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The emerging role of senescent cells in tissue
homeostasis and pathophysiology
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Cellular senescence is a state of permanent growth arrest and is thought to play a pivotal role in tumor

suppression. Cellular senescence may play an important role in tumor suppression, wound healing, and

protection against tissue fibrosis in physiological conditions in vivo. However, accumulating evidence that

senescent cells may have harmful effects in vivo and may contribute to tissue remodeling, organismal aging,

and many age-related diseases also exists. Cellular senescence can be induced by various intrinsic and extrinsic

factors. Both p53/p21 and p16/RB pathways are important for irreversible growth arrest in senescent cells.

Senescent cells secret numerous biologically active factors. This specific secretion phenotype by senescent cells

may largely contribute to physiological and pathological consequences in organisms. Here I review the

molecular basis of cell cycle arrest and the specific secretion phenotype in cellular senescence. I also

summarize the current knowledge of the role of cellular senescence in vivo in physiological and pathological

settings.
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A
fter undergoing a certain number of divisions,

normal human diploid fibroblasts enter an irre-

versible non-dividing state, termed replicative

senescence. Hayflick et al. reported that normal human

diploid fibroblasts can divide 50�60 times but after that,

they stop dividing irreversibly (1,2). The number of divi-

sions that cells completely reach at the end of the repli-

cative lifespan has been termed as the Hayflick limit.

Senescent cells show enlarged and flattened morpho-

logy and the formation of a TOR-autophagy spatial

coupling compartment (TASCC) in the cytoplasm (3,4)

and senescence-associated heterochromatin foci (SAHF)

in the nucleus (5�10). Active staining of senescence-

associated b-galactosidase (SA-b-gal) is commonly used

as a marker for cellular senescence (11). Senescence has

been reported to occur in a number of other cell types such

as keratinocytes (12), melanocytes (13), endothelial cells

(14), epithelial cells (15), glial cells (16), adrenocortical

cells (17), T lymphocytes (18), and even tissue stem cells

(19). Replicative senescence is not dependent on chron-

ological time in culture but rather depends on the number

of divisions that cells undergo in culture (20�23). It is

thought that telomere shortening, which occurs at each cell

division because of incomplete replication, is the counting

mechanism for the induction of replicative senescence

(22,24). Telomeres become critically short after extensive

division, and telomere ends are recognized as DNA

double-strand breaks (25�27). This activates a DNA

damage response (DDR), and cell division is then arrested

by this activated DDR, mainly through p53 tumor

suppressor activity. The expression of cyclin-dependent

kinase (CDK) inhibitors, p21 and p16, is upregulated in

senescent cells (28�35). p21 and p16 inhibit CDK2 (36�38)

and CDK4/6 activities (39), respectively, and result in the

activation of the tumor suppressor Rb, which is inactivated

by CDK2 and CDK4/6 through phosphorylation. Acti-

vated Rb forms a complex with the E2F transcription

factor, which is important for DNA synthesis and S phase

progression of the cell cycle, and inhibits the E2Factivity in

senescent cells. Therefore, senescent cells cannot enter the

S phase of the cell cycle and are basically maintained at the

G1 phase of the cell cycle (40�42). p21 expression is

transcriptionally regulated by p53, another important

tumor suppressor (43). The senescence arrest is established
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and maintained through two major tumor suppressor path-

ways, p53/p21 and p16/RB (44�47), and it is now thought

to be a barrier to malignant transformation (Fig. 1a).

A similar irreversible, non-dividing state, called cellular

senescence, can be induced by the exposure of cells to

excessive extrinsic stressors. These stimuli include strong

mitogenic signals such as overexpression of activated

oncogenes, DNA-damaging agents, oxidative stress, dis-

ruption of epigenetic regulation, and ectopic expression of

tumor suppressors (48�55). This is called stress-induced

premature senescence (SIPS) (51). SIPS occurs indepen-

dently of telomere shortening. Because there are many

similarities when cells senesce in both cases, replicative

senescence and SIPS, the term cellular senescence is

commonly used to indicate both states of non-division.

In general, it has been thought that senescent cells were

arrested in the G1 phase, although there was a report that

replicatively senescent cells were arrested in both G1 and

G2 phases (56). Recently, some groups have reported that

p53 activation in the G2 phase in response to various

senescence-inducing stimuli induces cellular senescence

through mitosis skip (57�59). They elegantly used the

FUCCI system and time-lapse live cell imaging and

showed that these senescent cells are tetraploid (4N) but

stay in the G1 phase of the cell cycle. This mitosis skip and

senescence induction were mediated by p53-dependent

premature activation of the anaphase-promoting complex/

cyclosome and its coactivator Cdh1 (APC/CCdh1).

Activation of p53 at the G2 phase in response to

senescence-inducing stimuli resulted in the induction of

p21 that inhibited CDK1 and CDK2 activities. This in-

hibition by p21 led to premature activation of APC/CCdh1

and degradation of various mitotic regulators to skip

mitosis (Fig. 1b). p16 was required for the maintenance

of the senescent state but not for the induction of the

mitosis skip. These results suggest that the p53-dependent

cell fate is determined by the cell cycle stage in which p53

is activated.

Senescence-associated secretory phenotype
Another important characteristic of senescent cells is that

the expression of many genes largely changes during

Fig. 1. Schematic diagram of cell cycle arrest in senescent cells. (a) Diploid senescent cells. In response to various intrinsic and extrinsic

stimuli such as telomere erosion, DNA damage, oxidative stress, and activated oncogene overexpression, cells enter a senescent state. In

senescent cells, CDK inhibitors, p21 and p16, are upregulated and the Rb protein is maintained in the active state. Active Rb inhibits

the transition from the G1 to S phase of the cell cycle. (b) Tetraploid senescent cells. At the G2 phase of cell cycle, the p53/p21 pathway

is activated in the cells exposed to senescence, inducing stimuli. APC/CCdh1 is prematurely activated via the accumulation of p21, and

mitosis skip occurs in these cells. The Rb family of proteins is also important for the induction and maintenance of senescence.
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senescence. Senescent cells secrete numerous biologically

active factors, including the proinflammatory cytokines

interleukin (IL)-6 and IL-8, chemokines [monocyte che-

moattractant proteins (MCPs), macrophage inflammatory

proteins, growth-regulated protein alpha (GROa)], growth

factors [vascular endothelial growth factor (VEGF),

granulocyte/macrophage-colony stimulating factor, trans-

forming growth factor-beta (TGF-b)], and proteases

[matrix metalloproteinases (MMPs)] (60,61). Because

these factors act in autocrine and paracrine manners and

have pleiotropic effects for surrounding cells, they may

affect the surrounding microenvironment as well as the

senescent cell itself and may be involved in tissue remodel-

ing in organisms. This is called senescence-associated

secretory phenotype (SASP) (62) or senescence messaging

secretome (SMS) (63). Because SASP has complex and

divergent effects, this may explain the role of cellular

senescence in organismal aging and the incidence of age-

related diseases and pathologies. There are now many

reports that indicate senescent cells accumulate in aged and

disease-related tissues (64�67). This suggests that cellular

senescence actively contributes to the aging process and

progression of some diseases at the organismal level. It has

been suggested that the low-level chronic inflammation

often observed during aging in tissues without obvious

infection is due to senescent cells and SASP (68�70).

It is now evident that senescence can be transmitted

to normal cells by SASP in a paracrine or autocrine

manner (71). Acosta et al. showed that SASP induced by

oncogene-induced senescence (OIS) can induce paracrine

senescence in normal cells using both coculture systems

in vitro and human and mouse models of OIS. TGF-b,

VEGF, CCL2, and CCL20 are among SASP components

that were identified as the factors that mediate paracrine

senescence. TGF-b was a major player for the induction

of p21 and p15INK4b that contributed to cell growth

arrest in paracrine senescent cells. The secretion of

mature forms of IL-1 is increased during OIS, suggesting

that the inflammasome is activated in oncogene-induced

senescent cells (72). In fact, components of the inflam-

masome such as caspase-1, ASC, and NLRP3 were

increased at the protein level during OIS. Finally, they

showed that inhibitors for caspase-1 or IL-1 receptor

were downregulated SASP components during OIS. This

suggested that the activation of the inflammasome is

directly involved in the expression of SASP. Inflamma-

some and IL-1 signaling are activated in senescent cells,

and IL-1 that is induced from senescent cells by SASP is

also involved in paracrine senescence.

SASP is mainly linked to DDR or epigenomic disrup-

tion (60,73,74). SASP is not recognized in normal

senescent cells that have ectopically overexpressed p21

or p16, although these cells undergo a senescence growth

arrest and show several other features of senescent cells

(75). It has been reported that glucocorticoid treatment

of senescent cells suppresses the secretion of several

SASP components, including some proinflammatory

cytokines, without affecting tumor suppressive growth

arrest (76). This finding indicates that growth suppression

and SASP in senescent cells are segregated processes.

ATM, Chk2, and NBS1, which are involved in DDR, are

important for the initiation and maintenance of SASP.

Importantly, these proteins contribute to SASP after the

establishment of persistent DNA damage signaling (73).

The rapid robust DDR that is activated immediately after

DNA damage does not induce SASP. On the other hand,

p53, which is located downstream of ATM and Chk2,

suppresses SASP and knockdown of p53, resulting in

augmented expression of IL-6.

SASP is mainly mediated by transcription factors such

as nuclear factor-kappa B (NF-kB) (77�79) and CCAAT/

enhancer binding protein beta (C/EBPb) (72). An initial

step in SASP involves the transcriptional activation of

IL-1a in response to senescence-inducing stimuli. A cell

surface-bound isoform of this cytokine binds to its plasma

membrane-associated IL-1 receptor, which in turn acti-

vates a downstream signaling cascade to stimulate NF-kB

and C/EBPb transcription factors (80). These transcrip-

tion factors in turn activate the transcription of genes that

encode various SASP proteins such as IL-6 and IL-8.

Epigenetic regulation of SASP induction has been

described (81). This involves a decrease in the expression

of DNA methyltransferase 1 (DNMT1), which is observed

during senescence (82). The authors showed that IL-6 and

IL8 expression related to SASP was induced by the knock-

down of DNMT1 in normal human fibroblasts. The

ubiquitination of G9a/GLP, H3K9 methyltransferases,

by APC/CCdh1 ubiquitin ligase was induced in response

to decreased expression of DNMT1, followed by protea-

somal degradation of G9a/GLP. Consequently, H3K9me2

levels in transcriptional regulatory regions of IL-6 and

IL-8 genes decreased and their expression was activated. It

was also confirmed that the expression of G9a/GLP

decreases and the expression of IL-6 and GROa mRNA

is reduced in the lung, spleen, and intestine of aged mice.

More recently, it has been reported that SIRT1, an

NAD�-dependent histone deacetylase, is involved in

suppressing the expression of SASP components such as

IL-6 and IL-8 through deacetylating histones around the

promoter regions of these genes (83).

Cellular senescence: beneficial effects

Tumor suppression

Although tumor-derived or virally transformed cells

proliferate indefinitely in culture, normal cells enter

senescence after reaching a typical number of divisions.

Genetic studies using cell fusion technology by which

normal human cells were fused with various immortal cell

lines demonstrated that the resulting hybrids could not
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proliferate indefinitely (84�87). This result indicated that

the senescent phenotype is dominant and suggested that

immortal cells appear by defects in genes or pathways

involved in growth arrest to escape cellular senescence.

This was the first evidence for a role of cell senescence in

tumor suppression (84).

In 1997, Serrano et al. reported that the overexpression

of oncogenic H-Ras (H-RasG12V) in normal human,

mouse, and rat fibroblasts induces growth arrest along

with the accumulation of p53 and p16, similar to cellular

senescence (48). They also showed that p53/p21 and

Rb/p16 pathways are important for OIS because the

inactivation of either p53 or p16 prevents Ras-induced

growth arrest. Because OIS cannot be bypassed by the

ectopic expression of hTERT (88), it is obvious that OIS is

independent of telomere erosion. There is accumulating

evidence that cellular senescence functions as a barrier

against transformation and prevents the expansion of

precancerous cells in vivo. Senescent cells can be identified

in premalignant tumors in vivo because they are positive for

SA-b-gal and express p16 (82, 89�91). Braig et al. showed

that the methylation of lysine 9 of histone H3 by Suv39h1 is

important for the induction of cellular senescence in a

T-cell lymphoma model using Em-N-Ras transgenic mice.

The incidence of T-cell lymphomas strikingly increased by

a defect in Suv39h1 in this model. Michaloglou et al.

showed that mutant BRAFE600, which has an oncogenic

mutation from valine to glutamic acid, induces cellular

senescence in normal melanocytes along with an accumu-

lation of SA-b-gal-positive senescent cells, which express

mutant BRAFE600. Inactivation of senescence pathways

by the deletion or mutation of tumor suppressor genes

such as p53 or Rb as well as oncogene expression is re-

quired for the progression to malignant tumors (92,93).

Although cells that have defects in the tumor suppressors

PTEN and NF1 can still senesce, these cells easily trans-

form into malignant tumors by the inactivation of other

genes such as p53 (94,95). Interestingly, it has been

reported that the reactivation of functional p53 in some

mouse tumor models causes the induction of cellular

senescence and tumor regression (96,97).

Wound healing

Cellular senescence is also important for wound healing

in the skin. Fibroblasts are recruited into injury sites and

differentiate into myofibroblasts, specialized contractile

fibroblasts, which deposit extracellular matrix for repair.

At the end of wound healing, the matricellular protein

CCN1, which is highly expressed in affected areas, binds

to its receptor, integrin a6b1, and activates the produc-

tion of oxidative stress in myofibroblasts (98). Increased

oxidative stress causes myofibroblast senescence during

wound healing in the skin, which protects against pro-

gression to excessive fibrosis. Indeed, in mice expressing a

mutant CCN1 that cannot bind to integrins, the wounds

had fewer senescent cells and resulted in significantly

more fibrosis.

Recently, Demaria et al. reported on a beneficial role of

SASP by senescent cells in wound healing using a new

transgenic mouse model (99). They generated a transgenic

mouse line expressing the 3MR (trimodality reporter)

fusion protein using a p16 promoter. This fusion protein

contains functional domains of a synthetic Renilla luciferase

(LUC) to identify senescent cells in vivo, monomeric red

fluorescent protein (mRFP) to isolate senescent cells by

fluorescence activated cell sorting, and truncated herpes

simplex virus 1 thymidine kinase (HSV-TK) to selectively

kill senescent cells by adding ganciclovir (GCV). Using

this mouse model, they showed that senescent cells are

transiently induced at the injury site during cutaneous

wound healing and the effective elimination of senescent

cells by GCV results in a significant delay in wound

healing. This result indicated that senescent cells that are

transiently induced at the injury site accelerate skin repair.

They also found that platelet-derived growth factor AA

(PDGF-AA), which is secreted as SASP from senescent

cells at the injury site, is a key factor for wound closure.

PDGF-AA secreted from senescent cells was involved in

the differentiation of non-senescent fibroblasts into myo-

fibroblasts, which plays a critical role in wound contrac-

tion during wound healing. Topically applied recombinant

PDGF-AA to wounds on senescent cell-eliminated p16-

3MR mice significantly increased the percentage of

myofibroblasts and restored wound closure, although

this was not significant for the reduction of collagen

deposition (fibrosis). They speculated that other SASP

factors such as proteases may contribute to the reduced

fibrosis. This clearly indicates that SASP of senescent cells

has a beneficial effect in physiological situations.

Liver fibrosis

Liver fibrosis occurs as a result of excessive accumula-

tion of extracellular matrix proteins, including collagen.

Advanced liver fibrosis canresult incirrhosis and liver failure.

The role of the senescence program in acute liver injury

induced by a liver-damaging agent (CCl4) in vivo has been

reported (100). Hepatic stellate cells are activated by

damage and begin to produce the components of the

extracellular matrix for repairing the damage. The stellate

cells subsequently become senescent and secrete SASP

factors, including MMPs, to repair the fibrotic scar. SASP

associated with stellate cell senescence attracts immune

cells and the senescent stellate cells are cleared by attracted

natural killer cells. The clearance of senescent cells by

immune cells attracted by SASP factors, which are

secreted by senescent cells, also seems to be an important

step in halting tissue repair when the process is completed.

In mice deficient in the p53/p21 or p16/Rb pathways,

stellate cells continue to proliferate and do not enter

senescence, and fibrosis in the liver is markedly increased.
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Therefore, it is thought that cellular senescence is im-

portant for controlling tissue repair and the maintenance

of the integrity of the organ.

Cardiac fibrosis

Cellular senescence also plays a pivotal role in the

regulation of cardiac fibrosis after myocardial infarction

(MI) in a mouse model (101). Senescent cardiac fibroblasts

accumulated in infarcted hearts 1 week after MI in wild-

type mice. This was accompanied by upregulation of the

senescence markers p53, p16, and p21 as well as SA-b-gal

activity. Importantly, in p53-deficient mice, the accumula-

tion of senescent fibroblasts, macrophage infiltration,

and MMPs such as MMP2 and MMP9 were significantly

reduced; however, collagen deposition was enhanced

after MI. This result indicated that p53-mediated cellular

senescence is important for limiting cardiac collagen

deposition and cardiac fibrosis.

Developmentally programmed senescence

More recently, an interesting finding that cellular senes-

cence occurs during development, and senescent cells are

most likely to be involved in promoting tissue remodeling

during development has been reported (102,103). The

senescent cells were identified throughout the mouse

embryo, including the mesonephros, apical ectodermal

ridge, neural roof plate, and endolymphatic sac of the inner

ear. The authors suggested that embryonic senescent cells

are important for tissue growth and organ formation

during development. Embryonic senescent cells were

highly dependent on p21 but not p53 and DNA damage.

Indeed, the expression of p21 was positively regulated by

TGF-b/SMAD and PI3K/FOXO pathways. p21-deficient

mice had defects in embryonic senescence, although apop-

tosis partially compensated outcomes by loss of senescence

because of p21 deficiency. Developmental senescent cells

also shared an expression profile with OIS, including SASP

factors. Because developmental senescent cells were

cleared by infiltrating macrophages during tissue remodel-

ing, SASP in these senescent cells plays a pivotal role in

tissue remodeling during development.

Apart from embryonic development, it is known

that cellular senescence occurs in a physiologically pro-

grammed manner. Physiological senescence is induced in

normal megakaryocytes (104) and placental syncytiotro-

phoblasts (105) during their maturation.

Cellular senescence: detrimental effects

Tumor promotion

Although cellular senescence suppresses malignant trans-

formation, secreted factors by SASP such as inflamma-

tory cytokines (IL-1, IL-6, IL-8, MCP2, and others),

proteases (MMPs and others), and growth factors (VEGF

and others) (60,72) may facilitate the progression of

surrounding tumor cells and accelerate metastasis by

affecting the tissue microenvironment (106�109). Coin-

jection of senescent fibroblasts with mouse or human

epithelial tumor cells into immunocompromised mice sig-

nificantly stimulated tumor growth (106,107,110). SASP

factors secreted from senescent cells can also stimulate

precancerous cells to obtain more malignant phenotypes,

including epithelial to mesenchymal transition (EMT),

which accelerates the invasion and migration of tumor

cells into tissues (111). There are reports that IL-6 and

IL-8 secreted by senescent cells contribute to EMT in

premalignant epithelial cells (60,111,112). Some proteases

such as MMPs, which are secreted by senescent cells by

SASP, may also contribute to tissue remodeling and

tumor cell migration. Similar upregulation of proteases

is also observed in some tumor cells. Secreted proteases

from senescent cells in the microenvironment of cancer

tissues may accelerate tumor migration in a coordinated

manner with tumor-derived proteases.

Age-related degenerative phenotypes

It is thought that senescent cells are implicated in many

age-associated degenerative diseases in both normal and

pathological situations. Senescent cells in tissues are most

likely to affect the normal tissue structure and tissue

integrity through SASP. To elucidate whether senescent

cells can drive age-associated degenerative pathology,

Baker et al. (113) have produced a transgenic mouse line

in which senescent cells during the progression of age-

related disorders could be eliminated by the administration

of a drug. In this model, termed INK-ATTC (apoptosis

through targeted activation of caspase), a transgene

expresses the p16 promoter-driving ATTC fusion protein

(caspase 8 fused to the FK506-binding protein). Upon the

administration of the inducer AP20187, the fusion protein

dimerizes, thereby activating caspase 8 activity, and p16-

positive senescent cells are specifically killed by apoptosis.

INK-ATTC mice were crossed with the hypomorphic

BubR1 (BubR1H/H) progeroid mice because these mice

have a markedly shortened lifespan in comparison with

most mice. Although the elimination of p16-positive

senescent cells by the administration of the drug did not

cause extension of lifespan in this progeroid model, it

significantly delayed the onset of age-related phenotypes

such as sarcopenia, cataracts, and loss of subcutaneous

fat. More importantly, this improvement was able to be

achieved even in late-life clearance of the p16-positive

senescent cells. This study provided the first direct evidence

that senescent cells contribute to the progression of tissue

pathology during aging.

Adipocyte senescence, obesity, and diabetes

Obesity is a condition in which excess fat is accumulated

in the body and has a negative effect on health. Obesity is

most commonly caused by excessive food intake and/or

low physical activity, leading to the accumulation of
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white adipose tissues. Excess accumulation of fat in

adipocytes triggers an inflammatory response in adipose

tissue and results in the initiation of systemic pathological

processes (114). Undesired adipokines such as TNF-a are

produced by this inflammatory response and lead to

insulin resistance and type 2 diabetes (115�117). SA-b-gal-

positive senescent cells are accumulated in the adipose

tissues obtained from obese mice or humans, and this is

accompanied by the accumulation of p53 and p21,

upregulation of SASP factors, and infiltration of inflam-

matory cells (118). Interestingly, the deletion of the p53

gene in mice reduced senescent cells in adipose tissue,

reduced the production of inflammatory cytokines, and

improved insulin resistance induced by a high-fat diet

(HFD). These results suggested that p53 is activated in

adipose tissues in obesity, induces senescence in adipo-

cytes, and these adipocytes produce inflammatory cyto-

kines because of SASP. Therefore, adipocyte senescence is

associated with obesity and is tightly linked to patholo-

gical consequence led by obesity.

It is known that insulin resistance initially causes com-

pensatory proliferation of b cells during the pathogenesis

of type 2 diabetes. It is generally thought that this com-

pensatory proliferation eventually leads to proliferative

exhaustion of b cells and diabetes. The number of b cells

and their proliferating rate were significantly increased in

C57BL/6J mice 4 months after feeding HFD. However, at

12 months after feeding HFD, proliferative b cells were

reduced, oxidative stress was increased, and SA-b-gal-

positive senescent b-cells were significantly increased in

b-cell islets (119). This strongly supports the idea that the

cellular senescence of b cells contributes to the pathogen-

esis of diet-induced diabetes.

Atherosclerosis

Cellular senescence has been implicated in the develop-

ment of vascular pathologies, particularly atherosclerosis.

SA-b-gal-positive senescent endothelial cells are recog-

nized in advanced atherogenic plaques on human cor-

onary arteries (120). It is also recognized that the

expression of endothelial nitric oxide synthase (eNOS)

decreases and the expression of proinflammatory factors

as well as p53, p21, and p16 increases in these pathological

blood vessels. The induction of premature senescence

through the p53/p21-dependent pathway has been ob-

served in human vascular smooth muscle cells (VSMCs)

by angiotensin II (Ang II) treatment in a mouse model of

atherosclerosis (121). This was accompanied by the

production of proinflammatory factors from senescent

VSMCs via SASP by Ang II treatment. The deficiency of

p21 markedly reduced the production of proinflammatory

factors by Ang II treatment and prevented the develop-

ment of atherosclerosis in this mouse model.

However, the beneficial effect of cellular senescence

on atherosclerosis has also been reported. Mouse models

deficient in cell cycle regulators such as p53 (122), p21

(123), p27 (124), and ARF (125) show augmented sus-

ceptibility to the development of atherosclerosis, whereas

the overexpression of p53 in mice protects them from

mechanically induced neointimal thickening in femoral

arteries but not native atherosclerosis (126). Further

investigation is required to resolve this discrepancy.

Other diseases associated with cellular senescence
It is thought that other human diseases such as sarco-

penia (127�130), osteoarthritis (131,132), and pulmonary

fibrosis (133,134) are associated with cellular senescence.

Astrocyte senescence has also been proposed to be

involved in the pathogenesis of Alzheimer’s disease (135)

and Parkinson’s disease (136). Reports that indicate

cellular senescence associated with human diseases has

been increasing. Cellular senescence may contribute to

more pathologies in many age-associated diseases under

both beneficial and detrimental circumstances.

Concluding remarks
Cellular senescence is a state of essentially irreversible

growth arrest, and it has been proposed that this has

developed as an antitumor mechanism. In addition to

growth arrest, senescent cells secret numerous proinflam-

matory factors through SASP. There is now much evidence

that SASP of senescent cells contributes to the pathogen-

esis of age-associated diseases. It has been speculated that

the accumulation of senescent cells in tissues accelerates

tissue remodeling triggered by SASP factors, reduces tissue

integrity and function, and contributes to organismal

aging. In fact, senescent cells are found in many tissues

under pathological conditions or advanced aging. It has

also been shown that senescent cells have a positive impact

in vivo. For example, cellular senescence coordinates the

process of tissue remodeling in some physiological situa-

tions. In the case of embryonic development, cellular

senescence occurs throughout the embryo and functions

to promote tissue remodeling. There is some evidence that

transiently induced senescent cells protect the progression

of pathogenesis in some diseases and, in fact, may have

more beneficial functions in vivo than what is thought.

Further investigation of the molecular mechanism of

cellular senescence, particularly in vivo, promises to open

a new avenue for achieving healthy aging and establishing

a new strategy to prevent age-associated diseases.
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