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Abstract

Red algal parasites are unusual because the vast majority of them parasitize species with which they share a recent common

ancestor. This strategy has earned them the name ‘‘adelphoparasites,’’ from the Greek, adelpho, meaning ‘‘kin.’’ Intracellular

adelphoparasites are very rare in nature, yet have independently evolved hundreds of times among the floridiophyte red

algae. Much is known about the life history and infection cycle of these parasites but nearly nothing in known about their
genomes. We sequenced the mitochondrial genomes of the free-living Gracilariopsis andersonii and its closely related

parasite Gracilariophila oryzoides to determine what effect a parasitic lifestyle has on the genomes of red algal parasites.

Whereas the parasite genome is similar to the host in many ways, the genes encoding essential proteins ATP8 and SDHC are

pseudogenes in the parasite. The mitochondrial genome of parasite from a different class of red algae, Plocamiocolax
puvinata, has lost the atp8 gene entirely, indicating that this gene is no longer critical in red algal parasite mitochondria.
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Introduction

Parasitism is a common evolutionary strategy that has arisen

independently numerous times throughout the history of

life and encompasses a wide variety of organismal interac-

tions. Much is understood about parasite biology, but little is

known about the method by which a free-living eukaryote

adopts a parasitic lifestyle. To tease apart the stages of evo-

lution resulting in a parasitic organism, a closely related,

free-living taxon must be identified for comparative purpo-

ses in order to accurately access character change. Often,

however, parasites are only distantly related to a free-living

taxon. Red algae provide a unique model for understanding

parasite evolution because most red algal parasites are sister

species to their hosts, derived from a recent common ances-

tor. Therefore, direct genomic and molecular comparisons

made between the host and parasite have the potential

to unravel the fundamental genomic changes that must

occur for an organism to become parasitic.

This study uses the host–parasite relationships that exist

among red algae (Rhodophyta) as a model to investigate the

evolution of parasites from a free-living ancestor. Multicel-

lular red algae are ideal for understanding the evolution of

parasitism because;10% of known species are parasites of

free-living red algae, and approximately, 80% of these para-

sites have evolved from the most recent common ancestor

with their hosts (Goff et al. 1996). These parasites are

known as adelphoparasites (‘‘adelpho’’ meaning kinsman)
(Setchell 1918; Goff 1995). Morphologically reduced to

a miniature, often colorless pustule, adelphoparasites are

highly host dependent and occur exclusively on their sis-

ter-taxon (Goff 1982). The remaining 20% of red algal para-

sites are known as alloparasites (‘‘allo’’ meaning other)

because whereas they also diverged from free-living species,

they have since radiated to exploit more distantly related red

algal hosts (Goff et al. 1997). Although this terminology has
somewhat fallen out of favor because a full spectrum of

host/parasite relationships occur in nature (Zuccarello

et al. 2004), the terms remain useful to designate differen-

ces in the biology of the organisms.

Red algal adelpho- and alloparasitism have arisen inde-

pendently numerous times throughout the diversification
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of the florideophyte lineage, so a range of host–parasite re-
lationships exists providing ‘‘windows’’ into the process of

parasite evolution. For example, some parasites are not en-

tirely obligate and have retained limited photosynthetic ca-

pabilities, whereas others are highly host specific to their

sister species and others have multiple hosts. This range

of relationships creates an evolutionary spectrum, allowing

for comparative investigations into how these parasites

evolve from a free-living species (Goff and Coleman
1987; Goff et al. 1997).

The mechanism by which red algal adelpho- and allopar-

asites infect host cells has been extensively studied (Setchell

1918; Goff and Coleman 1985, 1987; Goff 1995; Goff et al.

1997; Zuccarello et al. 2004). Upon contact with the host

thallus, the nonmotile parasitic spore produces a short fila-

ment, or conjector cell, that fuses with a surface host cell.

Minor variations in the subsequent steps from one species to
the next are common, but in general, infection proceeds

when the parasite deposits a nucleus, mitochondrion and

dedifferentiated plastid, known as a proplastid, into a host

cell. Once in the host cytoplasm, the parasite nuclei undergo

DNA synthesis and the mitochondria divide rapidly. This cy-

cle of host infection by the parasite results in the formation

of nonphotosynthetic heterokaryotic tissue that appears as

a gall or pustule on the exterior of the infected host thallus
(Goff and Coleman 1985; Goff 1995; Zuccarello et al.

2004). The parasite cells in the pustule eventually give rise

to gametes, 2n carpospores, or 1n tetraspores that are re-

leased allowing for the continued dispersal of the parasite.

Spores packaged and produced by the parasite contain

host-derived proplastids along with parasite nucleus and

mitochondrion (Goff and Coleman 1987).

Although much is known about the life history strategies
of red algae algal parasites, little work has been done assess-

ing the molecular and genomic consequences of becoming

a parasite. A paper published by Goff and Coleman (1995)

nicely illustrates the fate of parasite organellar DNA during

host cellular infection and transformation. By comparing the

restriction fragment length polymorphisms derived from the

nuclear, plastid, and mitochondrial genomes of both host

and parasite, Goff and Coleman show that although the
parasite plastid is lost in favor of co-opting the host version,

themitochondrial DNA (mtDNA) and nuclear DNA aremain-

tained by the parasite. Because this pattern was confirmed

in three different red algal parasites (representing three dif-

ferent red algal orders), it can be assumed that there is

strong selection for the parasite maintaining its own

genetically unique mitochondria rather than using the host

version.
Here, we compare the mitochondrial genome sequences

and architecture of Gracilariopsis andersonii and its adel-

phoparasite Gracilariophila oryzoides, as well as alloparasite

Plocamiocolax pulvinata, to shed light on the evolutionary

mechanisms that have resulted in the differences between

a parasitic and free-living lifestyle. Because of the close evo-
lutionary relationships between the red algal host and par-

asite, direct comparisons can be made between the

mitochondrial genomes of Gr. andersonii and G. oryzoides
with differences attributed to their respective lifestyles. The

mitochondrial genome of the slightly more divergent allo-

parasite, P. pulvinata, provides further insight into general

trends that may be observed among red algal parasites.

Materials and Methods

Sample Collection, DNA Isolation, and Genome
Sequencing

Host, Gr. andersonii, and parasite, G. oryzoides, were col-

lected in December 2008 and June 2009 from Pigeon Point,

Pescadero, CA, USA. Noninfected Gr. andersonii were

found growing along sandy substrata in the lower intertidal
region. Plants were removed by hand and placed directly in-

to a two gallon Zip-Lock bag filled with seawater. Within an

hour, freshly collected, noninfected Gr. andersonii plants
were desiccated on silica gel. Gracilariophila oryzoides ma-

terial was isolated from freshly collected infected host Gr.
andersonii by excising the white pustules formed by the ma-

ture parasites. Parasitic tissue was removed using forceps

and placed directly into a 1.5-ml eppie filled with silica.
Dried Gr. andersonii and G. oryzoides were immersed in

liquid nitrogen and ground to a fine powder using a mortar

and pestle. Total DNA (genomic and organellar) was isolated

fromGr. andersonii andG. oryzoides using an optimized red

algal extraction buffer (Saunders 1993) and a standard

phenol/chloroform genomic DNA extraction (Saunders

1993). mtDNA from Gr. andersonii was amplified by poly-

merase chain reaction (PCR) and long range-PCR using
primers designed in Geneious Pro 4.8.5 (Drummond et al.

2009) from known red algal mitochondrial genomes

(Leblanc et al. 1995; Ohta et al. 1998; Burger et al.

1999). Primer sequences are listed in supplementary table

1 (Supplementary Material online).

Conserved genes were amplified by PCR using cycling pa-

rameters that included an initial denaturation cycle of 94 �C
for 30 s followed by 38 cycles of 94 �C for 30 s, 50 �C for 45
s, and 72 �C for 2 min. A final extension step was performed

at 72 �C for 10 min followed by a 10 �C hold. For larger

amplicons (between conserved genes), a high-fidelity taq

(Takara LA Taq Polymerase) was employed to reduce ampli-

fication errors. The thermal profile for long range-PCR am-

plification included an initial denaturation cycle of 94 �C for

30 s followed by 36 cycles of 94 �C for 30 s, 50 �C for 45 s,

and 68 �C for 4–8 min depending on the estimated se-
quence length (approximately 1 min extension time for ev-

ery 1,000 bp). A final extension stepwas performed at 68 �C
for 10 min followed by a hold at 10 �C until the samples

were processed. Amplified products were purified and sent

for sequencing on an Applied Biosystems 3130xl Genetic
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Analyzer at the Rhode Island Genomics and Sequencing

Center. Individual sequences were assembled into contigs
and edited based on quality scores using Geneious Pro

4.8.5. Primers built from assembled Gr. andersonii sequen-
ces were used to ‘‘primer-walk’’ gaps and close sequence

holes in the host mitochondrial genome.

The mtDNA sequence of P. pulvinata was acquired from

Lynda Goff that was sequenced previously using the same

methods described above forGr. andersonii. The 25, 894 bps

contig was imported into Geneious Pro 4.8.5 for open-
reading frame (ORF) identification and genome annotation.

Total genomic and organellar DNA were isolated from

driedG. oryzoides using the samemethods described above

for Gr. andersonii. Five milligrams of parasite total genomic

DNA was sequenced using the 454 Genome Sequencer FLX

(Roche) at the McGill University and Genome Quebec Inno-

vation Centre. A ;25, 000 bp contig resulting from the as-

sembly was imported into Geneious Pro 4.8.5 for further
annotation. Contig coverage was approximately 30-fold

for the mitochondrial contig. Regions of ambiguity or where

frameshifts were detected were resequenced using PCR and

Sanger Sequencing.

Genome Annotation

ORFs and annotations of Gr. andersonii, G. oryzoides, and
P. pulvinata mtDNA were performed using Geneious Pro

4.8.5. Genes were identified using the BlastN and BlastX al-

gorithms (Altschul et al. 1997) to compare the predicted

ORFs to the NCBI GenBank database. Frameshift mutations

resulting in pseudogenes were confirmed by manual assess-
ment of 454-sequence alignments, and Sanger sequencing

was employed in areas of homopolymer runs, low coverage,

or frameshifts. Small and large ribosomal rRNA subunits

were identified in each genome by alignment to the mtDNA

sequences to previously sequenced red algal rRNA subunits

(Leblanc et al. 1995; Burger et al. 1999). Transfer RNAs were

determined using tRNAscan-SE version 1.21 (Lowe and Eddy

1997).

Analysis: dN/dS Ratio, AT Content

For each mtDNA genome, all protein-coding genes and
pseudogenes were extracted and aligned at the nucleotide

and amino acid level with the only published floridiophyte

mitochondrial genome, Chondrus crispus (NC001677),

using the Geneious Pro software package. To estimate

the ratio of nonsynonymous to synonymous substitutions

(dN/dS), a nucleotide alignment and Neighbor-Joining tree
were constructed for each protein-coding gene and im-

ported into the CODEML program from the PAML package

(Yang 2007). Analyses were performed with the following

parameters specified in the default control file from PAML

for the CODMEL package: runmode5 0 (sequence compar-

isons take into account phylogenetic history); Seqtype 5 1,

and Codonfreq 5 2 (average nucleotide frequencies at the

three codon positions); Model 5 0; and omega (measuring
dN/dS ratio) and kappa (measuring transitions/transversions)

were estimated, not fixed. To generate a pairwise compar-

ison between each species, all the parameters were kept

constant except runmode, which was denoted as a �2.

ATcontent for each genome was determined by the extrac-

tion and concatenation of noncoding, protein-coding, and

rRNA sequence, respectively (table 1).

Genome Size Estimates: Pulsed-Field Gel
Electrophoresis and Southern Hybridization

Using pulsed-field gel electrophoresis (PFGE), mitochondrial
genome size was estimated for both Gr. andersonii and
G. oryzoides. Whole cells extracted from freshly collected

host and parasite material were embedded in agarose plugs

and digested in a buffer (10 mM Tris/HCl, 400 mM EDTA,

1% lauroylsarcosine, 0.25 mg Proteinase K). Plugs were

run in a PFGE, on a 1% agarose TBE gel in 0.5% TBE buffer

and prestained in 1X SYBR Safe. The gel was run with the

MidRange I PFGE (BioLabs) ladder for 11–24 h at 14 �C with
aswitchtimeof1–6sata120�angletooptimizethemigration

of the mitochondrial genome.

Results

Genome Size and Architecture

The entire mitochondrial genomes ofGr. andersonii (27,036
bps, GenBank accession HQ586060), G. oryzoides (25,161
bps, HQ586059), and P. pulvinata (25,894 bps, HQ586061)

were sequenced and mapped to a circular model based on

our ability to amplify the genomes in entirely overlapping

fragments. Whereas this does not preclude the possibility
that the genome may be a linear molecule with varying ter-

mination points between different copies, we have no evi-

dence to support this alternative. The overall ATcomposition

of the three mitochondrial genomes was 72.0, 72.0, and

Table 1

Red Algal Mitochondrial Genome Comparisons

mtDNA size (%AT) Protein-Coding (%AT) Noncoding (%AT) rRNA (%AT)

Chondrus crispus 25,836 bp (72.1) 80.5% (71.9) 7.0% (80.4) 15.4% (69.2)

Plocamiocolax pulvinata 25,894 bp (76.1) 75.4% (76.4) 9.6% (80.4) 15.3% (71.9)

Gracilariopsis andersonii 27,036 bp (72.0) 72.5% (71.9) 13.0% (81.0) 15.0 (69.2)

Gracilariophila oryzoides 25,161 bp (72.0) 76.0% (71.8) 7.9% (77.6) 16.1% (69.2)
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76.1%, respectively. Coding regions of the three genomes
had lower AT content and higher GC content than inter-

genic or noncoding regions (table 1). Consistent with pre-

viously sequenced red algal mitochondrial genomes

(Leblanc et al. 1995; Ohta et al. 1998; Burger et al.

2000), Gr. andersonii, G. oryzoides, and P. pulvinata have

densely packed mitochondrial genomes that are 72.5,

75.4, and 76.0% coding, respectively. Genes are encoded

on both the positive and negative strand of all three ge-
nomes and there is considerable sequence synteny across

the three red algal species sequenced in this study and in

mitochondrial genomes previously sequenced; C. crispus,
Porphyra purpurea, and Cyanidioschyzon merolae.

The mitochondrial genes in C. crispus, Gr. andersonii,
G. oryzoides, and P. pulvinata that code for proteins, rRNA,

and tRNAs are listed in table 2. All three genomes code for

both 26s RNA and 16s RNA. The number and content of
tRNAs varies among Gr. andersonii, G. oryzoides, and P. pul-
vinata mtDNA. Consistent with C. crispus, P. purpurea, and
C.merolae, these genomes do not contain a full set of tRNAs

needed to complete translation (table 2). The protein-cod-

ing genes found in all three genomes are virtually identical,

and the content similarity extends to C. crispus as well. The

few exceptions to this trend will be discussed below.

PFGE Genome Size Estimates

To ensure our assemblies were consistent with estimated ge-

nome size, PFGE was performed for Gr. andersonii. The

mtDNA of Gr. andersonii was estimated to be ;28 Kb

(fig. 1), indicating that our sequence is not missing data

nor are assembly artifacts present that might change artifi-

cially the sequence length.

Mitochondrial Gene Content and Order in
G. andersonii, G. oryzoides, and P. pulvinata in
Comparison with Each Other and Previously
Sequenced Red Algal mtDNA

Similar to the mitochondrial genomes of P. purpurea and

C. crispus, the mt genomes of Gr. andersonii, G. oryzoides,
and P. pulvinata can be broken into three conserved gene
clusters. The longest cluster is comprised of atp6-atp8-
nad5-nad4-sdhD-nad2-nad1-nad3. In P. pulvinata, there

has been a deletion of atp8 but the neighboring genes

are unaffected. The cox1-cox2-cox3 genes form the second

well-conserved gene cluster among sequenced red algal

mtDNA. Finally, the cluster SSU-nad4L-LSU occurs in all

sequenced red algal mtDNA except for a slight difference

in C. merolae where the gene yeiU exists between nad4L
and LSU. Overall, gene order and content are largely static

in red algae despite the age of the lineage.

Sequence analysis of Gr. andersonii, G. oryzoides, and
P. pulvinata mtDNA indicates that all three genomes code

for three small ribosomal proteins (rps3, rps11, and

rps12) and two large ribosomal proteins (rpl16 and
rpl20) (table 2). Genes involved in electron transport and

oxidative phosphorylation are well conserved among

newly sequenced red algal mtDNA and C. crispus. NADH
dehydrogenase subunits nad1, nad2, nad3, nad4, nad4L,
nad5, and nad6 are transcribed by all red algal mtDNA se-

quenced so far. Protein-coding genes involved in cyto-

chrome C oxidase (cox1, cox2, cox3) and cytochrome C

oxidoreductase (cob) are also found among all red algal
mtDNA. Subunits sdhB, sdhC, and sdhD involved in respi-

ratory chain complex II (succinate dehydrogenase) are

identified in all red algal mtDNA except for in G. oryzoides,
where sdhC is now a pseudogene. Genes involved in ATP

synthesis, atp6, atp8, atp9, are found throughout red algal

mtDNA, except atp8 is not found in P. pulvinata and ap-

pears to be a pseudogene in G. oryzoides.

Host/Parasite and Parasite/Parasite Comparisons

Protein-coding gene content and order are identical be-

tween the mitochondrial genomes of Gr. andersonii and
G. oryzoideswith a few exceptions; rps11 is in the same po-

sition but in different directions (figs. 2 and 3); the presence
of ymf (a gene without identified function) following cox3 in
G. oryzoides (fig. 3); the development of two pseudogenes

in G. oryzoides (fig. 3); and differences in unique ORFs. Ad-

ditionally, Gr. andersonii contains an intergenic space of

;2,000 bps between cob and nad6 that is not found in

G. oryzoides. This intergenic space is unique toG. andersonii
and is not found in other red algal mtDNA available for com-

parison.
Parasites P. pulvinata and G. oryzoides also have very sim-

ilar gene content (figs. 3 and 4). Both parasites, unlike Gr.
andersonii, encode ymf39 (also found in C. crispus and P.
purpurea) following cox3 and have either lost or developed

a frameshift mutation in their atp8 gene. The two notable

differences between the parasite mitochondrial genomes

are the presence of an intron (557 bps) within cox1 in P. pul-
vinata (fig. 4) and the absence of a truncated sdhC gene in
P. pulvinata.

Pseudogenes

Due to frameshift mutations and the development of pre-

mature stop codons, G. oryzoides contains two pseudo-

genes; atp8 and sdhC. The remaining portion of the atp8
gene inG. oryzoides is;200 bps shorter than the atp8 gene

found in Gr. andersonii and C. crispus, which are 411 and

407 bps long, respectively. The sdhC pseudogene has under-

gone multiple deletions resulting in a frameshift mutation
and development of a premature stop codon. The sdhC
pseudogene in G. oryzoides is 255 bps, which is ;120

bps shorter than the sdhC gene found in Gr. andersonii,
P. pulvinata, and C. crispus. Despite being pseudogenes,

the genes are still being transcribed as parts of multigene
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transcripts based on Illumina sequenced cDNA libraries
(Lane CE, unpublished).

tRNAs

Dispersed throughout the Gr. andersonii mtDNA are 18
tRNA genes (fig. 2 and table 2). All tRNA gene sequences

show standard cloverleaf secondary structures and are be-

tween 72 and 88 nucleotides long. Transfer RNA sequences

are found on both the negative and positive strand and are

typically single or in groups of two or three. Gracilariophila
oryzoides encodes 19 tRNA genes distributed on both

strands throughout the mtDNA (fig. 3 and table 2), which

also show conventional size and structure. Transfer RNAs
coding for the same amino acids are found in the mtDNA

of Gr. andersonii and G. oryzoides with the exception of

HIS (GTG), which is only in the G. oryzoidesmtDNA. Twenty

tRNAs are found throughout the mtDNA of P. pulvinata
(fig. 4 and table 2). Unlike Gr. andersonii and G. oryzoides,
P. pulvinata mtDNA does not contain Gly (GCC) but does

encode Ser (GCT) and Try (GTA) (table 2). Plocamiocolax
pulvinata, like Gr. andersonii, does not encode tRNA HIS
(GTG). No pseudo tRNAs are found in any of the three mi-

tochondrial genomes sequenced.

ORFs

Four unique ORFs (orf61, orf87, orf95, and orf143) are pres-
ent in the mtDNA ofGr. andersonii and based on predictions

using Geneious Pro 4.8.5, all four ORFs exhibit hydrophobic

characteristics indicative of membrane embedded proteins.

OneuniqueORF(orf80) is foundinthemtDNAofG.oryzoides.
Blast results indicateweakhomologybetweenorf80and tpk4
(e value: 5.89�10�1); a protein found inArabidopsis thaliana
that is involved in theplasmamembraneKþ-channel (Gobert
et al. 2007). Two unique ORFs (orf172 and orf135) are found
in the mtDNA of P. pulvinata. Orf152 shows weak sequence

similarity (E value: 7.62 � 10�1) with orf172 in C. crispus.
Similar to C. crispus orf172, orf152 is highly hydrophobic

and most likely membrane bound, if it codes for a functional

protein. Orf135 shows characteristics typically observed in

transmembrane proteins. Protein predictions of ymf39, pres-
ent in both P. pulvinata and G. oryzoides, indicate that this
hypothetical protein has both hydrophobic and hydrophilic

properties that may be associated with a transmembrane

protein.

dN/dS Ratios

Table 3 shows the ratio of nonsynonymous to synonymous

substitutions (dN/dS) for all the protein-coding genes shared

by C. crispus, P. pulvinata, Gr. andersonii, and G. oryzoides.
A low ratio (dN/dS , 1) indicates purifying or stabilizing se-

lection, whereas a high ratio (dN/dS . 1) signifies positive

selection. Because mitochondrial genomes show AT skew,
each codon position was considered when calculating both

Table 2

Mitochondrial Genome Comparisons: Protein-Coding Genes, rRNA,

and tRNA Content

Gene

Chondrus

crispus

Plocamiocolax

pulvinata

Gracilariopsis

andersonii

Gracilariophila

oryzoides

Electron transport and oxidative phosphorylation

atp6 þ þ þ þ
atp8 þ � þ W

atp9 þ þ þ þ
cob þ þ þ þ
cox1 þ þ þ þ
cox2 þ þ þ þ
cox3 þ þ þ þ
nad1 þ þ þ þ
nad2 þ þ þ þ
nad3 þ þ þ þ
nad4 þ þ þ þ
nad4L þ þ þ þ
nad5 þ þ þ þ
nad6 þ þ þ þ
sdhB þ þ þ þ
sdhC þ þ þ W

sdhD þ þ þ þ
secY þ þ þ þ
ymf39 þ þ � þ

Ribosomal protein genes

rpl16 þ þ þ þ
rpl20 þ þ þ þ
rps3 þ þ þ þ
rps11 þ þ þ þ
rps12 þ þ � þ

Ribosomal RNA genes

rRNA SSU þ þ þ þ
rRNA LSU þ þ þ þ

Transfer RNA genes

Ala (TGC) þ þ þ þ
Arg (ACG) þ þ þ þ
Arg (TCT) þ � � �
Asn (GTT) þ þ þ þ
Asp (GTC) � þ � �
Cys (GCA) þ þ þ þ
Gln (TTG) þ þ þ þ
Glu (TTC) þ þ þ þ
Gly (GCC) þ � þ þ
Gly (TCC) þ þ þ þ
His (GTG) þ � � þ
Leu (TAA) þ þ þ þ
Leu (TAG) þ þ þ þ
Lys (TTT) þ þ þ þ
Met (CAT) þ þ þ þ
Met (CAT) � þ þ þ
Phe (GAA) þ þ þ þ
Pro (TGG) þ þ þ þ
SeC (TCA) þ þ þ þ
Ser (TGA) þ þ þ þ
Ser (GCT) � þ � �
Try (GTA) þ þ � �
Val (TAC) þ þ þ þ
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the synonymous and nonsynonymous substitutions (see

Materials and Methods). Cox1, cox2, and cob have some

of the lowest dN/dS ratios (table 3), which is expected con-

sidering these genes are typically used in phylogenetics due

to their low rate of evolutionary divergence. Mitochondrial
genes encoding ribosomal proteins (rps3, rps11, rps12,
rpl16, and rpl20) have some of the higher dN/dS ratios

along with sdhB, sdhC, and sdhD. On the whole, genes in-

volved in electron transport (nad1, nad2, nad3, nad4,
nad4L, nad5, and nad6) and ATP synthase (atp6, atp8,
and atp9) have lower dN/dS ratios. The dN/dS ratio of

rps11 (1.72) and secY (1.19) imply that these genes are

under positive selection. In the case of the atp8 and sdhC
G. oryzoides pseudogenes, the 5# end of each gene was

included in the analysis and in pairwise comparisons.

In both cases, the ratio was similar to that found among

functional copies of the genes.

Discussion

Because of the medical implications of parasitic organisms
and their tendency toward smaller genomes, they were

among the first eukaryotes to have their genomes se-

quenced (e.g., Katinka et al. 2001; Gardner et al. 2002;

Berriman et al. 2005; El-Sayed et al. 2005; Ivens et al.

2005; Haas et al. 2009). As a result, much is known about

parasite genome architecture and construction. Parasite ge-
nomes, like those of most symbionts, tend to follow certain

evolutionary trends such as: an increase in AT content

(Moran 1995; Cavalier-Smith 2005); decreased coding

capacity due to the loss of biosynthetic and metabolic path-

ways (Corradi et al. 2007); and organellar genome reduction

(Rocha and Danchin 2002; Keeling and Slamovits 2004;

Keeling and Slamovits 2005; Moya et al. 2008).

On initial comparison between the adelphoparasite and
its host it would appear that, much like the nuclear genome,

organellar genome reduction appears to be a common char-

acteristic among parasites. The mtDNA of adelphoparasite

G. oryzoides is 1,873 bp smaller than host Gr. andersonii.
However, difference in genome size can mostly be ac-

counted for by the deletion of a large intergenic space in

the host, with ORFs of unknown function (orf61, orf87,
and orf95) between cob and nad6 that accounts for most
of the difference (fig. 3). Due to the lack of a closely related

‘‘out group’’ sequence, parasite genome reduction is indis-

tinguishable from genome expansion in the host. Although

the mitochondrial genome of the alloparasite, P. pulvinata
(25,894 bps), is also smaller than that of Gr. andersonii, di-
rect genome size comparisons are difficult to make because

the parasites are not sister species. Both parasite genomes

fall well within the range of already sequenced red algal
mtDNA (Leblanc et al. 1995; Ohta et al. 1998; Burger

et al. 2000) and do not appear to be significantly reduced

in size.What themtDNA sequence of P. pulvinata does allow
for is parasite/parasite comparisons and the identification of

genomic trends among red algal parasites.

Typically parasite genomes have a higher A/T content be-

cause the energetic demand to produce the GTP nucleotide

and CTP nucleotide is more expensive than to produce ATP
and UTP (Rocha and Danchin 2002). The overall A/Tcontent

ofG. oryzoidesmtDNA is the same asGr. andersonii at 72%;

an A/T percentage typically observed in mitochondrial ge-

nomes (Gray et al. 2004). When the genomes are separated

into protein coding, noncoding, and rRNA, the A/T content

percentage stays almost the same for G. oryzoides and Gr.
andersonii (table 1), indicating similar evolutionary pressure

across both host and parasite genomes. The overall A/Tcom-
position of P. pulvinata mtDNA is higher than that of the

three other floridiophyte genomes at 76.1% (table 1). Ad-

ditionally, the protein-coding regions of P. pulvinata are

more A/T rich (76.4%) than that of other red algal mtDNA

sequenced thus far.

The trend in A/T content is noteworthy because it is con-

ventionally believed that red algal parasites evolve in a linear

fashion, starting as adelphoparasites before diversifying and
attacking novel hosts as an alloparasite (Zuccarello et al.

2004). If this theory is correct, the alloparasite P. pulvinata
diverged earlier thanG. oryzoides and had a greater amount

of time to accrue sequence change, such as transversions.

Combined with the outright loss of atp8 in P. pulvinata, as

FIG. 1—PFGE of total DNA from Gracilariopsis andersonii, stained

with SYBR Safe. A midrange size ladder was run in lane one (L1) and the

relevant sized ladder fragments are labeled. The ;28 Kb fragment in

lane two (L2) is similar in size to the sequenced mitochondrial genome

of Gr. andersonii and is the only DNA band in the likely size range of red

algal mitochondrial genomes.
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opposed to a recognizable pseudogene, our data are con-

sistent with the notion that alloparasites aremore evolution-

arily divergent than adelphoparasites.
The development of pseudogenes atp8 and sdhC suggest

that some essential genes are being rendered unnecessary in

the parasite. This is interesting considering 1) overall mt ge-

nome conservation observed among diverse lineages of red

algae, 2) the impact of mitochondrial dysfunction on cellular

energetics, and 3) the compatibility between host and par-

asite nuclear and organellar DNA.

Red Algal mtDNA Conservation

Prior to this study, three red algal mitochondrial genomes

representing three divergent orders were sequenced;

C. crispus (Gigartinales), P. purpurea (Bangiales), and C. mer-
olae (Cyanidiales). The mitochondrial genomes ofGr. ander-
sonii and G. oryzoides (Gracilariales) and P. pulvinata
(Plocamiales) fall into the same class (Florideophyceae) as

C. crispus, whereas P. purpurea belongs to the Bangiophy-
ceae and C. merolae to the Cyanidiophyceae. The mito-

chondrial genomes sequenced represent a broad

FIG. 2.—Gene map of the mitochondrial genome of Gracilariopsis andersonii (GenBank accession HQ586060). Protein-coding genes are indicated

by green bars with arrowheads showing the direction of the coding sequence. tRNAs are displayed in purple, rRNA in red, and unidentified ORFs in blue.
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spectrum of evolutionary time and species divergence (Le

Gall and Saunders 2007). As noted by Ragan et al.

(1994, p. 7278) ‘‘Rhodophyta are more divergent among

themselves than are 1) fungi or 2) green algae and green

plants together.’’ Despite this evolutionary divergence, mi-

tochondrial genomes of sequenced red algae are incredibly
well conserved in both content and genome architecture

(Gray et al. 2004). Gene content and order uniformity

are seemingly the product of a low mutation rate—a

characteristic to consider when comparing red algal hosts

with their respective red algal adelpho—and alloparasites

(figs. 2–5, Leblanc et al. 1997; Gray et al. 2004). Mitochon-

drial genome differences between sister taxa Gr. andersonii
and G. oryzoides are noteworthy considering the only

changes over the ;600 My since the divergence between
the Bangiophyceae and the Florideophyceae (Yoon et al.

2004) are minor rearrangements of the conserved gene

blocks (fig. 5). On the other hand, it is remarkable that such

FIG. 3.—Mitochondrial genome map of the parasite Gracilariophila oryzoides (GenBank accession HQ586059). Colors of all ORFs are the same as

figure 2, with the addition of yellow indicating pseudogenes.
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a dramatic change in lifestyle has resulted in only the loss of

one (in the case of P. pulvinata) or two (G. oryzoides) genes
from these mitochondria and almost no other detectable

changes. The conserved dN/dS ratios across all taxa (table

3), independent of their lifestyle, is an additional indication

of strong sequence constraint on both free living and par-
asite mitochondria. This low rate of red algal mitochondrial

evolution indicates that the changes seen in parasite

mtDNA over short time scales are a response to lifestyle

change.

Mitochondrial Dysfunction

The development of atp8 and sdhC as pseudogenes is per-

plexing considering the primary function of the mitochon-

dria is to support aerobic respiration and produce cellular

ATP. The atp8 gene encodes the ATP8 subunit of the

F1F0-ATP synthase complex. This complex is composed of

two main structural domains: the hydrophilic F1 domain
and the hydrophobic F0 domain. Mitochondrial encoded

atp6 and atp9, along with atp8, make up the F0 domain

of the complex. Embedded in the inner membrane of the mi-

tochondrion, the F0 domain anchors the ATP synthase com-

plex and functions in proton translocation allowing for the F1

portion of the complex to complete ATP synthesis (Jesina et al.
2004; Jonckheere et al. 2008). Mutations in the atp6 gene

have been shown to disturb the function of the ATPase pro-

ton channel. Without the ATP6 subunit, the ATP-synthase

complex does not assemble correctly resulting in a decrease

in ATP production (Funes et al. 2001). Mutations in the atp8
gene are less common but have been noted to occur in hu-

mans (Jonckheere et al. 2008), where data are extensive.

To further support the link between the loss of mitochon-
drial atp8 and a parasitic lifestyle, the atp8 gene is entirely

absent from the mtDNA of P. pulvinata. The absence of atp8
in a mitochondrial genome is not entirely surprising consid-

ering organellar genes are often transferred to the nucleus

(Dreyer and Steiner 2006; Pesaresi et al. 2007). The genes

atp8, atp6, and atp9 are encoded by all red algal mtDNA

sequenced to date but atp8 has been transferred to the nu-

cleus in other lineages, including ciliates (Burger et al. 2000),
apicomplexans and dinoflagellates (Slamovits et al. 2007),

and even green algae (Denovan-Wright et al. 1998). Among

all red algal mtDNA, atp8 is found between atp6 and nad5
in a highly conserved cluster of genes (atp6-atp8-nad5-
nad4-sdhD-nad2-nad1-nad3). It remains unclear as to

whether the atp8 gene was transferred to the nuclear ge-

nome or has simply been lost, butwe have searched for a nu-

clear copy of atp8 in ;373 Mb of nuclear sequence from
G. oryzoides and ;1,292 Mb of expressed sequence tag

sequence (Lane Lab, unpublished) andwere unable to locate

a nuclear sequence with any homology. Although far from

a definitive answer, the lack of any hint of a nuclear atp8 in

data that represents .2X coverage of the genome (based

on estimates in Kapraun 2005) is consistent with the out-

right loss of the gene.

The sdhC gene, like atp8, encodes a membrane bound
subunit involved in the succinate dehydrogenase complex

(complex II). More specifically, this complex catalyzes the ox-

idation of succinate to fumarate in the citric acid cycle while

generating electrons from succinate for mitochondrial res-

piration (Bayley et al. 2005). Complex II is made up of four

subunits; two are hydrophilic and involved in the catalytic

portion of the complex (SDHA and SDHB) and the other

two, SDHC and SDHD, are hydrophobic and act as anchors
to the entire complex (Elorza et al. 2004; Bayley et al. 2005).

Typically sdhB, sdhC, and sdhD are mitochondrially en-

coded, whereas sdhA has been transferred to the nuclear

genome and is imported in from the cytosol. Mutations

in SDH subunits are well studied and have been shown

to have detrimental effects on cellular function and aremost

often tumorigenic (Bayley et al. 2005). It has been hypoth-

esized that improper assembly of complex II results in either
an accumulation of succinate, which then moves out of the

mitochondria causing a hypoxic response, or leads to the

production of reactive oxygen species (ROS) (Szeto et al.

2007). A frameshift mutation causing the development of

a premature stop codon in the sdhC gene raises questions

Table 3

Table 3dN/dS Ratios for the 24 Protein-Coding Genes Shared between

C. crispus (CC), P. pulvinata (PP), Gr. andersonii (GA), and G. oryzoides

(GO)

Gene Average dN/dS CC/GA GA/GO GO/PP CC/GO CC/PP

atp6 0.14923 0.1222 0.1948 0.1463 0.1211 0.1464

atp8 0.17942 0.1144 0.2086 NA 0.2092 NA

atp9 0.031 0.0318 0.0581 0.04 0.0419 0.0229

cob 0.12321 0.091 0.0913 0.1686 0.0868 0.1444

cox1 0.09423 0.0744 0.0573 0.1107 0.0724 0.1152

cox2 0.13519 0.0996 0.1626 0.1501 0.1176 0.1328

cox3 0.14909 0.1245 0.1074 0.1862 0.1347 0.1673

nad1 0.10879 0.0911 0.1051 0.1433 0.0862 0.088

nad2 0.42864 0.3198 0.6045 0.7016 0.4609 0.2944

nad3 0.18078 0.1788 0.0938 0.258 0.1591 0.1729

nad4 0.16722 0.1181 0.1165 0.1956 0.1159 0.2021

nad4L 0.18756 0.1918 0.2048 0.2109 0.2444 0.1646

nad5 0.35287 0.2902 0.1675 0.5156 0.293 0.5299

nad6 0.34997 0.2493 0.1919 0.6968 0.2177 0.6968

rpl16 0.3923 0.419 0.2002 1.1754 0.3767 1.8547

rpl20 0.32286 0.8087 0.1827 0.8081 0.5991 0.3551

rps3 0.66532 1.5084 0.3131 0.5835 1.4929 1.3762

rps11 1.72201 3.261 2.6059 4.427 1.3158 1.8863

rps12 0.33198 0.6998 0.4949 1.4743 0.2276 0.4949

sdhB 0.12757 0.1358 0.1094 3.3678 0.1435 3.1396

sdhC 0.52405 0.2853 0.4833 0.4903 0.2246 1.2409

sdhD 0.44802 0.3186 0.3684 0.6144 0.37 0.4201

secY 1.19583 1.7927 0.317 2.5772 1.5177 8.0768

ymf 0.83624 NA NA 1.5478 1.0369 0.4958

NOTE.—Average values and pairwise comparisons are given, with values .1 in

bold. NA represents missing genes and in cases where pseudogenes were present,

sequence preceding a frameshifting indel was used.
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about the functionality of complex II in the parasite mito-
chondrial genome.

Mitochondria-encoded genes function in electron trans-

port and oxidative phosphorylation. These pathways gen-

erate the majority of ATP for the cell, which is then used

as a source of chemical energy to carry out energetic

demands. Mutations in these genes have been shown to

have broader implications on cell growth and longevity

and are associated with a wide array of human neuromus-
cular and neurodegenerative diseases, including: Parkin-

son’s disease (VanItallie 2008), multiple sclerosis (Geurts

and Barkhof 2008), various cancers (Ishikawa, Koshikawa,

et al. 2008; Ishikawa, Takenaga, et al. 2008), Leigh syn-

drome (Pronicki et al. 2008), ROS production (Ishikawa,

Koshikawa, et al. 2008), and Alzheimer’s disease (Reeve

et al. 2008). The severity of these diseases is due to the cell’s

FIG. 4.—Genome map from the Plocamiocolax pulvinatamithochondrion (GenBank accession HQ586061). Colors are the same as figure 2, except

an intron in the cox1 gene is shown in gray. The predicted origin of replication is also indicated.
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inability to make energy and is often the result of single
basepair insertions or deletions resulting in frameshift mu-

tations (He et al. 2002; DiMauro and Schon 2008).

A recent study by Ishikawa, Takenaga, et al. (2008) dem-

onstrated the acute impact of minor basepair changes in mi-

tochondrial genes on metastatic capability of mouse tumor

cells. When the resident mitochondria of mouse tumor cells

with poor metastatic capability were replaced with those

from a highly metastatic tumor cell line, metastatic potential
was transferred from one cell type to the other. High metas-

tasis resulted from two basepair mutations in the NADH de-

hydrogenase subunit 6 causing an overall deficiency in

respiratory complex I activity. Seemingly, minor basepair

changes in mtDNA can therefore have enormous conse-

quences on cell function.

If these essential genes, atp8 and sdhC, are truncated and
do not encode the entire protein, the parasite mitochondria
must at least be less efficient at generating cellular energy.

Based on our sequencing of RNA transcripts from host and

parasite, it is clear that these genes are transcribed as part of

multigene transcripts, much like other mitochondrial genes.

It is unlikely given the degree of sequence divergence after

the stop codon, however, that posttranscriptional modifica-

tions result in functional proteins. If the genes code for any

functional protein, the more likely scenario (based on the 5#
sequence conservation) is that a truncated version of the

protein is performing some function. If, instead, ATP8

and SDHC are not encoded by the parasite and it is still gen-

erating ATP efficiently, there are two possible explanations:

1) these proteins are coming from the parasite nuclear
genome or the host mitochondrial genome or 2) ATP8

and SDHC are being compensated for by other proteins in-

volved in their respective complexes. Both scenarios are in-

teresting to consider because they would provide insight

into host/parasite nuclear and organellar compatibility. Thus

far, however, nuclear copies of either gene have not sur-

faced in either DNA or RNA sequencing efforts (Lane lab,

unpublished).

Host/Parasite Nuclear and Organellar Compatibility

Work done by Goff and Coleman (1995) showed that upon

host infection red algal parasites G. oryzoides and P. pulvi-
nata maintain genetically unique nuclear and mtDNA while

co-opting host plastids. Because host plastids are utilized by

the parasite and incorporated into parasite spores, the nu-

clear genome of the parasite must be able to, in some way,

communicate with the host plastid. Additionally, as cited by
Goff and Coleman (Goff 1995), P. pulvinata, although color-

less during its vegetative stage, has pigmented mature car-

pospores that appear to be partially photosynthetic

(Kugrens and Delivopoulos 1986; Goff 1995). This, along

with the occurrence of other photosynthetically capable al-

loparasites such as Choreocolax (Callow et al. 1979), indi-

cates that the parasite nuclei have many of the genes

needed for protein synthesis required by the plastid. Inter-
estingly, in contrast, we observe the conservation of unique

parasite mitochondria. This again raises the inevitable

FIG. 5.—Genome synteny of all sequenced floridiophyte mitochondrial genomes and that of the bangiophyte Porphyra purpurea. Among all of

these genomes, coding genes fall into four highly conserved blocks. Within the floridiophytes, these blocks are maintained in the same order across

divergent taxa.
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question of why the parasite maintains its own mitochon-
dria. Are the parasite nuclei and host mitochondria incom-

patible? This question becomes increasingly interesting now

that the mtDNA of both a red algal host and adelphopara-

site have been sequenced. Although there are differences

between the two genomes, they are similar overall.

An abstract published by Goff andMcLaughlin (1997) de-

scribes the mitochondrial genome sequence of parasite

P. pulvinata and its host Plocamium cartilagineum. The most
notable difference between these two genomes is the reten-

tion of a tRNA cluster in the parasite mtDNA. The authors

suggest that the additional tRNAs present in the parasite ge-

nome function in host cellular transformation. Essentially,

these tRNAs are needed by the parasite to effectively com-

plete spore germination, filament growth, and host infec-

tion. Interestingly, the mtDNA of G. oryzoides has 19

tRNAs, whereasGr. andersonii has 18 tRNAs. The tRNA con-
tent ofG. oryzoides andGr. andersonii is identical expect for
the presence of the histidine tRNA in G. oryzoides. The his-

tidine tRNA is most likely a tRNA loss in Gr. andersonii rather
than a gain in G. oryzoides because it is present in the

mtDNA of C. crispus, a more divergent red alga. A tRNA gain

would indicate a duplication event of an existing tRNA in the

mtDNA of G. oryzoides that then underwent a mutation in

the anticodon resulting in a GUG. Although possible, align-
ments of the G. oryzoides tRNAs show little sequence

similarity to the G. oryzoides histidine tRNA. While in con-

trast, an alignment between the G. oryzoides histidine and
C. crispus histidine tRNA shows considerable sequence

similarity.

Interestingly, the expression of the histidyl-tRNA in the

bloodstream-form of Trypanosoma brucei has a significant

effect on its growth. Through RNAi silencing Merritt et al.
(2010) were able to knockdown the histidine tRNA gene,

consequently suppressing cell growth by a factor of .103

over 4 days (Merritt et al. 2010). The role of the histidyl-tRNA

in G. oryzoides may not be as crucial to its overall growth

success as it is in T. brucei, however, such findings add in-

sight into the role of various genes on overall parasite suc-

cess. The significance of tRNA content among red algal host/

parasite pairs remains unknown. Although Goff and
McLaughlin (1997) suggest that tRNAs are retained by

the parasite so that spores function more efficiently during

the initial stages of host infection, it is unclear after sequenc-

ing G. oryzoides, whether this really is the case.

Red algal adelpho- and alloparasites provide a unique

model for understanding mitochondrial genome evolution.

Host /parasite and parasite/parasite mtDNA comparisons re-

veal the effect of a parasitic lifestyle on the genomic archi-
tecture and sequence of themitochondrion. Results indicate

that parasite mtDNA is undergoing reduction and compac-

tion through the loss of coding and noncoding sequences.

No single feature, however, points to a reason why the mi-

tochondrial genome is retained by red algal parasites. The

overall efficiency of the parasite mitochondria would appear
to be reduced considering the loss of atp8 in P. pulvinata and
existence of atp8 and sdhC as pseudogenes in G. oryzoides.
The trend toward the loss of atp8 is significant considering

rapid rates of evolution are not occurring among the major-

ity of mitochondrial genes (table 3). This creates a bit of

a paradox because genes considered to be vital for function

are being lost while, at the same time, there are clearly se-

lective forces maintaining the genome sequence from fur-
ther losses and accelerated mutational rates. Further

analysis of host and parasite nuclear DNA may elucidate

some fundamental genomic shifts and molecular changes

that have resulted in a parasitic existence.

Supplementary Material

Supplementary table 1 is available at Genome Biology and
Evolution online (http://www.gbe.oxfordjournals.org/).
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