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Simple Summary: The South American palm weevil, Rhynchophorus palmarum, is an invasive pest
that has killed thousands of ornamental palms in San Diego County in California, USA. Emerging
management plans for this pest need to consider the flight capabilities of this insect, which are not
well understood. To address this shortcoming, flight mills, a type of computerized insect “merry-go
round” that measures how far weevils can fly in the laboratory, were used to quantify the flight
distances of 101 weevils that were flown repeatedly over the course of their lifetimes. The results
indicate that weevils are strong flyers capable of flying numerous times before dying of natural causes.
Over their lifetimes, weevils, on average, covered distances that cumulatively totaled >220 km. One
female weevil flew an impressive cumulative distance of approximately 806 km over the course of
nine consecutive flights before dying.

Abstract: The life time flight capabilities of an invasive palm pest, Rhynchophorus palmarum, were
assessed using flight mill assays under controlled conditions in the laboratory. A total of 101 weevils
were used for experiments and subjected to repeat flight assays. A total of 17 flight trials were run, of
which the first 14 provided useful data prior to weevil death. Male and female weevils exhibited a
strong capacity for repeat long distance flights. Flight metrics of interest were not affected by weevil
sex or mating status. Cumulative lifetime flight distances for male and female R. palmarum averaged
~268 km and ~220 km, respectively. A maximum lifetime cumulative flight distance of ~758 km and
~806 km was recorded for one male of unknown mating status and one unmated female weevil,
respectively. Dispersal data for individual flights (i.e., trials 1 through 9, 10–14 combined) and all
flight trial data (i.e., flights 1–14 combined) exhibited platykurtic distributions. The results presented
here may have important implications for modeling the spread of this invasive pest and for the
development of monitoring and management plans.

Keywords: dispersal; flight mill; kurtosis

1. Introduction

Quantification of the dispersal capabilities and distribution patterns of distance data
can assist with understanding the factors affecting the observed patterns of spread for an
invasive pest [1–3]. This insight may help with the development of management strategies
(e.g., delineation of quarantine boundaries) for invasive pests, such as vagile insects, which
are capable of spreading by flight [4]. With respect to insects, measuring dispersal by flight
in the field is challenging [5]. Flight mills are a laboratory-based tool used for quantifying
the distances insects are capable of flying [6,7]. Flight mill assays subject test insects to
unnatural flight conditions (i.e., flight is tethered and insects move in circular patterns) in
an optimized environment (i.e., no wind and temperature and humidity are controlled)
in the laboratory. These operational characteristics would not be experienced by flying
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insects in nature, and as such, flight mill studies are recognized as being a highly artificial
approach to measuring insect flight capabilities [6–8].

Regardless of the acknowledged shortcomings, flight mill assays are useful for in-
vestigating the effect of factors such as size, satiation and mating status, and sex, for
example, on flight metrics of interest (e.g., distances flown, flight velocity, frequency and
length of flight bouts) [4,9–12]. Potentially, dispersal data may provide an indication of
the type of distribution to which flight distances conform. An invasive pest, for exam-
ple, may have dispersal distances that have a leptokurtic distribution, which has “fat”
or “heavy” tails, because a significant number of long distance events fall within curve
extremities (i.e., the tails) [1–3,9]. Conversely, tails may be platykurtic and have “light” or
“thin” tails because relatively few extreme values occur in curve tails. Therefore, these
two dispersal distributions are skewed towards distances that are lesser (i.e., platykurtic)
or greater (i.e., leptokurtic) than would be predicted by a mesokurtic distribution (i.e.,
normal distribution) [1,3,4,9,10]. Consequently, the spread of some invasive pests may be
slower or faster and cover lesser or greater distances than anticipated because dispersal is
non-mesokurtic [1,2].

In 2011, the South American palm weevil, Rhynchophorus palmarum, was detected for
the first time in San Diego County, California USA. Around 2015, weevil populations estab-
lished in San Ysidro, in southern San Diego County, ~5 km north of infestations that were
detected in Tijuana, Baja California, Mexico in 2010 [13]. This weevil is a palm specialist
(Arecaceae: Arecales) and is native to parts of Mexico, Central and South America, and the
Caribbean [14]. Palm hosts include African oil palm (Elaeis guineensis Jacq.,) Canary Islands
date palm (Phoenix canariensis Chaub.), coconut (Cocos nucifera L.), and edible date palm (P.
dactylifera L.) [14]. Since establishment in San Diego County, more than 10,000 ornamental P.
canariensis, a highly preferred host, have been killed by R. palmarum [15]. Weevil larvae kill
palms by feeding in the apical meristematic region [16]. In the native range, R. palmarum
vectors a plant pathogenic nematode, Bursaphelenchus cocophilus (Cobb) (Aphelenchida:
Parasitaphelenchidae), which causes red ring disease, a lethal ailment afflicting infested
palms [17,18].

Rhynchophorus palmarum was first recorded in Baja California Sur Mexico in 2000 at-
tacking Mexican fan palm, Washingtonia robusta Wendl., in Todos Santos located at the
southern tip of the Baja California peninsula [19], which is ~1500 km south of Tijuana. It is
probable that weevils spread naturally from Todos Santos into new areas of the peninsula
by flying, possibly reaching Tijuana without human assistance over a 10-year period. The
assumption of possible natural dispersal by flight was supported by data generated from
flight mill studies. These laboratory assays indicated that R. palmarum is a strong flyer
with potential to disperse long distances via flight over a 24 h period and flight distance
data conformed to a platykurtic distribution [4]. A notable shortcoming with the study
by Hoddle et al. [4] is that assays were time- (i.e., 24 h duration) and trial-limited (i.e.,
87 weevils were flown once).

Under field conditions, insects are likely to fly more than once during their life
time. Despite a probable proclivity for this obvious behavior, few flight mill studies have
investigated and quantified repeat flight events by the same experimental insects after
being provided a recovery period (i.e., days) between flight assays to rest and feed [20].
Rhynchophorus palmarum is a large, long-lived insect capable of flying more than once
during its life time. In contrast to the previous 24 h flight mill study by Hoddle et al. [4]
with R. palmarum, a better understanding of flight and dispersal capabilities of this insect
would be derived by quantifying, through repeat flight mill assays, the potential life time
flight capabilities of R. palmarum.

In work reported here, repeat flight mill assays were conducted with 101 R. palmarum
to determine, among other things, the cumulative distances that test insects are capable of
flying over their lifetime and whether kurtoses of dispersal distributions of flight distances
differ across repeat assays. To achieve this, weevils were flown multiple consecutive times
on flight mills, with recovery periods, until death from natural causes occurred. These
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life time repeat flight data have significant practical applications for modeling spread
of R. palmarum in invaded areas and predicting rates and patterns of spread into new
areas, as well as for assisting with the design and implementation of control, containment,
monitoring, and quarantine programs for this pest.

2. Materials and Methods
2.1. Source and Maintenance of R. palmarum Used for Flight Mill Studies

A total of 101 R. palmarum (i.e., 61 females and 40 males) were used for flight mill
studies. A total of 67 weevils (40 females and 27 males) were of unknown age and mating
status, and were captured alive in four bucket traps set at the Sweetwater Reserve, in Bonita
San Diego County, California, an area with hundreds of naturalized P. canariensis, many
of which are infested with R. palmarum (see Hoddle et al. [4] for field trapping details). In
addition to field captured weevils, unmated females [21] and males [13] were reared from
cocoons collected from three weevil infested P. canariensis that were removed in Chula
Vista, Bonita, and San Diego, San Diego County over the same time period weevils were
field captured in bucket traps (25 October 2016–10 May 2019).

Field collected weevils were moved under California Department of Food and Agri-
culture Permit 3289 to the Insectary and Quarantine Facility (IQF) at the University of
California, Riverside and maintained in a temperature (23.26 ◦C ± 0.84) and humidity
(% RH 39.38% ± 0.15%) controlled room with a light/dark cycle set at 14:10 (lights on at
06:00 and off at 20:00). All adult weevils were maintained individually in labeled clear
ventilated plastic containers (height 18 cm, width 13 cm, depth 13 cm) that were provi-
sioned with pieces of cut apple, longitudinally split sugar cane, and sections of banana
with skin. These foods were changed every 2–3 days when containers were cleaned to
remove condensation and decomposing foods. Weevils on this mixed fruit diet were given
an average of 11 ± 0.20 (±SE) (range 5–16 days) rest days between flight mill trials.

2.2. Flight Mills and Experimental Set Up

Flight mills used in experiments were custom made from aluminum blocks at the
University of California Riverside. Each flight mill was connected to a laptop computer
via a USB4 Encoder Data Acquisition Device (US Digital, Vancouver, WA, USA). Custom
software recorded flight data and macros developed for Microsoft Excel analyzed raw data
from each individual flight mill. Summary data of interest included total distance flown,
average velocity, total time spent flying, and maximum and mean flight bout times and
distances (total cumulative flight bouts per weevil had to surpass 1 km in a 24 h flight assay
before being included in analyses). Weevils used in experiments were attached dorsally by
their thorax to an “L” shaped metal plate (~0.59 mm diameter by 28 mm long) flattened
at one end for insect adhesion. A small drop of hot glue was applied to the thorax of
the experimental weevil and the flattened end of the harness was submersed in the glue.
Once glue dried, harnesses with attached weevils were affixed to 30.5 cm flight mill arms
made of 0.5 mm carbon steel via a socket crimp (model 809–043, Glenair, Glendale CA,
USA). Once attached, weevils were inspected to make sure they could open their elytra
and move their legs. Modeling clay of the same approximate weight as tethered weevils
was then placed on the opposite end of the flight mill arm to counterbalance the weight
of the adult beetle. Lopez et al. [11] and Hoddle et al. [10] provide additional details on
procedures to attach test insects to flight mill arms, flight mill manufacture and calibration,
data recording, and data file management.

Eight flight mills were set up in the same IQF room in which weevils were maintained.
For each flight mill trial, eight weevils were randomly assigned to flight mills and weevils
were tethered to flight mills in the morning, with set up occurring between 08:00 and 09:30.
Prior to the commencement of experiments, the weight of each weevil was recorded on a
digital balance (GF600, A & D Instruments, Elk Grove, IL, USA). Weevils were weighed
again at the completion of experiments to determine weight change.
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2.3. Statistical Analyses of Flight Distances and Velocities, Flight Bout Distances and Durations,
Weight Loss, and Survivorship Times

Prior to statistical analyses, data were checked for normality and, if necessary, research
variables were subjected to Box–Cox procedures to determine power transformations to
satisfy model assumptions (PROC TRANSREG [21]). The following transformations (where
y = research variable) were made (if not indicated, the variable was not transformed before
analysis): weight before trial; total distance flown: y0.25; velocity; maximum bout distance
flown: y0.25; and maximum bout length: y0.25.

The weight of R. palmarum adults by gender and mating status (i.e., unknown vs. un-
mated) before trials was analyzed using a two-way analysis of variance (PROC GLM [21]).
The procedure GENMOD in SAS [21] with binomial distribution and logit link function [22]
was used to test if percentage weight loss over the course of experiments was influenced by
gender, mating status (i.e., unknown vs. unmated), the 24 h flight trial (i.e., trials 1–14 only),
and their interactions. No weevils flew >1 km for trials 15–17, and these were excluded
from analyses. The response variable was the total percentage weight loss recorded per
weevil per flight trial. Separate models were run for each of the two response variables:
(a) % weight change between successive flights, and (b) % weight loss across successive
flights as a function of initial starting weight. Tukey tests at the 0.05 level of significance
were conducted to separate means when significant effects were detected.

For all other flight parameters of interest by gender, mating status, and flight trial,
a linear mixed effects model for repeated measures data was used to make comparisons
(PROC MIXED [21]). Fixed effects in the model included gender, mating status (i.e., un-
mated vs. unknown), trial number (i.e., one through fourteen only), and all the two-way
interactions between variables. Repeated measurements were recordings of flight parame-
ters recorded per each weevil for each flight trial. Separate models were conducted for each
of the six flight variables: (1) total distance flown, (2) velocity, (3) mean maximum bout
distance flown, and (4) mean maximum bout time length. Effective degrees of freedom for
fit models were estimated using the Kenward–Rogers method (option ddfm = kr [21]) [23].
Pairwise comparisons for significant main effects were adjusted using the Tukey–Kramer
method. Significance for all tests was set at α < 0.05.

Kaplan–Meier analyses were performed using PROC LIFETEST [21] on survival
data for weevils. Kaplan–Meier curves, as a function of survival probability and days
survived and survival probability and distance flown by adult weevils, were generated
for each gender by mating status. These curves were subjected to a log-rank test in PROC
LIFETEST [21] at the 0.05 level of significance to determine if significant differences in
distances flown or days survived existed between unknown mating status and unmated
male and female weevils.

2.4. Quantification of Dispersal and Redistribution Kernels for R. palmarum Using Distance
Flown Data

No significant differences were detected as a function of gender or mating status when
Kaplan–Meier analyses were completed (see Results). Consequently, all flight data by mat-
ing status and sex were combined and used to define dispersal curves and corresponding
redistribution kernels.

Flight data were only used for analyses if experimental weevils flew >1 km, and
flight data from the first 14 trials satisfied this requirement and were analyzed. Weevils
tethered to flight mills for trials 15, 16, and 17 failed to fly >1 km and these flight trials
were not included in analyses. Flight distance data for individual flights 1 (n = 82 weevils
flew >1 km), 2 (n = 89), 3 (n = 80), 4 (n = 73), 5 (n = 65), 6 (n = 52), 7 (n = 40), 8 (n = 26),
9 (n = 21), and combined flights, flights 10–14 (Flight 10 [n = 8], 11 [n = 8], 12 [n = 6],
13 [n = 2], 14 [n = 1]), as well as all flights combined (1–14), were divided across distance
flown bins according to Sturges’ formula, where the number of distance bins used per
flight trial = 1 + log2 (n) (n = number of observations [24]) and maximum flight distance
per trial was used as the upper bin limit. Binned flight (number of bins used ranged 5–7)
data were used to generate a frequency histogram for each flight trial and all flights
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combined and the mid-point in each bin was identified. To these midpoints, five different
dispersal curves (see Kot et al. [1] for equations for model curves 1, 2, 3, 4, and 7) with finite
integrals were examined for goodness of fit to binned data using sums of squares error (SSE)
and coefficient of determination (R2 = 1 − SSE/total sums of squares (SST)). Curve equation
parameters were determined using PROC NLIN [21] and the best (determined by size of
SSE (nonlinear model with the smallest value of residual sum of squares (RSS) indicated
the best fit to the data)) parameterized equation standardized by multiplying by bin width,
number of weevils flown per flight trial, and a normalizing constant specific to each
individual flight trial and combined flight trials (see Kot et al. [1] for normalizing constant
calculations) were fitted to binned flight data specific to each analysis for each flight trial.
Dispersal curve equations were parameterized and normalized to provide an area under
the curve of 1 when reflected about the origin, which generated the redistribution kernel
for the distances flown by weevils for each individual flight trial and trial combinations [1].
The best fitted models to individual and combined flight data sets were tested for kurtosis
using the following equation:

Excess Kurtosis (k) =

∫
x4 f (x)dx

[
∫

x2 f (x)dx]2
− 3

which was solved using the option vardef = n in PROC MEANS [21]. Values of k > 0, k = 0,
and k < 0 indicate leptokurtosis, mesokurtosis, and platykurtosis, respectively.

3. Results
3.1. Flight Distances and Velocities, Flight Bout Distances and Durations, Weight Loss, and
Survivorship Times
3.1.1. Flight Distances and Velocities

Mean total distances flown and mean flight velocity for each flight trial did not differ
by sex, mating status, sex by mating status, sex by flight trial, or mating status by flight
trial (Table 1).

Table 1. Results of repeated measures analyses examining the effects of gender, mating status (i.e.,
unmated vs. unknown), the 24 h flight trial (i.e., one through fourteen), and their interactions on (A)
total distance flown, (B) velocity, (C) mean maximum bout distance flown, and (D) mean maximum
bout time length recorded across experimental weevils tethered to flight mills over their life time (i.e.,
flights one through fourteen).

(A) Distance Flown Num df Den df F p

Gender (G) 1 147 2.28 0.133
Mating status (M) 1 167 0.28 0.599

Flight (F) 13 431 6.48 <0.0001 *
G × M 1 83.2 3.31 0.072
G × F 11 431 1.46 0.063
M × F 11 430 1.16 0.498

(B) Velocity Num df Den df F p

Gender (G) 1 152 0.03 0.974
Mating status (M) 1 179 1.75 0.188

Flight (F) 13 437 10.24 <0.0001 *
G × M 1 83.9 3.14 0.511
G × F 11 437 1.08 0.379
M × F 11 436 1.62 0.089
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Table 1. Cont.

(C) Maximum Bout
Distance Flown Num df Den df F p

Gender (G) 1 159 0.72 0.398
Mating status (M) 1 182 0.87 0.352

Flight (F) 13 436 3.04 0.001 *
G × M 1 85.1 3.58 0.062
G × F 11 436 1.58 0.073
M × F 11 435 1.45 0.148

(D) Maximum Bout
Length Num df Den df F p

Gender (G) 1 188 0.08 0.774
Mating status (M) 1 170 0.27 0.601

Flight (F) 13 434 2.16 0.039 *
G × M 1 88.4 1.59 0.211
G × F 11 435 1.56 0.101
M × F 11 433 0.99 0.451

* Indicates significance at the 0.05 level.

Significant differences in average distance flown and average flight velocity across
consecutive flights were observed (Table 1; Figure 1A). The trend in mean distances flown
began to decrease after flight two and mean flight velocity showed a decreasing trend
beginning after the first flight, and a marked reduction in flight capabilities was observed
after trial 12 (Figure 1A). The number and corresponding percentage of weevils flying per
trial likewise declined across successive flights (Figure 1B). The average cumulative life
time distance flown by female weevils that were unmated or of unknown mating status
was 219.55 ± 21.14 km (range: 10.40–806.29 km; median cumulative distance flown was
207.62 km). The average cumulative life time distance flown by male weevils that were
unmated or of unknown mating status was 267.72 ± 33.24 km (range: 16.36–758.49 km;
median cumulative distance flown was 204.91 km).
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3.1.2. Flight Bout Distances and Durations

Mean maximum flight bout distance, mean maximum flight bout time, mean flight
bout distance, and mean flight bout time for each flight trial did not differ by sex, mating
status, sex by mating status, sex by flight trial, or mating status by flight trial (Table 1).
Average maximum flight bout distances and their associated average times of duration
differed significantly across trials, with significant declines in duration and time being
observed after flight trial 10 (Table 1; Figure 2). The longest individual maximum flight bout
recorded was 154.54 km on the first flight by a female of unknown mating status, which
flew uninterrupted for 17 h 20 min and 39 s with an average flight velocity of 2.25 m/s
and a maximum recorded velocity of 4.00 m/s. The second longest individual flight bout
recorded was 150.85 km by a male weevil of unknown mating status for flight 4, which flew
constantly for 20 h 41 min and 35 s with an average velocity of 2.01 m/s and a maximum
recorded velocity of 3.41 m/s.
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3.1.3. Weevil Weight Loss

No significant differences in pre-trial weights were detected for experimental weevils
used in flight trials based on sex (F = 0.53; df = 1, 97; p = 0.47), mating status (F = 0.15,
df = 1, 97; p = 0.70), and their interaction (F = 0.09; df = 1, 97; p = 0.76). Mean percentage
weight loss of adult weevils across successive flights as a function of weight in the preceding
flight did not differ by sex (χ2 = 1.07, df = 1, p = 0.31), mating status (χ2 = 0.24, df = 1,
p = 0.62), flight trial (χ2 = 14.73, df = 9, p = 0.98), sex by mating status (χ2 = 0.05, df = 1,
p = 0.97), sex by flight trial (χ2 = 1.71, df = 9, p = 0.09), or mating status by flight trial
(χ2 = 14.96, df = 9, p = 0.09) (Figure 3). In comparison, a significant reduction in average
percentage weight loss was observed for weevils when weights were compared with initial
starting weights at the commencement of flight trial 1 (χ2 = 43.51, df = 9, p < 0.0001;
Figure 3). By the end of flight trials that provided useful flight data, surviving weevils
had lost, on average, ~11% of their body weight when compared with initial weights at
flight 1 (Figure 3).
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Figure 3. Mean percentage change in weight for adult Rhynchophorus palmarum across successive
flight trials and in relation to initial starting weight at preceding flight or as function of weight at the
commencement of flight trial one. Data points with different letters indicate significant differences at
the 0.05 level for weight change from weight at preceding flight trial (upper case letters) or initial
starting weight at commencement of flight 1 (Roman numerals).

3.1.4. Weevil Survivorship Times and Flight Activity by Age

The log-rank test assessing the probability of days survived by adult weevils was not
significant for gender by mating status (χ2 = 0.92, df = 3, p = 0.82), mating status (χ2 = 0.33,
df = 1, p = 0.57), or sex (χ2 = 0.41, df = 1, p = 0.52) (Figure 4A). Adult male weevils of
unknown mating status lived for an average of 98.15 ± 9.45 days (range 12–176 days;
median age 101 days). Female weevils of unknown mating status lived for an average of
106.18 ± 7.64 days (range 9–196 days; median 117 days). Unmated females lived for an
average of 113.00 ± 9.10 days (range 22–208 days; median 103 days). Unmated males lived
for an average of 112.92 ± 12.27 days (range 40–176 days; median 115 days). Weevils that
flew >1 km in each age interval exhibited strong capacity for flight as they aged (Figure 4B).
Of the 22 weevils that flew >1 km in age category >120 days, the range of flight distances
was 2.05–77.61 km (mean distance flown = 26.56 ± 3.61 km; median 25 km) (Figure 4B).
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3.2. Dispersal and Redistribution Kernels for R. palmarum Using Distance Flown Data

The log-rank test assessing the probability of days survived by adult weevils was
not significant for gender by mating status, mating status, or sex (see above). Similarly,
the log-rank test assessing the probability of distance flown by adult weevils was not
significant for gender by mating status (χ2 = 3.78, df = 3, p = 0.29), mating status (χ2 = 0.01,
df = 1, p = 0.93), or sex (χ2 = 2.21, df = 1, p = 0.14). Therefore, all flight data by mating status
and sex were combined and the best fitting of the five curves analyzed from Kot et al. (1)
was determined to be curve 1 for flights 1, 4, 6, 7, 9, and 1–14 and curve 3 for flights 2, 3, 5,
8, and 10–14 (Table 2).

These two functions were used to generate the corresponding redistribution kernel
for each flight (Figure 5). The excess kurtosis measures, k, were all <0, indicating that the
equations describing the curves that were produced were all platykurtic (Table 2) (Figure 5).
Redistribution kernel plots for flights 2, 3, 5, 8, and 10–14 combined produced graphs with
bimodal peaks centered at the origin (Figure 5).
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Table 2. Lowest calculated RSS values fitted to equations for curves 1 and 3 from Kot et al. [1], parameter estimates and
normalizing constants for curves 1 and 3, and measures of excess kurtosis for individual flights 1–9, combined flights 10–14,
and all flights combined (1–14).

Flight Number

RSS values 1 2 3 4 5 6 7 8 9 10–14 All flights
Curve 1 50.01 - - 94.71 - 10.49 6.77 - 5.59 27.69 30.77
Curve 3 - 65.63 84.73 - 49.24 - - 2.91 - - -

Curve Parameter Estimates

t - 7.63 8.07 - 5.68 - - 4.64 - 5.9 -
s - 143.09 124.07 - 104.89 - - 101.91 - 78.32 -
a 3.30 164.2 160.3 3.23 95.15 2.53 2.56 30.33 2.12 63.84 3.43
b 0.00014 32.02 31.99 0.000164 19.74 0.00018 0.00009 6.36 0.00005 13.96 0.00000062
c - −757.1 −754.8 - −345.8 - - −95.40 - −232.9 -

Normalizing
constant 4149.03 4226.40 3299.92 3500.40 1901.42 1668.01 2406.76 647.68 1999.74 822.5 69497.49

Excess Kurtosis Estimates

k −1.11 −1.22 −1.25 −0.92 −1.05 −0.87 −1.12 −1.03 −1.41 −1.60 −0.86
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4. Discussion

This study is one of the first to investigate the capacity of study insects to undergo
repeat flights on flight mills over the course of their natural lifespan. Flight mill studies
under controlled laboratory conditions indicate that adult R. palmarum are strong fliers
and male and female weevils, regardless of sex or mating status, are capable of multiple
long distance flights over their lifetimes. Repeat flight mill assays by Barkan et al. [20]
with R. ferrugineus demonstrated that this invasive palm weevil was capable of multiple
repeat flights that averaged ~62 km for adult weevils. In comparison, male and female
R. palmarum averaged ~268 km and ~220 km, respectively. In this study, the maximum
cumulative flight distance of ~806 km (average flight distance across nine consecutive
flights that were >1 km was ~90 km with a maximum flight distance of ~151 km recorded
for flight 5) was attained by an unmated female. In contrast, the maximum cumulative life
time flight distance for an individual male R. ferrugineus that was permitted to fly for 3 h
per trial (vs. 24 h for the work reported here) across 11 flight trials was ~315 km (average
flight distance was ~29 km) [20]. For R. palmarum, average cumulative flight distances and
associated velocities and flight bout distances and durations declined across successive
trials. This outcome may have resulted from increasing age, accumulating physiological
stress, inadequate diet, or a combination of these factors as the number of repeat flights
increased. An important caveat for interpreting these flight distance data stems from the
fact that they are laboratory generated and only provide an indication of potential flight
capabilities should R. palmarum choose to initiate multiple consecutive flights in nature.
It is unknown if weevils engage in such flight activity in the field and behavioral factors
that initiate flight in R. palmarum are also poorly understood. As Kissling et al. [5] note,
tracking flying insects over long distances in the field is extremely difficult and tools to do
this easily are not currently available.

The redistribution kernels generated from flight distance data for R. palmarum across
14 trials were all platykurtic and exhibited negative excess kurtosis, indicating that the
tails of these curves have fewer extreme or outlier observations (i.e., they are light tailed)
than would be expected for data with a normal distribution. The peak morphology of
redistribution graphs was either unimodal or bimodal around the origin. However, kurtosis
is not characterized by peak morphology (i.e., peakedness) of distribution data and data
kurtosis is defined solely by the tails (i.e., tailedness) of the probability distribution [25,26].

The consistency of R. palmarum flight data exhibiting only platykurtic distributions
across all flight trials was unexpected. It is uncertain as to whether this observation was a
chance artifact from repeatedly using the same cohort of weevils for experiments, whether
consistency of dispersal distributions is characteristic of pest populations at the leading
edges of invasion events, or if it is a signature-like species-specific phenomenon. These
possibilities could be tested by repeating flight mill trials with R. palmarum sourced from a
centralized region of the native range (e.g., Costa Rica, Colombia, or Brazil). A comparison
of very similarly generated flight mill data for single 24 h flights for R. ferrugineus, R. vulner-
atus, and R. palmarum indicated that each species had unique dispersal distributions that
were mesokurtic, leptokurtic, and platykurtic, respectively [4]. When these distribution
data were plotted together, the tails of the platykurtically (i.e., “thin” tailed) distributed
flight data for R. palmarum were “fatter” than the leptokurtically (i.e., “fat” tailed) dis-
tributed data for R. vulneratus. The platykurtic redistribution kernel graph for R. palmarum
had a greater proportion of weevils sitting in the curve tails at distances further from
the origin than the leptokurtic redistribution kernel graph generated for R. vulneratus [4].
This contrast suggests that the magnitude of what constitutes “thin” and “fat” tails with
respect to kurtoses of dispersal data needs careful consideration when assessments of
potential invasion risk and rates of spread are being made using data generated across
different studies.

Rhynchophorus palmarum exhibited steady weight loss over the course of repeat flight
assays even though adult weevils readily consumed apples, bananas, and sugar cane in
captivity. On this diet, experimental male and female weevils, irrespective of mating status,
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lived for an average of ~108 days. When percentage weight loss was assessed as a function
of initial weight at the time of flight 1 (i.e., commencement of repeat flight trials), weevils
exhibited a steady irreversible decline in weight, with an average weight loss of ~11% being
observed for combined trials 10–14, the final set of flight assays that provided useable flight
data. However, despite feeding and rest periods, full weight recovery to the initial starting
weight across flight assays was not observed. Consistent weight loss as a function of initial
starting weight at time flight assays commenced was likely due to energy expenditure and
physiological deterioration from repeat flight trials, aging, and possibly a substandard diet.

Despite demonstrating an ability to undertake numerous long distance flights on flight
mills, the spread of R. palmarum throughout San Diego County has not been rapid. Since
first detection in Tijuana, Mexico in 2010, R. palmarum had moved northwards and estab-
lished populations as far north as San Marcos in San Diego by 2020, a distance of ~82 km.
This suggests movement at the leading edge of the invasion may only be ~8 km/yr. This
observation may be indicative that natural dispersal conforms to a thin-tailed platykurtic
distribution, as suggested by flight mill data generated in this study. Alternatively, urban,
recreational, and commercial areas in San Diego County have abundant plantings of palms,
of which the most common is P. canariensis, a highly preferred host for R. palmarum.

Given this palm-rich environment, there may be relatively little impetus for weevils
to fly long distances as new hosts are plentiful and in close proximity to each other.
Additionally, factors that motivate innate dispersal behaviors, including repeat flights,
are unknown, and it is uncertain if weevils undertake additional flights after colonizing
suitable palm hosts. However, should weevils find themselves in areas lacking hosts (e.g.,
wilderness areas characterized by chaparral or desert), they may have the capacity to clear
these inhospitable zones and colonize new regions. These types of long distance dispersal
events, should they occur, may unexpectedly accelerate spread into new areas.

An important agricultural area vulnerable to incursion is the edible date groves (i.e.,
P. dactylifera, a known host for R. palmarum) in the Coachella Valley, a desert area that
is a linear distance of ~150 km across inhospitable and host-poor terrain from current
R. palmarum infestations in San Diego County. The edible date industry in California is
valued at $100 million per year [27]. The possibility of long distance spread that threatens
agricultural enterprises emphasizes the need for a well-coordinated and systematic detec-
tion and monitoring program, which is currently lacking for R. palmarum in California even
though trap optimization studies have been completed [28,29]. Flight distance data and
distribution of these data obtained from repeat flight mill assays presented here can aid
in the development of coordinated area-wide monitoring and management programs in
California for R. palmarum.
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