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a b s t r a c t

Poly glutamine and glutamine-rich peptides play a central role in a plethora of pathological aggregation
events. However, biophysical characterization of soluble oligomers -the most toxic species involved in
these processes- remains elusive due to their structural heterogeneity and dynamical nature. Here, we
exploit the high spatio-temporal resolution of coarse-grained simulations as a computational microscope
to characterize the aggregation propensity and morphology of a series of polyglutamine and glutamine-
rich peptides. Comparative analysis of ab-initio aggregation pinpointed a double role for glutamines. In
the first phase, glutamines mediate seeding by pairing monomeric peptides, which serve as primers
for higher-order nucleation. According to the glutamine content, these low molecular-weight oligomers
may then proceed to create larger aggregates. Once within the aggregates, buried glutamines continue to
play a role in their maturation by optimizing solvent-protected hydrogen bonds networks.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Protein misfolding, aggregation and their eponymous diseases
have been vastly studied since the pioneering work of Alois Alzhei-
mer in the beginnings of the twentieth century [1]. After Alzhei-
mer’s disease, multiple neurodegenerative diseases/protein dyads
have been described, including frontotemporal dementia/TDP-43;
Creutzfeldt-Jakob’s/prion-protein or Parkinson’s/a-synuclein.
Abnormal protein aggregation is also present in systemic diseases
like in the amyloid cardiomyopathy/transthyretin and type-2 dia-
betes/islet amyloid polypeptide. A special neurodegenerative sub-
category is represented by the inherited polyglutamine diseases,
where the neurotoxicity correlates with the length of consecutive
glutamine tracts in the corresponding proteins. Some of the most
studied glutamine related disease/protein dyads include
Huntington’s/huntingtin; Kennedy’s/androgen receptor;
spinocerebellar ataxia/ataxin-1, and dentatorubral-pallidoluysian
atrophy/atrophin-1.

In the vastly studied Alzheimer’s amyloid cascade hypothesis,
published by Hardy et al. in 1992, the key event proposed to trigger
neurotoxicity is the formation of insoluble protein aggregates [2].
However, Lambert et al. changed this paradigm, in 1998, shifting
the investigation focus towards soluble oligomers as the main
responsible for inhibition of long-term synaptic plasticity [3].
Since then, all the above-mentioned protein aggregation diseases
have been associated with these soluble, small aggregated species
[4–12].

Although aggregation is clearly a multifactorial process, it may
be determined by the relative abundance of certain amino acids in
short protein motifs. In particular, the presence of glutamines is
recognized as a potential trigger for the formation of oligomeric
species [13].

The experimental structural determination of protein oligo-
meric species is extremely challenging because of their transient
nature and structural heterogeneity [14]. To cope with these diffi-
culties, many computational studies have addressed the interac-
tion modes of numerous aggregating peptides, including
polyglutamine peptides, providing useful mechanistic insight
[15–24].

Despite significant efforts, a comprehensive picture of the role
of glutamine residues in different contexts is still missing. Among
other reasons, this void originates in the substantial computational
cost of atomically detailed simulations. This problem rapidly
upscales, as different peptide sequences, multiple copies, and con-
ditions are necessary to obtain a proper generalization in biologi-
cally relevant timescales.
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In 2010, Voth et al. [21] presented a solvent-free coarse-grained
(CG) model for polyglutamine peptides using a multiscale coarse-
graining method. They derived CG parameters from equilibrium
all-atom MD simulations by sampling instantaneous atomic posi-
tions and forces. However, bottom-up CG models like this may find
difficulties to describe thermodynamic properties, specifically
when applied to heterogeneous systems [25]. Nevertheless, they
reported an increase in the compaction of the structures when
increasing the repeat length; although contrarily to experimental
findings, the secondary content obtained were rich a-helices. Using
the same CG model Yang et al. [26] studied the influence of con-
centration and temperature on polyglutamine aggregation. Alter-
natively, Rickman et al. [19] focused on the effects of
supersaturation over the nucleation mechanisms of Q10 peptides
using the PLUM implicit solvent CG model [27]. They could simu-
late large-scale systems formed by 1000 monomers and determine
Q10’s critical nucleus size. Pappu et al. [18] simulated the modu-
lation exerted by heterogeneous flanking regions in polyglutamine
aggregation. They used an ultra-CG model, where each peptide is
represented by one spherical particle. While showing interesting
insights into how flanking regions in huntingtin modulated its
aggregation kinetics and macroscopic shape, no secondary or ter-
tiary structural information was reported because of the minimal-
ist representation of the model.

We circumvent these limitations by employing cutting-edge CG
simulations to examine glutamine’s role in early aggregation
events. For this, we employed the SIRAH force field for CG simula-
tions (see Methods), which has been shown to grant nearly atomis-
tic resolution for folded proteins [28] and a very good description
of global and local descriptors of intrinsically disordered proteins
and peptides [29]. Worth nothing, our force field has shown a
remarkable sensibility to point mutations in proteins and peptides
[29,30] .

We studied a series of polyglutamine (poly-Q) and glutamine-
rich (Q-rich) peptides displaying self-aggregative behavior. A com-
parative analysis among homogeneous poly-Qs of different lengths
and heterogeneous Q-rich peptides shows that glutamines play a
double role in seeding aggregation. First, they participate in initial
inter-monomer contacts, to then become the dominant residue
mediating oligomer association providing solvent-buried electro-
static stabilization.

Taken as a whole, the homogeneous set of simulations pre-
sented here offer original insight into the mechanistic role of glu-
tamine in the initiation of pathogenic aggregation.
Complementary, we present highly detailed scale and time resolu-
tion results that substantiate mechanistic pathways previously
proposed by low-resolution experimental techniques [31,32] .
Fig. 1. Aggregation analysis for Q4 peptides. (A) Mean cluster size measured
throughout 3 ls MD simulations. (B) Number of clusters classified by size. (C)
Global percentage of secondary structure. Representative structures of Q4 dimers
and trimers are drawn with a cartoon representation. Side chains are colored by
element.
2. Results

Aimed to establish a comparative baseline for the aggregation of
Q-rich peptides, we first investigated homogeneous poly-Q, pro-
gressively increasing the length of the peptides. To this aim we
considered three different peptide lengths: Q4, Q11, and Q36. All
simulations were performed at the CG level and backmapped to
atomistic representation (see Methods) to facilitate the visualiza-
tion. It is important to note that despite the CG nature of our
approach, the mapping maintains the most salient characteristics
of each amino acid, in particular those of glutamine (Supplemen-
tary Fig. 1). Namely, the presence of partial charges in the side
chain and backbone moieties retains the capacity to form electro-
static interactions. These interactions are alike but not completely
equivalent to hydrogen bonds because of the obvious absence of
explicit hydrogen atoms, which may affect the directionality exis-
tent between Donor-Hydrogen-Acceptor.
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In the remaining of this section we present the results of our
simulations, which are compared against experimental reports in
the Discussion and Conclusion section.

2.1. Tetraglutamine peptide (Q4)

Q4 in solution showed a quick transition from their initial, fully
extended conformation towards a broad backbone-angle distribu-
tion, scattered on the upper-left quadrant of the Ramachandran
plot (Supplementary Fig. 2A). Along the time, Q4 peptides showed
a continuous interchange between monomeric, and short-lived oli-
gomeric species with a mean cluster size (MCS) of 1.94 ± 0.1
(Fig. 1A). MCS can adopt values ranging from 1 (when all peptides
in solution are monomeric species) up to the total number of sim-
ulated peptides (27, for a full aggregation in the Q4 case; see Meth-
ods). As seen from Fig. 1B, monomeric species are dominant in
solution, followed by dimers and trimers. Analysis of the global
secondary structure (Fig. 1C) evidenced only a small amount of
extended and isolated b-structures, as a result of the fleeting char-
acter of the small clusters observed during the simulation (see
molecular drawings in Fig. 1C).

2.2. Polyglutamine peptide Q11

Compared with the Q4 system, the longer Q11 peptide explored
wider areas of the Ramachandran plot (Supplementary Fig. 2B).
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However, its length was insufficient to generate stable b hairpins-
like motifs, and Q11 sampled mostly linear configurations. In con-
trast with the previous case, the MCS calculation indicated that the
interaction between Q11 occurs in two well-differentiated fashions
(Fig. 2B). Initially, random encounters led to the formation of
dimers or trimers (Fig. 2A), which then served as nucleation seeds.
Subsequently, all Q11 peptides cooperatively associated within a
short time window. The dynamics of this process lead to the MCS’s
saturation, aggregating all the peptides available in the simulation
box. The progressive association of Q11 is accompanied by the pas-
sage from a random coil to parallel or antiparallel b-sheet confor-
mations (Fig. 2C). Indeed, the time series of the secondary
structure for coil and b-sheets shows a scissors-like graph with a
crossing point corresponding to the region where the associations
become cooperative. In the final state, almost 80% of the peptides
are in b-sheet conformation, i.e., only 1–2 amino acids at the
extremities of each peptide remained disordered.

Next, we explored the capacity of smaller peptides to modulate
Q11 aggregation. We focused on pentapeptides, as they could bind
to the aggregates alone or in couples within the same b-strand, sub-
stituting one single Q11. We tested this idea on non-zwitterionic
peptides Q5, and QEQQQ. Compared with the homogeneous Q11
system, both pentapetides sustained aggregation although altering
the aggregation’s kinetics (Fig. 2E, H). Indeed, different dissociation
events occurred during the first half of the simulations, indicating
that the peptides compete for pairing sites on the aggregates (see
insets in Fig. 2E and H). Nevertheless, the content of b -extended
conformations converged to indistinguishable values and, in all
the cases, all Q11 peptides aggregated into decamers (Fig. 2F, I).
However, the pentapeptides’ presence, especially QEQQQ, modified
the aggregate’s final topology (inset Fig. 2H). The procedure pre-
sented here may provide a cost-effective computational strategy
to test for different peptides’ aggregation tendency or explore con-
ditions to modify these propensities.

2.3. Polyglutamine peptide Q36

Increasing the polyglutamine size to 36 amino acids (Q36) con-
ferred the poly-Q the capability to adopt turn conformations and
Fig. 2. Aggregation of Q11 peptides. (First row) Number of clusters classified by size. Th
dissociation events occur. (Second row) Mean cluster size measured throughout 5 ls of M
Time evolution of the percentage of secondary structure content. Results correspond to
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form b-hairpins. The accessibility to a wider conformational vari-
ety translates into different interaction possibilities. Despite this,
in all aggregation events monitored, monomers always interacted
with a pre-formed b-stranded region in a neighboring molecule
(Fig. 3). In close analogy with the Q11 case, after these association
events, the b-sheet content increased reaching average values of
50.37% ± 5.32. The Q36 aggregates presented intricate structural
motifs, showing turn percentages of 9.81% ± 2.5 (Fig. 3 and Supple-
mentary Fig. 3A).

2.4. Q-rich peptides

The results presented in the previous section pointed out that
despite the well-known aggregation propensity of poly-Q peptides,
there is a threshold below which, they cannot sustain large scale
aggregation. Therefore, we sought to characterize how both the
glutamine content in Q-rich and Q-poor peptides can affect their
aggregative behavior.

2.5. a-gliadin peptide (p31–43)

As the first example of Q-rich peptide, we choose a derivative of
the human protein a-gliadin. The peptide named p31–43 carries
five glutamines in 13 amino acids (second row, Fig. 4A) and is a
proteolytic, gluten derived, peptide generated in the stomach and
related to celiac disease [33]. Using biophysical techniques, we
previously showed that this peptide undergoes spontaneous aggre-
gation with a concomitant but limited increase in the b-strand con-
tent [34] .

Here, to focus on the effect of glutamine, we simulated an
ensemble of non-zwitterionic p31–43 and monitored the contribu-
tion of different amino acids during the aggregation process.

In contrast with poly-Q peptides, heterogeneous peptide aggre-
gation followed different dynamics. According to the aggregation
rate, we divide the analysis in three different phases. On phase I,
monomers rapidly associated to form low molecular-weight oligo-
mers (top row, Fig. 4A). This was followed by a slower aggregation
(phase II), where oligomers progressively interacted with each
other until reaching a final amorphous 50-mer aggregate,
e analysis is restricted to the first 3 ls of the trajectory where all the association-
D simulations. Final oligomeric structures are represented in cartoons. (Third row)
Q11 (first column), Q11 + Q5 (second column) and Q11 + QEQQQ (third column).



Fig. 3. Aggregation of Q36 peptides. Snapshots of the association events for each simulated replica are shown in the left grid. Q36 monomers first contacts always involved
interactions with preformed double stranded regions of their counterparts. Secondary structure plots are shown in the right panels.
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presenting a radius of gyration of 2.48 ± 0.01 nm. The global con-
tent of b-extended structures rose from zero to 28.08% ± 1.71.
The cluster size remained stable until the end of the trajectory
(phase III). A per-residue interpeptide contact analysis (third row,
Fig. 4A) indicated that glutamines lead the p31–43 aggregation
process, followed by hydrophobic residues (Leu, Phe, and Tyr), pro-
line, and glycine, to a much lesser extent. This is in line with the
relative amino acid abundances in this peptide. If we divide the
contact analysis in the three above mentioned aggregation phases
we can observe how glutamine-mediated contacts are increased in
phase II (gray shaded time window in the third row of Fig. 4A and
Supplementary video 1). In phase III, contacts established by all
amino acids reach a plateau, except for glutamine. Therefore, not
only glutamines mediate oligomer association but they also con-
tinue optimizing internal electrostatic contacts once all peptides
are clustered. Indeed, the solvent accessible surface area (SASA)
of glutamine residue showed different dynamics (lower row,
Fig. 4A). The SASA reaches a plateau after 2.5 ls, decreasing to
nearly 70% of its initial value, suggesting a sort of maturation
within the final aggregated state.

2.6. Proinsulin’s connecting peptide (C-peptide)

Aimed to further explore glutamines’ role in an entirely unre-
lated system, we focused on insulin’s C-peptide, which undergoes
only limited aggregation. C-peptide is 31 amino acids long with
only four—two of them highly conserved—glutamines [35] (second
row, Fig. 4B). However, it also contains four conserved glutamic
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acids, and at pH = 3.2 has been shown to form oligomers and large
amyloid-like aggregates with a high b-sheet content [36]. Since at
pH = 3.2, all carboxyl groups are expected to be protonated [37], its
hydrogen-bonding donor–acceptor capabilities could resemble
those present in glutamine (Supplementary Fig. 4). Although this
might seem a chemically naïve approximation, quantum calcula-
tions yielded similar hydrogen bond energies to protonated car-
boxyl and amide groups [38]. The same substitution has been
proven as a conservative mutation in a glutamate transporter with
a deeply buried acidic residue [39]. Hence, at low pH values, we
will consider C-peptide as a Q-rich molecule.

Not surprisingly, the aggregation dynamics and kinetics of the
C-peptide at pH = 7 differ from those seen in the previous systems
(Fig. 4B). Unlike in the other cases, the MCS converged to nearly 3,
even though there is a ten-fold excess of free peptides in the solu-
tion. On a first phase the monomer population rapidly decreased,
forming multiple low molecular weight oligomers (top row,
Fig. 4B). After this period the aggregation rate diminished, present-
ing a monomer-dimer-trimer equilibrium [40] , and the presence
of two stable tetrameric and pentameric species. A per-residue
analysis clearly shows that the limited aggregation is driven by
hydrophobic forces and most likely limited by the electrostatic
repulsion conferred by the anionic residues (third row, Fig. 4B
and Supplementary video 2). This aggregative behavior was
reported by Jörnval et al. by performing PAGE and immunoblotting
experiments of biotynilated C-peptide which, at pH = 7, aggregated
in bands of 6–15 kDa, corresponding to dimers and pentamers
[36] .



Fig. 4. Aggregation analysis for the p31–43 peptide (A), C-peptide at pH = 7 (B) and C-peptide at pH = 3.2 (C). Top row: Number of clusters classified by size, notice that the y
axis is represented in a logarithmic scale. For (A) and (C) the analysis is focused on the first ls of simulation where most of the association events occur. Second row: Mean
cluster size is measured throughout 5 ls of MD simulations. For (A) and (C) vertical lines divide the graph in three phases, according to the aggregation rate. The aminoacidic
sequence of p31–43 and C-peptide are shown for reference. Third row: Number of interchain contacts defined by residue. Leucine, phenylalanine and tyrosine contacts are
grouped as hydrophobic; aspartate and glutamate as anionic. Lower row: Glutamine’s solvent accessible surface area; values are normalized by the initial SASA, when
peptides are in their monomeric forms.
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Converting the C-peptide into Q-rich like peptide by decreasing
the solution’s pH recovered an aggregation-prone behavior. This
time a globular 30-mer aggregate was formed, with a radius of
gyration of 3.78 ± 0.06 nm and 15.85% ± 0.84 of b-extended struc-
tures. Although with slower kinetics, the evolution of contacts per
residue displayed a behavior similar to p31–43, with an initial
depletion of monomers forming dimers, trimers and hexamers
(top row, Fig. 4C). In close analogy with p31–43, oligomers under-
went progressive association during phase II, until one single
aggregate was formed. As can be seen in the third row of Fig. 4C,
phase I was mainly driven by hydrophobic contacts and contacts
between glutamines or protonated glutamic acids in proportions
according to their abundances. During aggregation phase II, this
contact profile was overturned with glutamine interactions con-
tributing the most to oligomer association as can be seen in the
steepest evolution of Q-like contacts. These glutamine-mediated
contacts also participate in the compaction of the aggregate (Sup-
plementary video 3 and Supplementary Fig. 4C-D), and might con-
tinue over much longer timescales than those accessible to our
simulations to produce a mature and more ordered amyloid-like
fibril [36]. The SASA per glutamine residue at pH = 7 shows that,
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in the Q-poor regime, the glutamine burial decreased a 45%. How-
ever, in the Q-rich situation (at pH = 3.2) glutamine burial arrived
to nearly 70%, which is very similar to the glutamine burial
obtained for p31–43 (lower row, Fig. 4B, C).

3. Discussion and conclusions

Our analysis of the role of glutamine within different peptide
contexts revealed some general features summarized in Fig. 5.

In the case of poly-Q, the peptide length affects both the extent
and the morphology of the aggregates. Q4 peptides showed high
solubility, with rapid inter-conversions between monomeric,
dimeric, and trimeric species (Fig. 1B). However, it is widely
accepted that expanding glutamine tracts increase their aggrega-
tion propensity, particularly enriching their b-sheet contents
[41]. Therefore, we decided to study two longer poly-Q peptides:
Q11 and Q36, representing expansions below and above the toxic
threshold in Huntington’s disease [42]. Although the Q36 has
apparently low disease incidence [43], segments of this length
have been reported to acquire high b-sheet content [44]. Q11 pep-
tides initially formed dimers, trimers, and tetramers stabilized by



Fig. 5. Schematic description of the different aggregation scenarios studied. The time evolution of the aggregation is classified by peptide length for poly-Q peptides (left grid)
and by glutamine content for heterogeneous peptides (right grid). Q4 showed low cluster sizes, presenting a monomer–dimer-trimer equilibrium through the simulation
time. Increasing the peptide length to Q11 changed the aggregation behavior, linear peptides initially forming b-sheets then progress to b-sandwiches highly stabilized by
side-chain contacts. Q36 presented loops, aggregating into amyloidogenic-like structures. In the case of heterogeneous peptides, Q-rich peptides (e.g. p31–43) formed large
amorphous aggregates stabilized by internal glutamine-mediated contacts. Meanwhile Q-poor peptides (e.g. C-peptide, pH = 7) presented a hydrophobic driven aggregation
limited by electrostatic repulsion resulting in intermediate cluster sizes.
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multiple backbone hydrogen bonds, that ultimately resulted in the
recruitment of all peptides in the solution. In line with previous
studies, the b-sheets presented extensive surfaces with side chains
alternating hydrogen bonds donors and acceptors that recruit new
peptides to end in a putative crystalline b-sheet structure [45]. In
contrast, Q36 presented higher conformational flexibility, allowing
intramolecular b-hairpin formation. These double-stranded motifs
acted as aggregation-prone regions. These regions interacted with
unstructured soluble monomers and promoted a conformational
transition towards b-sheet rich structures, resembling a
nucleated-elongation model [31]. This mechanism has been previ-
ously proposed by Wetzel et al. studying different length poly-Q
peptides using a microtiter plate elongation assay [46]. The dis-
tinctive structural characteristics we observed in poly-Q peptides
of different lengths are also in remarkable agreement with exper-
imental data obtained by IR spectroscopy, validating the length-
dependent aggregation pathways proposed in this low-resolution
structural determination [32] .

In contrast with homogeneous poly-Qs, for heterogeneous glu-
tamine peptides, the relevant variable is their relative aminoacidic
abundances. Analyzing its content in relative terms provides a con-
venient and quantitative characterization. To this aim, we calcu-
lated the ratio between glutamine and non-Q amino acids and
compared them with the ratio of new intermolecular contacts
established by glutamines vs non-Q amino acids in each aggrega-
tion phase. The C-peptide at pH = 7 presents a glutamine ratio of
only 0.15 (Table 1). In this Q-poor peptide, glutamine contacts
were not dominant and remained insensitive to the aggregation
phase. It is somehow predictable that progressively increasing glu-
tamine content –as for the p31–43 and C-peptide at pH = 3.2
cases– could increase their engagement in interpeptide contacts.
Table 1
Glutamine abundance and contact ratios in heterogeneous systems. Contacts ratios are cal
hydrophobic residues (Q/HPhob).

p31–43 C-

Q/Non-Q Q/HPhob Q

Residue abundance 0.63 1.67 0.
Contacts phase I 0.66 1.27 0.
Contacts phase II 0.82 1.79 0.
Contacts phase III 1.21 2.33 –
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However, the remarkable observation is how in Q-rich peptides
glutamine interactions became dominant during the association
of low molecular weight oligomers (phase II), with contact ratios
surpassing the residue ratio (gray shadowed row, Table 1). Calcu-
lating relative contents between glutamine and hydrophobic
amino acids, indicate that initial monomeric association is ruled
by the hydrophobic effect and is later switched to a Q-driven
regime.

It is worth mentioning that C-peptide has been reported to pro-
duce amyloid-like fibrils [36]. However, the timescale required
experimentally for this peptide to develop a fully ordered structure
ranges fromminutes to days [36,47]. Our results are not contradic-
tory with this biophysical evidence, as our simulations can capture
only the early phases of aggregation. Indeed, this goes in line with
the long-term effect of maturation and optimization of inter-
glutamine interactions observed here. Limited time sampling is
recognized as one of the limiting factors challenging the compar-
ison between MD simulations and experiments [48]. Despite our
CG approach grants over two orders of magnitude in speed up,
the sampling problem continues to represent a significant
challenge.

In conclusion, the extension of poly-Q peptides is determinant
for their aggregation, showing three well-differentiated behaviors.
Only above a certain length, poly-Qs may display highly ordered
(nearly crystalline) aggregation, after which the possibility to form
intramolecular hairpins may lead to large scale but conformation-
ally heterogeneous fibrillar arrays (Fig. 5-left side and Supplemen-
tary Fig. 3A). In contrast to poly-Q, heterogeneous peptides may
present as many variables as the amino acidic composition can
introduce. In this work, we focused on glutamine content and
showed how its increase could trigger the low molecular weight
culated separately for each aggregation phase. The values are also reported relative to

peptide (pH = 7) C-peptide (pH = 3.2)

/Non-Q Q/HPhob Q/Non-Q Q/HPhob

15 0.36 0.35 0.73
20 0.42 0.45 0.89
15 0.34 0.53 1.21

– 0.43 0.78
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oligomers’ association, stabilizing large globular aggregates (Fig. 5-
right side and Supplementary Fig. 4C-D).

Several efforts have been devoted to design short peptides with
the capability to modulate toxic protein aggregation [49,50]. The
topological alteration of the aggregates observed in the simulations
of Q11-QEQQQ suggest that the methodology presented here could
also be used for cost-effective exploration of small peptides able to
modulate the formation of soluble oligomers.
4. Methods

We generated peptides’ initial coordinates with Chimera [51]
visualization tool, setting the backbone torsional angles as fully
extended conformations. C-peptide was studied at pH values of
3.2 and 7, defining their protonation states with PropKa [52] . All
simulations were performed at the CG level using the SIRAH force
field [28]. SIRAH is a residue-level CG force field in which effective
interaction points are mapped from the atomic position, using dif-
ferent numbers of beads for different residues. The readers are
referred to Fig. 2 of [28] for a comprehensive view of the force field
mapping and interaction parameters.

As the SIRAH force field uses the same Hamiltonian function
employed by any standard all-atoms MD simulation, concepts in
fully atomistic representations such as hydrogen bonds and
hydrophobic interactions are analogous in our CG simulations. As
shown in Supplementary Fig. 1, five out of the six CG beads in glu-
tamine carry a partial charge. Therefore, the contacts measured are
indicative of the formation of electrostatic interactions or hydro-
gen bond-like interactions.

Atomic structures were mapped to CG beads using the map files
included in SIRAH Tools [53]. Carboxy- and amino- terminals were
set as neutral, except for the C-peptide where we focused on the
effects of electrostatic interactions over aggregation properties.
At pH = 7 systems terminals were set as zwitterionic; while at
pH = 3.2 C-terminal was neutral and N-terminal presented a posi-
tive charge. MD simulations were performed by triplicate with
GROMACS 2018.4 [54]. For the monomeric simulations, all the
six peptides were centered in cubic boxes, which sizes were
defined setting a distance of 1.5 nm between the solute and the
box boundaries. Systems were solvated using a pre-equilibrated
box of SIRAH’s water model (named WT4) [55]. Forces on the CG
beads were balanced applying 5000 iterations of the steepest des-
cent algorithm. The heating step was performed using the V-
rescale thermostat [56], keeping the pressure at 1 bar with the
Parrinello-Rahman barostat [57]. In order to generate initial con-
formations for the aggregation studies, 1 ls production runs were
simulated, choosing different conformers from the last 0.1 ls of
trajectory. Multiple copies of these conformers were placed in sim-
ulation boxes setting a distance of 4 nm between their geometric
centers. An identical system setup as above described for the
monomeric peptides, was applied for the multiple-peptide simula-
tion systems. For a detailed information of systems’ setup see Sup-
plementary Table 1. MD trajectories’ analysis included secondary
structure determinations. To achieve this we first employed the
backmapping utility of SIRAH tools and then assign secondary con-
tents to the reconstructed atomic coordinates with STRIDE [58]. To
estimate the size of the aggregates along the simulations we calcu-
lated the Mean Cluster Size (MCS) as it has been previously defined
by Kuroda et al. [59] : MCS = (RN

i=1CSi,t)/N. ‘‘N” corresponds to the
total number of peptides in the simulation box and ‘‘CS” is the
number of peptides forming a cluster to which peptide ‘‘i” belongs
at time ‘‘t”. The generation of a cluster was defined using a distance
cutoff of 0.6 nm between beads of different peptides. Interpeptide
contacts were measured with the GROMACS utility gmx mindist
and the MCS calculation was performed with an in house Python
1601
script. The number of total interpeptide contacts defined by resi-
due was calculated with the Tcl script: newcontacts.tcl downloaded
from https://www.ks.uiuc.edu/. Here, to better discriminate the
residues involved in interpeptide contacts, we used a smaller cutoff
value of 0.5 nm. Intrapeptide contacts were not considered. SASA
analysis was done with the GROMACS utility gmx sasa.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partially funded by FOCEM (MERCOSUR Struc-
tural Convergence Fund), COF 03/11 and the National Natural
Science Foundation of China (NSFC grant 31770776 to FZ). EEB
and SP belong to the SNI program of ANII. Simulations were per-
formed on the National Uruguayan Center for Supercomputing,
ClusterUY. We thank Engr. Martin Etchart for his valuable collabo-
ration in Python scripting.

Appendix A. Supplementary data
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