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There is a growing list of viruses and bacteria associated with wheezing illness and asthma. It is well known that a few of these 
pathogens are strongly associated with wheezing illness and asthma exacerbations. What is not known is if early childhood infections 
with these pathogens cause asthma, and, if so, exactly what are the pathophysiologic mechanisms behind its development. The 
current consensus is respiratory infection works together with allergy to produce the immune and physiologic conditions necessary for 
asthma diasthesis. One link between respiratory infection and asthma may be the eosinophil, a cell that plays prominently in asthma 
and allergy, but can also be found in the body in response to infection. In turn, the eosinophil and its associated products may be novel 
therapeutic targets, or at the very least used to elucidate the complex pathophysiologic pathways of asthma and other respiratory 
illnesses. Together or separately, they can also be used for diagnosis, treatment and monitoring. The optimal care of a patient must take 
into consideration not only symptoms, but also the underlying disease mechanisms. 
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IntroductIon

There is  a  dire  need to unders tand the under ly ing 
pathophysiology of asthma, including the complex genetic and 
environmental influences, to develop more effective treatment 
strategies. Though the role of respiratory pathogens in asthma 
has been extensively studied over the past few decades, many 
questions remain unanswered. First, of the known pathogens, 
which are the most likely to cause an infection associated 
with recurrent wheezing/asthma development? Second, do 

early childhood infections with respiratory pathogens cause 
asthma or do they merely select those that are predisposed 
to these infections? Third, if they are a causal factor, what is 
the immunopathology behind it? In the following sections, 
the interactions between respiratory infections and asthma 
development/exacerbations will be explored, with an emphasis 
on those pathogens associated with eosinophilia.
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Infections in infancy and asthma development 
viral infection

It is well known that a substantial portion of infants who require 
hospitalization for bronchiolitis develop asthma by the age of 13 
[1-5]. The importance of early life infection has been highlighted 
by studies showing the timing of birth in relationship to the 
winter virus season can increase the risk of developing asthma by 
age 6 years by as much as 30% [6]. The exact mechanisms and 
pathophysiologic pathways by which infection leads to asthma 
are not known, and those that have been proposed are subject 
to intense debate. Risk factors for bronchiolitis include young age 
(especially <6 months), small lung size and exposure to tobacco 
smoke [7]. Despite the uncertainty, it is generally considered 
respiratory infection does not work alone, but rather synergistically 
with respiratory allergy to produce immunologic and physiologic 
conditions conducive to asthma development. 

Respiratory syncytial virus (RSV) has been the main focus of 
research, and most infants will have had at least one infection 
with RSV by the age of three. This virus is the major cause 
of bronchiolitis in children <1 year of age; consequently, it is 
considered the most important respiratory tract pathogen of early 
childhood [8]. No direct interventional studies demonstrating a 
causal relationship between RSV and asthma have been published 
to date. However, a long-term study of over 95,000 children 
found that timing of birth in relationship to the winter virus peak 
(particularly RSV) independently predicted asthma development, 
with the highest risk estimated for those born 121 days (~4 
months) before the peak [6]. In addition, the administration of 
anti-RSV immune globulin (palivizumab) to children at high risk of 
chronic airway disease improved lung function and reduced the 
incidence of asthma and atopy, suggesting the prevention of RSV 
infection has long-term effects on respiratory and immunologic 
parameters relevant to asthma development [9]. In a larger more 
recent study, palivizumab significantly reduced recurrent wheezing 
[10]. However, because nearly every child has been infected 
with RSV at least once, other genetic, environmental, and/or 
developmental factors must also contribute to the epidemiological 
link with childhood asthma [11].

A number of recent papers have highlighted human rhinovirus’s 
(HRV) possible role in asthma etiology. HRV is now recognized 
as an important cause of wheezing illness; however, it is most 
often found in asymptomatic infants and children [12, 13]. The 
wide variety of illness severity may be due to either host factors 
(abnormal innate immune responses) [14] or virus strain (more 

virulent or pathogenic strains) [15]. In comparative studies, children 
with RV-induced bronchiolitis were older and more atopic [16], 
and had a more severe disease course in the acute phase [17] than 
children with RSV-induced bronchiolitis. In the Perth Birth Cohort 
study, HRV was the most common pathogen associated with an 
acute respiratory infection in the first year of life followed by RSV 
[18]. Another study found wheezing HRV illnesses during the first 
3 years of life were associated with a nearly 10-fold increase in 
asthma risk at age 6 years [19]. In contrast, several studies suggest 
HRV infection is not a risk factor for asthma, but may instead reveal 
children predisposed to asthma due to abnormal lung physiology 
and/or immune responses [18, 20, 21]. 

Another virus that has been implicated as a possible cause 
of wheezing and asthma is human bocavirus (HBoV), a novel 
parvovirus first isolated in 2005 from the respiratory secretions of 
patients with pneumonia [22]. However, the link between HBoV 
and asthma, or even any respiratory disease, has been complicated 
by the fact that it has a high rate of co-infection [23]. A recent 
study conducted at Inje University Sanggye Paik Hospital, found 
an association between HBoV infection and acute wheezing in 
children [24]. In their epidemiological study on acute wheezing 
and children, HBoV (13.8%) was the third most frequently found 
virus after RV (33.3%) and RSV (13.8%). Another epidemiological 
study by Vallet et al. [25] found HBoV infection to be associated 
with 13% of severe asthma exacerbations in children. They 
suggested HBoV could play a major role in acute exacerbations in 
asthmatic children.

Other viral infections during infancy and early childhood causing 
lower respiratory infections are also associated with recurrent 
wheezing and asthma development. These include parainfluenza, 
influenza A and human metapneumovirus (HMPV) [20, 26, 27]. In 
our recent study, we showed HMPV infection was associated with 
recurrent wheezing in children [28].

Bacterial infection
The role of bacterial infection in the pathogenesis of acute 

and chronic asthma remains quite controversial [29], and of the 
bacterial respiratory pathogens, the atypical bacteria Mycoplasma 
(M.) pneumoniae and Chlamydophila (C.) pneumoniae are the most 
commonly implicated. A 2011 study of 407 children under 5 years 
of age found M. pneumoniae and C. pneumoniae in approximately 
10% and 2% of acute respiratory tract infections, with M. 
pneumoniae being associated with more severe disease including 
hospitalization for bronchiolitis [30]. In a follow-up study of 50 
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children with a previous history of M. pneumoniae, 23 suffered 
from recurrent wheezy bronchitis or asthma, including 5 who 
developed wheeze for the first time [31]. Case reports of chronic 
asthma beginning with M. pneumoniae infection also suggest this 
pathogen is a potential causative agent of asthma [32].

It has been suggested that chronic bacterial infection or 
colonization with pathogenic bacteria could eventually lead to 
asthma. In Bisgaard et al.’s study [33], they found that neonates 
colonized in the hypopharyngeal region with Streptococcus 
pneumoniae, Haemophilus influenzae or Moraxella catarrhalis (or a 
combination of them), but not Staphylococcus (S.) aureus, were at 
increased risk for recurrent wheeze and asthma by 5 years of age. 
However, other studies have shown an association between S. 
aureus and atopic diseases such as dermatitis, rhinitis and asthma 
[34-36]. More specifically, staphylococcal enterotoxin exposure has 
been associated with the pathogenesis of asthma and/or atopic 
dermatitis [36-39]. A high prevalence of C. pneumoniae infection in 
school-age children with wheezing has also been found [40].

The mounting data detailing the strong association between 
respiratory viral/bacterial infection and asthma suggests further 
studies are needed to clearly demonstrate causality. An alternative 
mechanism may be that individuals with a tendency toward atopy 
may have increased susceptibility to bacterial and viral infections 
and an increased risk of asthma development [16, 20, 41, 42]. The 
question of whether early childhood infections cause asthma, 
or instead cause chronic disease in those with an underlying 
predisposition to asthma, remains unanswered.

Infection and asthma exacerbations
It has been estimated that nearly 85% of asthma exacerbations 

in children, and nearly 50% in adults, are a result of viral infections 
[43, 44]. Indeed, with the advent of nucleic acid amplification 
testing (e.g., reverse transcription-polymerase chain reaction) and 
immunoassays, the detection of HRV and other RNA viruses has 
been enhanced suggesting HRV may be responsible for a larger 
proportion of exacerbations than previously thought. In a study 
by Rakes et al. [45], HRV was the predominant pathogen (71%) in 
children aged 2-16 presenting to emergency departments with 
acute wheezing, while only 6% were positive for RSV. A study 
of 206 asthmatic children aged 3-18 found HRV (26%) as the 
most common cause of exacerbation [46], while in adults, HRV 
was again the most common pathogen (56% of virus-positive 
specimens) found in asthma-related acute-care visits [47]. These 
studies provide strong evidence of the association between 

respiratory viral infection and asthma exacerbation. However, it is 
still unclear whether viral infection alone can exacerbate asthma, 
or if other factors, such as exposure to allergens [48] or air pollution 
[49], work synergistically to precipitate an attack.

Several studies have also demonstrated an association 
between atypical bacterial infection and asthma exacerbation. C. 
pneumoniae has been implicated in severe chronic asthma [50, 
51] and both C. pneumoniae and M. pneumoniae have been linked 
to acute asthma exacerbation in children and adults [52, 53]. In a 
recent study [54], 22 of 58 (39%) patients presenting with acute 
exacerbation of bronchial asthma were found to be infected with 
either C. pneumoniae, M. pneumoniae or both, and those with 
atypical infection had greater functional impairment on admission 
when compared to patients with non-atypical respiratory 
infection.

The body’s response to an invading pathogen includes the 
respiratory, immune and nervous systems [55]. Respiratory 
infections during infancy may have acute and long-term effects 
on lung and immune system development, and represent a 
risk factor for asthma development. When bronchial epithelial 
cells are infected by a pathogen (Fig. 1), they generate both 
local and systemic immune responses aimed at clearing the 
infection. Neural signals are also generated to coordinate 
inflammation. In the asthmatic individual, however, immune 
response is altered and bronchial epithelial cells are damaged. 
A damaged bronchial epithelial lining is more susceptible to 
penetration by environmental irritants, which can directly 
stimulate sensory nerves leading to increased histamine release 
from mast cells and induction of smooth muscle cell contraction 
(i.e., bronchoconstriction) by released kinins [56]. A number 
of mediators are released by infected bronchial epithelial cells 
and play a role in recruiting major inf lammatory cells, such 
as eosinophils, neutrophils and mast cells, though these cells 
may already be present in asthmatic airways. Eosinophils can 
be recruited to inflammatory sites by cytokines (most notably 
the T-helper type 2 (Th2) cell-derived IL-4, IL-5, and IL-13), and 
chemokines CCL5/RANTES and CCL11/eotaxin-1 [57], while 
neutrophils are most likely recruited by CXCL8/IL-8 or LTB4 
[58]. Mast cells can, in turn, be activated by eosinophil-derived 
major basic protein (MBP) to release a number of mediators [59]. 
Together, these major inflammatory cells release mediators that 
can cause airway hyperresponsiveness (AHR), airway remodeling 
(through the action of eosinophils, fibrogenic and growth factors), 
and airway limitation (bronchoconstriction, mucosal edema, 
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hypersecretion), leading to characteristic asthma exacerbation 
symptoms (wheeze, dyspnea, cough, chest tightness). 

Eosinophils are generally considered as major effector cells 
of asthma, and it has long been thought that the eosinophilic 
response to viral infection has a predominantly negative effect 
on human health, that it is the major cause of inflammation 
responsible for tissue damage, bronchoconstriction and respiratory 
dysfunction [60]. However, several studies have shown eosinophils 
may promote viral clearance and antiviral host defense. This 
concept, termed the “double-edged sword”, was first introduced 
by Smith [61] in 1994, with respect to the dual role of neutrophils 
in viral infection. Rosenberg and Domachowske [62-64] followed 
with their hypothesis that eosinophils may be recruited in part 
to promote primary antiviral host defense, possibly in situations 
where acquired immune response was less than effective [65]. 
More specifically, through their secretory mediators, eosinophils 
could reduce the infectivity of RSV for target epithelial cells in 

vitro. More recently, Phipps et al. [66] demonstrated accelerated 
clearance of RSV from murine lungs, and that full antiviral activity 
was dependent on intact TLR signaling in eosinophils introduced 
exogenously. 

The clinical course of Mycoplasma pneumonia is typically mild 
and self-limited; however, long-term complications can occur 
via three possible mechanisms. According to a study by Kim et 
al. [67], 14 of 38 (37%) children hospitalized with Mycoplasma 
pneumonia had abnormal high-resolution computed tomography 
findings (i.e., mosaic perfusion, bronchiectasis, bronchial wall 
thickening, air trapping, and Swyer-James Syndrome) suggestive 
of small airway obstruction. Long-term complications may also 
occur due to immune modulation. Koh et al. [68] found increased 
IL-4 levels and IL-4/interferon (IFN)-γ ratios in patients with 
Mycoplasma pneumonia. The data suggested a predominant Th2-
like cytokine response, thus representing a favorable condition 
for IgE production that may result in the release of chemical 
mediators leading to bronchospasm, airway inflammation, and 
airway hyperresponsiveness. A third possible mechanism by which 
M. pneumoniae infection can lead to long-term complications 
is through functional abnormalities. Pulmonary function test 
results, such as decreased flow rate at 50% of vital capacity [39], 
have been reported. Furthermore, M. pneumoniae infection has 
been associated with bronchial hyperresponsiveness [69]. Long-
term impairment of small airways function has also been noted in 
studies by Mok et al. [31], Sabato et al. [70] and several others. 

Infection and the hygiene hypothesis
Early childhood exposure to certain pathogens may actually 

be protective against atopy and/or asthma, termed the “hygiene 
hypothesis” [71]. This highly controversial idea was borne from 
early observations showing the risk of developing allergy and/
or asthma was inversely related to the number of children in the 
family [72]. However, this seems paradoxical, as it is also known 
that bronchiolitis and pneumonia in infancy lead to an increased 
risk of subsequent asthma. Whether infections have a protective 
effect or not may have to do with location, frequency, intensity, 
and timing [34, 73, 74].

Another possible mechanism for the switch to an atopic 
phenotype has been proposed; namely, a defect in the stimulation 
of dendritic cells by nonpathogenic microorganisms in gut-
associated lymphoid tissue leading to reduced production of 
regulatory T cells [75, 76]. Differences in gut bacteria colonization 
have been reported in children with atopic dermatitis. For 
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Fig. 1. Infection of bronchial epithelial cells leads to release of mediators, 
including cytokines, chemokines, and growth factors. Recruited 
immune cells (eosinophils, neutrophils, and mast cells) release a 
number of mediators, as well. CCL, CC chemokine ligand; CXCL, CXC 
chemokine ligand; ECP, eosinophil cationic protein; EDN, eosinophil-
derived neurotoxin; EPO, eosinophil peroxidase; FGF-2, fibroblast growth 
factor-2; GM-CSF, granulocyte macrophage-colony stimulating factor; 
IL, interleukin; LT, leukotriene; MBP, major basic protein; PAF, platelet 
activating factor; PG, prostaglandin; TNF, tumour necrosis factor; VEGF, 
vascular endothelial growth factor.
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example, Enterococci and Bifidobacteria were reduced, while 
Clostridia and S. aureus were increased [77, 78]. These changes have 
been partly associated with the increased use of antibiotics [34].

Other environmental factors influence the development of 
atopic sensitization, including early exposure to pets and an 
agricultural background [79]. In an agricultural setting, increased 
exposure to high levels of endotoxin has been associated with 
lower rates of allergy and an elevated IFN-producing cells in 
the blood [80, 81], cells which are known for their potent anti-
viral activity [82]. Taken one step further, Schaub et al. [83] 
demonstrated maternal exposure to farming decreases the risk 
of allergic disease in offspring, possibly through the increased 
number and activation of T-regulatory cord blood cells associated 
with lower Th2 cytokine secretion and lymphocyte proliferation 
on innate exposure. Indeed, there is growing evidence, both in 
human and animal studies, that pre- and post-natal exposure to 
pathogens and allergens may provide a protective effect against 
allergy development. In addition, breastfeeding has been shown 
to protect against asthma and lower respiratory illness, especially 
RSV [84, 85].

Infection and atopy
One paramount question that remains unanswered in 

determining the link between early childhood infection and 
asthma development is: Do respiratory infections merely select 
those individuals that are predisposed to asthma, or are these 
infections able to alter lung development/immune response 
enough to actually cause asthma? A number of studies have 
shown that respiratory allergy may play a potentially synergistic 
role with viral/bacterial infections to produce airway inflammation 
and subsequent asthma in childhood [20, 73, 84]. One recent 
cohort study by Kusel et al. [20] found only an association between 
viral infections during infancy and subsequent development of 
persistent wheeze and asthma at 5 years in children with atopic 
sensitization during the first 2 years of life. This association was 
also restricted to infections that spread to the lower respiratory 
and were intense enough to cause severe symptoms in the infants. 
Together, respiratory allergy and infection can cause airway 
dysfunction through several mechanisms, including: viral infection 
damaging barrier function of the airway epithelium, leading to 
enhanced absorption of aeroallergens [86], and the generation of 
various cytokines, chemokines, leukotrienes, and molecules that 
may further upregulate cellular recruitment, cell activation, and the 
continuing inflammatory response [56].

The role of eosinophilia in asthma development/exacerbation
Eosinophilic inflammation is a cardinal feature of asthma and 

increases in eosinophilic inflammatory markers have been shown 
to be good predictors of asthma exacerbations [87, 88]. It has 
been demonstrated that suppression of eosinophilic inflammation 
with glucocorticosteroids is associated with an amelioration of 
symptoms and airway dysfunction [89]. A recent study by Fanat et 
al. [90] found anti-IL-5 treatment reduced the eosinophilopoietic 
potential of airway smooth muscle cells, suggesting it may 
promote in si tu eosinophilopoiesis  in asthmatic lungs . 
Furthermore, Haldar et al. [91] and Nair et al. [92] demonstrated the 
ability of anti-IL-5 therapy in reducing eosinophil numbers while 
improving asthma control in refractory eosinophilic asthma.

Eosinophils as effector cells
Eosinophils are major effector cells of the allergic process. 

Activation of eosinophils leads to extracellular release of a 
number of granule proteins, such as eosinophil cationic protein 
(ECP), eosinophil-derived neurotoxin (EDN), MBP, and eosinophil 
peroxidase (refer to Fig. 1) [93]. Among the many mediators 
released during eosinophil activation and degranulation, it is these 
eosinophil granule proteins that are the most strongly implicated 
in the pathophysiology of asthma [94]. Eosinophils also release 
a number of proinflammatory cytokines, chemokines and lipid 
mediators. In addition, eosinophils express a large number of 
cell-surface markers, including adhesion and apoptotic signaling 
molecules, chemokine, complement and chemotactic factor 
receptors, and cytokine, immunoglobulin, prostaglandin, platelet 
activating factor, and leukotriene receptors [95-99].

Eosinophils have generally been regarded as terminal 
effector cells in allergic airway diseases; however, recent studies 
demonstrate their involvement in the initial stages of allergic 
disease development, as well [100]. Murine studies suggest 
eosinophils may actually drive T-cell responses as opposed to 
merely being driven by them. Eosinophils can act as antigen-
presenting cells [101, 102]; thus, at disease onset they are able to 
induce activation and proliferation and/or cytokine production in 
T cells.

Viral infection and eosinophilia
To further elucidate the connection between early childhood 

viral infection and asthma development, several studies involving 
RSV bronchiolitis have been carried out due to the clinical 
analogy, epidemiologic relationship, and similar immunologic 
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phenomena in the airways, such as specific IgE production [103], 
generation of chemokines [104] and adhesion molecules [105], 
and eosinophil activation [106] it shares with childhood asthma. 
A number of studies have demonstrated eosinophilia during/post 
RSV bronchiolitis [16, 45, 106-110]. However, the downfall of many 
RSV studies is the lack of premorbid eosinophil levels. Therefore, 
it cannot be explicitly stated that the observed eosinophilia was 
a result of RSV infection. Indeed, prenatal Th2/Th1 imbalance, 
allergic sensitization during pregnancy or some other reason may 
result in elevated eosinophil levels in infants. This was suggested in 
a study by Frischer et al. [111] of neonates born to atopic parents.

Though most viral infections are thought to be neutrophilic 
in nature, studies by our research group have shown a subgroup 
of RSV bronchiolitis patients is eosinophil-positive [107]. This 
subgroup also had higher levels of Th2 cytokines. Eosinophilia 
together with a skewed Th2 cytokine response strongly resembles 
the immunologic profile of childhood asthma. To fur ther 
strengthen the relationship between RSV bronchiolitis and asthma, 
our research group recently undertook a RSV bronchiolitis study 
[106] investigating eosinophil degranulation post-bronchiolitis 
and its association with recurrent wheezing. We found good 
correlations between the eosinophil degranulation marker, EDN, 
and recurrent wheezing episodes in a cohort of infants with a 
first episode of RSV bronchiolitis. Furthermore, EDN levels at 3 
months proved to have predictive value for recurrent wheezing 
(positive predictive value = 57%, negative predictive value = 76%, 
sensitivity = 72%, specificity = 62%). Indeed, it appears there is a 
subgroup of RSV bronchiolitis patients with marked eosinophilia 
that may go on to later develop asthma. This hypothesis may help 
elucidate the link between early childhood infections and asthma 
development.

Bacterial infection and eosinophilia
One connection between bacterial infection and asthma 

pathogenesis may be the eosinophil. An in vivo study found 
patients with acute bacterial infection exhibited increased levels of 
serum ECP levels [112]. The authors concluded that eosinophils are 
activated during acute bacterial infections and that this activation 
results in the preferential release of ECP. Another study [113] found 
elevated ECP levels (>200 ng/mL) in all 16 patients presenting 
with acute community-acquired bacterial sinusitis, and 10 of those 
16 had remarkably elevated ECP levels (>3,000 ng/mL). It should 
be noted that these patients had no history of chronic sinusitis, 
active or chronic allergies, or any other chronic upper respiratory 

disease. An in vitro study found pathogenic bacteria induced EDN 
release by eosinophils [114], and in a murine model, staphylococcal 
enterotoxin B induced eosinophilic airway inflammation and 
evidence of eosinophil degranulation [115].

Elevated levels of ECP have been associated with the increased 
activation of eosinophils [116]; hence, ECP is thought to reflect the 
activation state of eosinophils [117]. The immunologic benefits of 
eosinophil activation and ECP release may include antibacterial 
activity in concentrations 10-20 µg/mL and above [118, 119]. It 
has been speculated that due to its stability, ECP may accumulate 
over time in mucus fluids and act as a first line of defense against 
bacterial invasion [120].

Asthma phenotypes
A number of techniques have recently been used to characterize 

the myriad of asthma phenotypes in hopes of better tailoring 
treatment to the individual. The classical IgE-associated allergic 
asthma phenotype (also termed ‘extrinsic’) starting in childhood 
is the most widely studied, as it is the most common in real-life 
and easily studied in the clinical laboratory. In allergic asthma, the 
cytokine profile is predominantly Th2 (i.e., IL-4, IL-5, IL-9, and IL-
13). A recent genome microarray study by Woodruff et al. [121] 
found significant IL-13-mediated gene induction in asthma. One 
genetic biomarker in particular was associated with eosinophil 
accumulation in the airways, while another was identified as 
a potential mediator of corticosteroid-resistant asthma. Other 
studies, including the one by Martin et al. [122], have vetted other 
predictive markers, such as IgE and blood eosinophil levels, serum 
eosinophil degranulation protein levels, lung function, and PC20 
[123]. These examples highlight the need for careful consideration 
of phenotypes, especially variable treatment responses, when 
treating asthma patients.

The less common ‘intrinsic’ asthma is of late-onset, lacks 
circulating specific IgE, and no sensitivities to allergens can be 
identified [57]; despite this, airway eosinophilia and Th2 cells 
feature prominently [124]. Intrinsic asthma is less common (~10%) 
than extrinsic asthma, is more common in females, and tends 
to be more severe, requiring higher doses of corticosteroids 
[125]. Clinically, however, intrinsic asthma shares a great deal 
with extrinsic asthma, including variable airflow obstruction and 
symptoms, and a good therapeutic response to corticosteroid 
therapy. It is well established that upper respiratory tract viral 
infections are the most common cause of exacerbations in intrinsic 
and extrinsic asthma [126].
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In addition to eosinophilic inflammation, other cardinal features 
of most asthmatic phenotypes include AHR, excessive airway 
mucus production, and airway remodeling [57].

Eosinophils and asthma
Eosinophil increases in the tissues, body fluids (e.g., sputum, 

peripheral blood, serum, bronchoalveolar lavage) and bone 
marrow have been noted in asthma [107, 127, 128]. These elevated 
levels have correlated well with disease severity, leading to the 
hypothesis that the eosinophil is the major effector cell of asthma. 
One way in which they act as major effector cells is through the 
release of granule proteins, which induce tissue damage and 
dysfunction [129], as well as the further propagation of airway 
inflammation. Elevated levels of ECP [130] and EDN [131] have 
been noted in asthmatics, with higher levels of ECP [132] and 
EDN [133] found during asthma exacerbation when compared 
to healthy patients and those with stable asthma. This would 
suggest airway inflammation associated with asthma exacerbation 
is characterized not only by an increase in number of eosinophils, 
but also an increase in airway eosinophil degranulation [134]. 

Monitoring of asthma with eosinophil markers
Though eosinophils are important in the pathophysiology of 

asthma, eosinophil degranulation and its associated products, 
such as EDN and ECP, may be even more important. It has 
been suggested that the secretory activity of eosinophils – a 
combination of concentration of eosinophils and their propensity 
to release degranulation products – may be a key marker of 
disease activity and is more accurately measured by eosinophil 
degranulation products such as EDN and ECP [135]. Kim et al. [136] 
found significant differences in EDN and ECP levels in asthmatics 
during both acute and stable phases when compared to controls. 
Thus, EDN, along with ECP, may aid in the diagnosis of asthma. It 
has been suggested by several groups that EDN is more useful 
than ECP in evaluating disease severity [136-138]. This may partially 
be due to EDN’s recoverability, as ECP is a sticky and more highly 
charged protein [129].

In terms of clinical utility, EDN levels are a more accurate 
biomarker of the underlying pathophysiology of asthma (i.e., 
eosinophilic inf lammation); consequently, they provide an 
objective measure of the eosinophil’s secretory activity. In children 
too young to fully participate in lung function tests, EDN levels 
may be useful as an alternative measurement of eosinophilic 
inf lammation, but larger studies should be carried out to 

determine its reproducibility and repeatability for this purpose. 

conclusIon

Viral and bacterial infections are important causes of childhood 
respiratory disease. They can lead to long-term morbidity, such 
as recurrent wheezing, and evidence points toward a very strong 
link between early childhood infection and asthma development. 
However, the underlying pathophysiologic link between infection 
and chronic allergic disease is still not fully understood. With 
increased understanding and attention to these disease processes, 
clinicians will better be able to diagnose, treat and monitor 
asthma. Indeed, focus must shift from not only treating symptoms, 
but also the underlying pathophysiology to provide optimal care 
to the patient. 
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