AMP-response element
(CRE)-dependent gene transcription, resulting in higher levels of brain-derived neurotrophic factor
(BDNF) in the hippocampus and cortex [54]. The action of zinc mimics the actions of traditional
antidepressants, and previous studies have shown normalization of low BDNF levels in depressed
patients treated with antidepressants [55,56].

Another possible reason for the antidepressant effects of zinc may be the anti-inflammatory
and antioxidant properties of zinc supplementation. Previous studies have reported that zinc
supplementation decreases C-reactive protein (CRP) levels in humans [57,58]. Increased CRP levels
have been previously associated with depression [59,60], and a recent study found that the effectiveness
of the antidepressant, agomelatine, was associated with a reduction in CRP levels [61]. Similarly, zinc
has demonstrated protective effects against lipid peroxidation [62,63]. Recent evidence has supported
a relationship between lipid peroxidation and major depression [64], suggesting that the observed
antidepressant properties of zinc result, in part, from its antioxidant effects.

Lastly, the potential antidepressant properties of zinc may be related to its function as an antagonist
of the glutamatergic N-methyl-D-aspartate (NMDA) receptor and involvement in the L-arginine–nitric
oxide (NO) pathway as a nitric oxide synthase (NOS) inhibitor. NMDA has been therapeutically
targeted in clinical and preclinical studies of depression treatment, as growing evidence supports
the presence of disrupted glutamate homeostasis and neurotransmission in depressed subjects [65].
In a study that measured depressive symptomology in mice, both blockage of NMDA receptors
and addition of NOS substrate independently negated the beneficial effects of zinc–chloride on the
reduction of depressive symptoms, suggesting that the antidepressant properties of zinc–chloride may
have been partially mediated by zinc’s inhibition of NOS and NMDA receptors [66].
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Table 1. Potential Mechanisms, Food Sources, and Normal Serum Levels of Zinc (Zn), Magnesium (Mg), and Selenium (Se).

Potential Mechanisms
Food Sources Normal Serum Levels in

AdultsDevelopment of Depression Antidepressant Action

Zn
Increased cortisol; decreased

neurogenesis and neural plasticity;
disruption of glutamate homeostasis

N-methyl-D-aspartate (NMDA) antagonist;
elevated expression of hippocampal and

cortical brain-derived neurotrophic
factor (BDNF)

Oysters, beans, nuts, red meat, certain
types of seafood (crab and lobster),

whole grains, fortified breakfast
cereals, dairy products

0.66–1.10 µg/mL

Mg

Dysregulation of
hypothalamic–pituitary–adrenal

(HPA axis); increased Ca2+ in brain;
increased inflammatory response

NMDA antagonist; serotonin, dopamine,
noradrenaline modulation; increased

BDNF expression; modulation of
sleep–wake cycle

Green leafy vegetables (spinach),
some legumes (beans and peas), nuts

and seeds, whole grains
0.62–1.02 mmol/L

Se
Dysregulation of thyroid function;

dysregulation of oxidative and
inflammatory pathways

Serotonin, dopamine, noradrenaline
modulation; attenuation of inflammation

Seafood, bread, grains, meat, poultry,
fish, eggs 70–90 µg/L
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2.2. Discussion and Implications

Several methodological considerations underlie the evaluation of the research studies reviewed
here. First, the measurement error of zinc status should be considered. While the measurement of
serum zinc levels has been shown to be a useful biomarker of population zinc status, its reliability as
an indicator of individual zinc status has not been demonstrated [67]. The relationship between serum
zinc levels and depression could be partially explained by reverse causation, whereby depression
influences the intake [68], bioavailability or biological regulation of zinc [20,32,69]. Oxidative stress
and its accompanying immune-inflammatory response have been linked to the pathophysiology of
depression [70]. In response to oxidative stress, levels of pro-inflammatory cytokines (e.g., interleukin
1 (IL-1) and IL-6) increase and, in turn, decrease of the level of albumin and increase the synthesis of
metallothioneins [71]. Albumin is the main zinc transporter [72], and a decrease in albumin coupled
with an increase in metallothioneins may compound to decrease serum levels of zinc. Future studies
should include oxidative stress markers to further assess the directionality of the relationship between
zinc status and depression status.

Finally, potential confounding by socioeconomic status and diet should be considered, as these
factors could influence both zinc status and the risk of depression. Hair cortisol and parental
education status have been found to be associated with hair zinc levels in a population of Canadian
preschoolers [73], thus pointing towards a possible mechanism through which socioeconomic status
could influence both zinc levels and depression. Dietary factors, such as the consumption of phytates,
a compound present in many grains, have been shown to reduce zinc absorption in the intestine [74].
Furthermore, as zinc is primarily consumed through red meats and seafood, diets that limit the
consumption of these foods (e.g., vegetarianism, veganism) may alter serum zinc levels.

Further prospective studies are needed to investigate potential biologic mechanisms that
may underlie the association between zinc and depression. Zinc deficiency may increase the
vulnerability to psychological stress by depressing levels of neurogenesis and plasticity, and
maintaining electrophysiological balance in various brain regions. These psychological and biological
changes may act in concert to influence the development of depression, which itself could further
reduce serum zinc levels. If evidence for a causal effect of zinc on depression risk accumulates, future
studies exploring the safety and effectiveness of zinc as a potential supplement to antidepressants
could also be warranted. Future intervention treatments should note that the presence of excess zinc
can be potentially problematic. Secondary copper deficiency has been demonstrated as a potential
consequence of a high dietary intake of zinc [75]. As a result, it is recommended that dietary zinc
intake is limited to the recommended amount or that zinc supplementation is coupled with adequate
copper supplementation. In the Age-Related Eye Disease Study, supplementation of zinc was given
with a small amount of copper (80 mg zinc oxide, 2 mg cupric oxide) [76].

3. Magnesium

Magnesium is a micronutrient that is essential for the proper activity of many biochemical and
physiological processes, including DNA replication, transcription and translation [77,78]. It is a
bivalent intracellular cation that acts as a coenzyme or an activator for over 300 enzymatic systems,
many of which are important for proper brain function [79]. Magnesium is usually consumed
through nuts, seeds, green leafy vegetables and whole grains. Normal serum magnesium levels
range from 0.62 to 1.02 mmol/L [80]. A 2005 study that leveraged dietary surveys suggested that 68%
of Americans consume less than the recommended daily allowance of magnesium [81]. Magnesium
levels are important for central nervous system (CNS) function and may play a role in Alzheimer’s
disease, diabetes, stroke, hypertension, migraines and attention deficit hyperactivity deficit [82].
Previous studies have associated magnesium with various brain regions in the limbic system [83], thus
implicating a possible role for magnesium in the etiology and progression of depression.

A positive association between magnesium deficiency and depression has been documented in
both animal and human studies. Mice subjected to magnesium deficient diets have shown behavioral



Nutrients 2018, 10, 584 6 of 19

deficits associated with depression [84–86]. Likewise, cross-sectional studies [26,87–89] have reported
an inverse relationship between depressive symptoms and magnesium levels and magnesium intake,
which persisted after adjustment for age, body mass index, and education. However, prospective
cohort studies have failed to find an association between magnesium status and later risk of depression.
A study performed in the SUN Mediterranean cohort of 15,863 men and women without any history
of depression found no significant association between magnesium intake, as assessed by diet, and
risk of depression 10 years later [90]. Another study of approximately 13,000 Spanish university
graduates free of depression at baseline reported an inverse association between magnesium intake
and depression incidence 6 years later [91].

Some intervention studies have suggested a beneficial role of magnesium supplementation in the
treatment of depression [92,93], while others have not [94,95]. A recent randomized clinical trial in a
population of adults diagnosed with mild-to-moderate depression found that the consumption of 248
mg of magnesium per day for 6 weeks resulted in a clinically-significant 6 point decrease (p < 0.001)
in depressive symptoms, as measured by the Patient Health Questionnaire-9 (PHQ-9) compared to
those receiving a placebo treatment [93]. Similarly, a randomized controlled trial of 60 individuals
with depression and hypomagnesemia demonstrated that daily consumption of 500 mg magnesium
oxide led to significant improvements in Beck Depression Inventory scores, compared to individuals
with depression and hypomagnesemia who received a placebo [92]. However, intervention studies
among postpartum women [95] and an elderly population with hypomagnesemia [94] found no effect
of magnesium supplements, of 328 mg/day and 50 mg/day, respectively, on the depression statuses of
these individuals.

3.1. Mechanisms

The biological mechanisms that potentially underlie the association between low serum
magnesium levels and depression remain unclear but may involve the central nervous system, stress
axis, and oxidative pathways. These mechanisms are outlined in Table 1.

Magnesium deficiency has been shown to lead to changes in the functioning of the central
nervous system (CNS), especially in the glutamatergic transmission in the limbic system and cerebral
cortex [54]—brain regions that play important roles in the etiopathogenesis of depression [96–98].
Magnesium is particularly well known for its importance as an antagonist of the NMDA glutamate
receptor, which has long been understood as a key player in synaptic potentiation, learning and
memory [99,100]. However, despite magnesium’s well-known involvement in the voltage gating
function of the receptor, evidence pointing towards direct magnesium-induced changes in NMDA
channels in the expression of depression-like behavior is scarce. A recent mouse study found
that dietary magnesium restriction reduced levels of the GluN1 NMDA receptor subunit in the
amygdala and hypothalamus [101], a phenomenon that mirrors the GluN1 reduction response
to chronic stress [102]. Further, because NMDA channels mainly conduct calcium and sodium
currents, a depletion of magnesium could allow for excess calcium current. Evidence supports
the possibility that magnesium deficiency disrupts neuronal function by means of increasing neuronal
calcium flow, thereby resulting in increased nitric oxide, a toxic reactive oxygen species that leads to
neuronal swelling and death [103–105]. While the mechanism has yet to be elucidated, studies have
demonstrated that the ameliorative effects of magnesium on depressive symptoms in mice can be
reversed by NMDA-receptor agonists [106], thus pointing to a possible interaction between magnesium
and the NMDA receptor as a therapeutic target for the treatment of depression.

Another possible mechanism for magnesium’s protective effect against depression could involve
magnesium’s modification of the stress response. Magnesium’s ability to reduce the release of
adrenocorticotrophic hormone (ACTH) and modulate adrenocorticotropic sensitivity to ACTH is
preventative against the hyperactivation of the HPA axis. Dysregulation of the HPA axis in adults has
been robustly linked to stress and depression; elevated cortisol and dysregulated HPA activity are
highly over-represented in depressed populations [107,108]. Glucocorticoids have been continuously
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demonstrated to exhibit neurotoxic effects in the hippocampus, thus suggesting a role for excess
glucocorticoids in the hippocampal cell death observed in depression [109,110]. If HPA axis dysfunction
plays a mechanistic role in depression, magnesium deficiency could be a risk factor making individuals
vulnerable to chronic elevated cortisol and its neurodegenerative effects.

Magnesium’s role in the gut microbiota (GM) has been of recent interest, as alterations in GM
have been linked to depression [111,112]. Magnesium-induced changes in microbiota have also been
associated with changes in the oxidative and inflammatory response, characterized by increased
cytokines and biomarkers of cellular stress [113]. A recent study examining depression in mice
demonstrated that 6 weeks of a magnesium-deficient diet induced depressive symptoms in the FST,
which was associated with changes in GM and hippocampal interleukin-6 [86]. Previous studies
have also demonstrated an inverse association between dietary magnesium intake and levels of
inflammatory markers, such as serum C-reactive protein, interleukin-6 and tumor necrosis factor-α
receptor 2 [114,115]. As evidence for the potential roles of inflammation and oxidative stress in the
pathogenesis [116,117] and the progression of depression [118] continues to accumulate, it may be
important to consider magnesium’s immune modulatory role.

Magnesium could potentially exert antidepressant effects through its role in serotonergic,
noradrenergic and dopaminergic neurotransmission [119,120], increased expression of BDNF [121]
and modulation of the sleep–wake cycle through augmentation of the biosynthesis of melatonin [122].

3.2. Discussion and Implications

Overall, the majority of evidence supports an inverse association between magnesium and the
development of depression, as well as the antidepressant properties of magnesium. Methodologically,
it is important to note that erythrocyte magnesium levels have been demonstrated to be more reliable
in determining magnesium deficiency than serum levels [123]. Because only about 1% of total body
magnesium is typically found extracellularly in the serum, serum magnesium levels are not necessarily
representative of total body magnesium or the concentration of magnesium found intracellularly
that is available for cellular use [124]. Magnesium homeostasis is maintained by the intestine, the
bones and the kidneys; magnesium should still be consumed regularly in sufficient amount to prevent
deficiency [125]. As a result of active biological regulation of magnesium levels, magnesium deficiency
is likely an indicator of poor nutrition or ailments that affect magnesium absorption or excretion,
such as diabetes mellitus [125]. The reviewed studies using serum magnesium can thus be viewed
as reliable indicators of persistent hypomagnesemia in individuals, rather than a daily fluctuation in
magnesium intake.

Potential confounding by obesity, comorbidities, medication or diet should be considered, as these
factors may be common causes of a low magnesium status and depression. Potential confounding
by vitamin D and calcium levels is also possible. Magnesium is known to play a role in calcium
balance as well as vitamin D metabolism [126], and dysregulation of these two compounds has also
been implicated in depression [127,128]. Lastly, reverse causation may again be considered, whereby
magnesium deficiency may be secondary to depression-related behavioral changes, such as reduced
food intake [20].

Going forward, additional studies are needed to investigate the potential mechanisms that may
underlie the association between magnesium and depression, as well as individual-level factors that
might explain the variable associations found for magnesium supplementation. The evaluated studies
varied with regard to magnesium dosage, ranging from 50 to 500 mg/day, and there is no clear trend
between magnesium dosage and antidepressant effects. Similarly, the studies also varied with regard to
patient population and duration of treatment as well as the unreliability of magnesium intake reports,
which could, in turn, affect the discrepant findings. Furthermore, there is no observed relationship
between the effect of magnesium supplementation and pre-treatment with magnesium or depressive
status. Additional intervention studies might clarify whether magnesium supplementation can confer
any benefits in the treatment of depression.
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4. Selenium

Selenium is an essential trace element that is vital for the proper functioning of several
selenoproteins involved in antioxidant defenses within the brain and nervous system [129–131].
Currently, the recommended daily allowance of selenium is 55 µg/day [132]. Optimal serum selenium
levels are defined as being between 70 µg/L and 90 µg/L [133]. As the source of selenium intake is
through the consumption of grains, selenium intake is highly dependent on the selenium content in
food, which is, in turn, dependent on the selenium content of the soils in which it is grown. As a result,
selenium deficiency often results from suboptimal presence in regional soil, thus making selenium
deficiency often an endemic problem. It is estimated that one in seven people have low dietary
selenium intake [134], and selenium deficiency has been implicated in a variety of conditions, such as
renal disease [135] and obesity [136].

Given its neuromodulatory role in brain function [137–139], recent studies have investigated a
relationship between selenium levels and depression. A rodent study found an association between
selenium deficiency and decreased BDNF concentrations [140]. As a neurotrophic factor that has been
extensively associated with the pathophysiology of major depressive disorder [141,142], it is plausible
that BDNF concentrations could mediate the relationship between selenium deficiency and depression.
In an intervention study performed on mice, Brüning et al. [143] showed that the administration
of m-trifluoromethyl-diphenyl diselenide (m-CF3–PhSe)2, a multi-target selenium-based compound,
reduced depressive symptoms as measured by immobility time in a forced swimming test (FST),
in female mice, suggesting a potential antidepressant effect of selenium.

Observational studies have also investigated the relationship between selenium and depressive
symptomology or risk of depression but have provided inconsistent results. A cross sectional study
performed in a middle-aged population in West Texas demonstrated an inverse relationship between
selenium level and depressive symptoms as measured by the Geriatric Depression Scale (GDS) [144].
Similarly, data from a nested case-control study on 1494 women aged 20–89 years reported that
lower dietary selenium intake (<8.9 µg/day) was associated with a higher risk of developing major
depressive disorder [139]. However, the results of two cross-sectional studies performed among a
geriatric population in rural China [137] as well as a population of hemodialysis patients [145] found
no significant association between selenium levels and depression scores after controlling for chronic
kidney disease and cognitive function. Conversely, several studies have found a positive association
between selenium serum levels and depressive symptomology. In a cross-sectional study using toenail
biomarkers from 3735 participants aged 20–32 years, Colangelo et al. [146] found that higher levels
of selenium exposure as assessed through toenail clippings were associated with the presence of
elevated depressive symptoms. The idea that an “optimal range” with respect to depressive outcomes
may exist for selenium levels was supported by Conner et al.’s [147] cross sectional study that found
increased depressive symptomology below and above the serum selenium levels of 82 and 85 µg/L,
with depressive symptomatology at its lowest at 85 µg/L.

Intervention studies of selenium supplementation in humans have reported similarly inconsistent
findings. A randomized control trial among 166 Iranian women found that selenium supplementation
during pregnancy was associated with increased selenium serum levels as well as lower scores on the
Edinburgh Postnatal Depression Scale (EPDS) compared to those receiving placebo after 8 weeks of
treatment [138]. However, Rayman et al. [148] reported the results of a randomized control trial to
evaluate the effect of selenium supplementation on mood using the Profile of Moods States-Bipolar
Form (POMS-BI) questionnaire and found that supplementation of selenium significantly increased
plasma selenium levels without influencing mood scores after six months of supplementation.

4.1. Mechanism of Action

The association between selenium and depression has been less explored than the associations
between zinc and magnesium with depression. However, research has suggested several possible
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hypotheses regarding selenium’s mood-enhancing effects, including its role in maintaining metabolic,
oxidative and central nervous system functioning. These are outlined in Table 1.

Selenium’s modulatory effects on metabolism may influence an individual’s susceptibility to
developing depression. Selenium, which is incorporated into iodothyronine deiodinases (DIOs),
is essential for the proper synthesis and metabolism of thyroid hormones. It has been long recognized
by clinical investigators that thyroid function is associated with neuropsychiatric manifestation, such
as mood disorders, cognitive dysfunction and other psychiatric symptoms [149]. Selenium deficiency
and resulting deregulation of thyroid function may play a role in the development of depression [150].

The results from our review also indicate that an increasing amount of evidence points towards
an “optimum range” of serum selenium levels in relation to depressive symptomology [146,147].
Studies have found that both high and low selenium levels have been linked with dysregulation of
oxidative and inflammatory pathways, offering another potential mechanism that could explain the
observed association between selenium levels and depression. Selenoproteins, such as glutathione
peroxidases, thioredoxin reductases and selenoprotein P, are known to provide protection against
lipoperoxidation and oxidative cell damage. A low selenium concentration has been associated with
an increased level of pro-inflammatory cytokines, such as interleukin-6 (IL-6), C-reactive protein,
and growth differentiation factor-5 (GDF-5) [151–153]. Additionally, a 2017 study demonstrated an
association between low levels of cholesterol and increased risks of depression and suicidality [154],
suggesting a possible role for selenium’s anti-lipoperoxidative actions in its protective effect against
depression. However, at an optimum level of selenium supplementation, there is an enzymatic
and protein saturation effect that sends excess selenium into a metabolic process to restrict the
further creation of selenoproteins. The metabolites of this excess selenium metabolism have been
demonstrated to be pro-oxidative and result in increased levels of damaging reactive oxygen species
(ROS) [155] Recent studies have shown that depression is associated with increased levels of oxidative
stress biomarkers, strengthening the hypothesis that oxidative stress and inflammation may be
significant factors in the pathogenesis of depression [149]. In light of selenium’s dual antioxidant and
pro-oxidative properties, it is conceivable that hyperactivity of oxidative and inflammatory pathways
can contribute to the pathophysiology of depression.

Lastly, selenium could potentially exert antidepressant effects through its modulatory role
in various neurotransmitter systems. Selenium has been found to have significant modulatory
effects on the dopaminergic, serotonergic, and noradrenergic systems [156], which are all involved
in the physiopathology of depression and other psychiatric illnesses [157]. Neurochemical data
indicate that (m-CF3–PhSe)2 modulates the serotonergic system through mechanisms that involve
selective inhibition of monoamine oxidase A (MAO-A), an enzyme implicated in 5-HT degradation,
resulting in an overall increase of 5-HT availability in the synaptic cleft, contributing to its
pharmacological effects [158]. Similarly, dopaminergic neurons vulnerable to oxidative stress have
been shown to be modulated by selenoprotein, thus allowing selenium to play a preventative role in
neurodegeneration [159]. While more studies are needed to clarify the relationship between selenium
and depression, these findings suggest several plausible mechanisms through which selenium could
be protective against depression.

4.2. Discussion and Implications

Studies examining the association between depression and selenium have been largely
inconclusive. Overall, selenium deficiency seems to correlate with depression symptoms. However,
this result was not observed in hemodialysis patients or in a rural elderly population in China. It is
important to note that dialysis patients are at increased risk of selenium depletion due to low diffusion
of selenium over the dialyzer membrane [160]. Moreover, comorbidities and other confounders, such as
age and geographic location, may contribute to the discrepant findings. Alcohol is another potentially
important confounder of this relationship as chronic alcoholism leads to lower plasma selenium
through a reduction of selenium deposits as well as depression of selenoprotein expression and
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activity [161]. Longitudinal and cross sectional studies have further found associations between alcohol
abuse and depression [162,163], In addition, zinc [25] and iron [164] may serve as confounders as both
have been associated with depression status. Zinc has been shown to modulate the bioavailability of
selenium, although the mechanism for this relationship is unclear [165].

Selenium exposure classification also varied within the reviewed studies. The majority of the
reviewed studies utilized serum selenium or dietary intake of selenium as measurements of selenium
levels. Selenium is regulated through excretion, and a direct relationship is evident between selenium
intake and excretion [166]. As a result, selenium must be consumed regularly to maintain adequate
selenium levels. However, the brain retains selenium better than any other tissue [167] and thus,
measurement of selenium serum deficiency may not be indicative of brain selenium levels. Similarly,
utilizing dietary recall incurs the risk of unreliability and recall bias that could potentially confound
the results.

Further prospective investigations are needed to clarify the relationship between selenium and
depression and to investigate reasons for the discrepant findings noted in this review. The inconsistent
findings could be a result of different participant characteristics, such as geographic location, which
plays a role in the amount of selenium available in local produce and subsequent selenium intake.
Similarly, differing methods of the measurement of depression outcome as well as the duration of
selenium treatment could potentially explain discrepant findings. For future intervention trials, it is
important to note that high levels of selenium are toxic, as high dose selenium supplementation at or
above 1600 µg/day has been shown to induce symptoms of selenium toxicity [168].

5. Conclusions

In this integrated review, we examined several lines of evidence, including animal, observational,
and intervention studies, which provided evidence for a potential role of micronutrients in the
development and progression of depression. The literature most strongly supports a role for
zinc deficiency in increasing the risk of depression as well as the mood-enhancing effects of zinc
supplementation in populations both with and without depression. While studies examining the
magnesium–depression relationship have reported mixed findings, evidence generally supports a
relationship between magnesium deficiency and the risk of depression as well as its antidepressant
properties. The fewest number of studies have examined the link between selenium and depression, as
most of the literature studying micronutrients has focused on zinc and magnesium. Studies examining
the selenium–depression relationship have reported inconsistent findings, and future studies are
needed to understand the effects of selenium deficiency on the etiology and treatment of depression.
Although selenium deficiency is quite rare and regionally-specific, it has been recognized as an
imminent public health problem due to the effects of climate change [169]. More prospective cohort
and intervention studies are needed to assess the relationship between serum micronutrient levels
and later risk of depression as well as the potential mechanisms underlying the observed associations.
If evidence for a causal effect of these micronutrients on depression outcomes accumulates, the safety
and efficacy of micronutrient supplementation as an adjust treatment for depression could also be
explored. A balanced diet including adequate intake of foods containing zinc and other micronutrients
could be an effective supplement to antidepressants for alleviating depressive symptoms.
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