

Article

Phaeochromycins I–K, Three Methylene-Bridged Dimeric Polyketides from *Streptomyces* sp. 166#

Yibo Xu,^{||} Dongyang Wang,^{||} Qianqian Lv,^{||} Peng Fu, Ying Wang,* and Weiming Zhu*

 Cite This: ACS Omega 2023, 8, 1542–1547
 Read Online

 ACCESS
 Interview
 Metrics & More
 Image: Article Recommendations
 Image: Supporting Information

 ABSTRACT: Three new dimeric polyketides, i.e., phaeochromycins I–K (1–3, respectively) and a known polyketide phaeochromycins F (4), were isolated from the culture broth of a saline
 Image: General content of the culture broth of a saline
 Image: General content of the culture broth of a saline

mycin F (4), were isolated from the culture broth of a saline Qinghai–Tibet Plateau permafrost soil-derived *Streptomyces* sp. 166#. The structures were determined by analyzing one-dimensional and two-dimensional NMR as well as HRESIMS data. Compounds **2** and **3** exhibited a selective antiproliferative activity against H1299 and HUCCT1 cell lines, exhibiting IC_{50} values ranging from 8.83 to 10.52 μ M.

1. INTRODUCTION

Polyketides are recognized as a rich source of pharmaceutical and agrochemical lead compounds.¹ New and bioactive polyketide analogues are continuously isolated and identified, such as doxorubicin,² rapamycin,³ lovastatin,⁴ flavonoids,⁵ pafuranones A and B,⁶ and cladodionen.⁷ The genus *Streptomyces* was determined to be one of the best producers of polyketides owing to its well-studied biosynthesis pathway.⁸

Phaeochromycins are type II polyketide derivatives, mainly produced by *Streptomyces* sp. However, only eight compounds named as phaeochromycins, namely phaeochromycins $A-E^9$ and F-H,¹⁰ have been reported. Among these compounds, phaeochromycins A and C are weak inhibitors of MAPKAP kinase-2, and phaeochromycin H exhibits a modest inhibitory rate (46.0%) against the HeLa cell line at a concentration of 10 μ g/mL. Our previous study reported four type II polyketide analogues from *Streptomyces* sp. 166#.¹¹ Further isolation led to the identification of three new phaeochromycins: I-K (1-**3**, respectively) and the previously reported phaeochromycin F (**4**) (Figure 1),¹⁰ from the fermentation broth of the *Streptomyces* sp. 166#. Herein, we report the isolation, structure elucidation, cytotoxic activity, and plausible biosynthetic pathway of the new phaeochromycins I-K (1-**3**, respectively).

2. RESULTS AND DISCUSSION

Phaeochromycin I (1) was obtained as a colorless powder. Its molecular formula was determined as $C_{37}H_{28}O_{12}$ based on the HRESIMS peak observed at m/z 665.1660 [M + H]⁺ (calcd. 665.1654), indicating 24 degrees of unsaturation. The ¹H and ¹³C NMR and HSQC spectra suggested the presence of four carbonyls, seventeen nonprotonated olefinic carbons, eleven olefinic methines, three sp³ methylenes, and two methyl groups (Table 1). The ¹³C NMR data search in the MICRONMR

database (www.nmrdata.com) revealed that compound 1 contains a SEK34b moiety¹² and a SEK43 moiety,¹³ which could be verified by the key ¹H-¹H COSY and HMBC correlations (Figure 2). Furthermore, ¹³C NMR comparison revealed that two nonprotonated carbons (δ_{C-2} 99.8 and $\delta_{C-2'}$ 100.1) substituted the corresponding olefinic methines of SEK34b $(\delta_{C/H} 88.0/5.14)^{12}$ and SEK43 $(\delta_{C/H} 88.6/5.14)^{13}$ Moreover, the obvious shifts for C-1, C-3, C-4, and C-5 in SEK34b and SEK43, as well as an additional methylene $(-CH_2-)$ signal ($\delta_{C/H}$ 18.3/3.18), were observed. These data indicated that SEK34b and SEK43 combined by a -CH2linker at the two 2-positions to form compound 1, which was confirmed by the key HMBC correlations of the methylene protons ($\delta_{\text{H-15}}$ 3.18) to C-1/1' (δ_{C} 165.7, 165.7) and C-2/2' $(\delta_{\rm C}$ 99.8, 100.1) (Figure 2). Consequently, phaeochromycin I (1) could be identified as 5-((3-((6-(2-(2,4-dihydroxy-6methylbenzoyl)-3-hydroxybenzyl)-4-hydroxy-2-oxo-2H-pyran-3-yl)methyl)-4-hydroxy-2-oxo-2H-pyran-6-yl)methyl)-2-methyl-4H-chromen-4-one.

The molecular formula of compound **2** was established as $C_{33}H_{28}O_{12}$ based on the HRESIMS peak observed at m/z 617.1654 $[M + H]^+$ (calcd. 617.1654), indicating an index of hydrogen deficiency (IHD) of 20. However, the ¹H and ¹³C NMR spectra showed only half the number of expected signals along with an additional methylene signal ($\delta_{C/H}$ 18.2/3.21), implying that compound **2** was a symmetrical dimer. Similar to

Received:November 1, 2022Accepted:December 13, 2022Published:December 20, 2022

Figure 1. Structures of compounds 1-4.

Table 1. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of Compounds 1-3

	1 (in DMSO- d_6)		2 (in DMSO- d_6)		3 (in CD_3OD)			1 (in DMSO- d_6)		2 (in DMSO- d_6)		3 (in CD ₃ OD)	
no.	δ_{o} type	$\delta_{ m H} \left(J ext{ in } Hz ight)$	δ_{o} type	$\delta_{ m H} \left(J \text{ in } Hz ight)$	δ_{o} type	$\delta_{ m H} \left(egin{smallmatrix} J \ { m in} \ { m Hz} ight)$	no.	δ_{o} type	$\delta_{ m H} \left(J \text{ in } Hz ight)$	$\delta_{c'}$ type	$\delta_{ m H} \left(J ext{ in } Hz ight)$	δ_{o} type	$egin{array}{c} \delta_{ m H} \left(J \ { m in} \ { m Hz} ight) \end{array}$
1 2 3	165.7, C 99.8, C 165.5, C		178.5, C 99.8, C 165.6, C		169.8, C 102.4, C 162.7, C		6'	36.0, CH ₂	3.42, brs	37.1, CH ₂	4.02, d (15.8) 4.15, d (15.8)	38.7, CH ₂	4.45, s
4	103.8", CH	5.29, s	111.2, CH	6.14", s	105.0, CH	5.60, s	7′	133.5, C		137.1, C		137.3, C	
5	161.2, C		160.9, C		164.6, C		8'	130.8, C		124.2, CH	6.83, d	130.0, CH	7.29, d
6	37.5, CH ₂	4.36, s	37.1, CH ₂	4.02, d (15.8)	38.7, CH ₂	4.19, brs	9′	153.7, C		134.9, CH	(7.1) 7.47, t (7.8)	134.7, CH	(7.69, brs
_				4.15, d (15.8)			10'	114.3, CH	6.76, d (8.2)	117.7, CH	6.92, d (8.2)	119.3, CH	7.51, d (8.1)
7	136.8, C	5 00 1	137.1, C	(02 1	137.7, C	(00 1	10'a			159.7, C		159.4, C	
8	128.3, CH	7.23, d (7.4)	124.2, CH	6.83, d (7.4)	126.0, CH	6.89, d (7.3)	11'	130.0, CH	7.18, t (7.9)	100.8, C		168.0, C	
9	133.3, CH	7.69, t (7.9)	134.9, CH	7.47, t (7.8)	136.3, CH	7.46, t (7.9)	12'	120.4,	6.68, d	49.7,	2.62, d	111.9, CH	6.13, s
10	117.8, CH	7.52, d (8.5)	117.7, CH	6.92, d (8.2)	119.5, CH	6.95, d (8.2)		CII	(7.7)		(13.9) 3.05, d (15.9)	CII	
10a	157.5, C		159.7, C		161.6, C		13'	200.2 C		193.2 C	(13.9)	1814 C	
11	165.4, C		100.8, C		101.8, C		13'a	200.2, 0		118.5. C		122.0. C	
12	111.2, C	6.14, s	49.7, CH ₂	2.62, d (15.9)	63.9, CH ₂	2.66, s	14'	115.5, C		27.6, CH	1.58, s	28.0, CH	2.38, s
				3.05, d (15.9)		2.95, s	15'	165.4, C		0113		0113	
13	178.5, C		193.2, C		195.2, C		16′	100.8,	6.14, s				
13a	120.9, C		118.5, C		119.8, C		17'	Сп 163.4.С					
14	19.6, CH ₃	2.34, s	27.6, CH ₃	1.58, s	20.1, CH ₃	1.65, s	18'	103.4, C 111.8, CH	6.11, s				
15	18.3, CH ₂	3.18, s	18.2, CH ₂	3.21, s	18.6, CH ₂	3.42, s	19′	143.2, C					
1'	165.7, C		178.5, C		169.8, C		20'	21.7, CH ₃	1.83, s				
2′	100.1, C		99.8, C		102.4, C		11/11'- OH				6.99, s		
3′	165.4, C		165.6, C		163.0, C		15'-		12.82 s				
4′	105.2 ^a , CH	5.51, s	111.2, CH	6.14 ^a , s	105.0, CH	5.65, s	OH		12.02, 3				
5'	159.3, C		160.9, C		164.4, C		"Confirm	ned by HS	QC and F	IMBC spe	ectra.		

compound 1, the ¹H and ¹³C NMR data of compound 2 were almost the same as those for SEK34,¹² apart from the substitution of a nonprotonated olefinic carbon (δ_{C-2} 99.8) for sp²-methine ($\delta_{C/H}$ 88.2/5.18)¹² and the noticeable changes of

chemical shifts for C-1, C-3, C-4, and C-5 (Table 1). Furthermore, the key HMBC correlations of the methylene proton (δ_{H-15} 3.21) to C-2/2' (δ_{C} 99.8) and C-3/3' (δ_{C} 165.6) were observed (Figure 2), suggesting that the two SEK34 units

Figure 2. Key COSY and HMBC correlations of compounds 1-3.

were connected at C-2 and C-2' by a methylene $(-CH_2-)$ linkage to form compound **2**. Thus, phaeochromycin J (**2**) could be elucidated as 5,5'-((methylenebis(4-hydroxy-2-oxo-2H-pyran-3,6-diyl))bis(methylene))bis(2-hydroxy-2-methyl-chroman-4-one).

The molecular formula of phaeochromycin K (3) was determined as $C_{33}H_{26}O_{11}$ based on the HRESIMS peak observed at m/z 599.1544 $[M + H]^+$ (calcd. 599.1548), indicating an IHD of 21. The comparison of ¹H and ¹³C NMR data (Table 1) and two-dimensional NMR patterns (Figure 2) of compound 3 with compounds 1 and 2 revealed that

compound 3 contains SEK34 and SEK34b fragments. The presence of the methylene (CH₂-15) between C-2 and C-2' was confirmed via the key HMBC correlations of the methylene proton (δ_{H-15} 3.42) to C-1/1' (δ_{C} 169.8) and C-2/2' (δ_{C} 102.4) (Figure 2). Thus, phaeochromycin K (3) could be determined as 5-((4-hydroxy-3-((4-hydroxy-6-((2-hydroxy-2-methyl-4-oxochroman-5-yl)methyl)-2-oxo-2H-pyran-3-yl)methyl)-2-oxo-2H-pyran-6-yl)methyl)-2-methyl-4H-chromen-4-one.

Compound 2 comprised three stereoisomers (R,S; S,R; R,R or S,S) and was a symmetric homodimer with two chiral centers. However, compound 3 was an unsymmetric heterodimer 1 with one chiral center. Both compounds 2 and 3 did not show optical rotation. Therefore, compounds 2 and 3 were subjected to chiral separation using an NB chiral column. Each isomer (2a/2b/2c and 3a/3b) was purified by collecting the corresponding peak and was then subjected to a purity check independently at the same conditions (Figure 3). The results indicate that compounds 2 and 3 were inseparable stereoisomers, and compound 2 could slowly dehydrate to form compound 3. Meanwhile, the three stereoisomers 2a. 2b. and 2c of 2 could spontaneously be converted to each other (Figure 3A), and so could the two stereoisomers 3a and 3b of 3 (Figure 3B). SEK34 and SEK43 were reported as the products of the polyketide synthase pathway.¹²⁻¹⁴ The methylene linkages in heterodimer 1 and homodimer 2 were caused by formaldehyde and were presumed to form via the Michael addition between SEK43 and SEK34b or two SEK34, respectively.^{15,16} High-performance liquid chromatography (HPLC) analysis (Figure 3) confirmed that compound 2 was subjected to intramolecular dehydration to generate compounds 3 and 4 spontaneously via the loss of one and two H₂O molecules (Scheme 1). Thus, the physico, spectral, and

Figure 3. Chiral analysis of compounds 2 and 3 using an NB chiral column eluted with n-C₆H₁₄-EtOH (65/35 for 2 and 60/40 for 3, v/v) at 1 mL/min. (A) Three isomers of compound 2 (2a/2b/2c) could be converted into each other spontaneously, and all of them can slowly dehydrate to form 3. (B) Two isomers of 3 (3a/3b) could be converted into each other spontaneously, and both can slowly dehydrate to form 4.

Article

Scheme 1. Plausible Biosynthetic Pathway of 1-4

Table 2. Cytotoxic Activities of Compounds 1-4

	IC ₅₀ (μM)										
compounds	A549	N87	H1299	HUCCT1	143B	B16F10	SPC-A1	HCT-116			
1	>100	>100	>100	>100	>100	>100	>100	>100			
2	>100	>100	10.52	10.41	>100	>100	>100	>100			
3	>100	>100	9.33	8.83	>100	>100	>100	>100			
4 ^{<i>a</i>}	>100							>100			
DOX	0.109	0.047	0.504	0.048	0.101	0.016	0.181	0.104			
a IC ₅₀ values for 4 and DOX against MCF-7 cells were >100 and 0.45 μ M, respectively.											

cytotoxic data of compounds 2 and 3 were acquired as soon as possible after they were purified.

The cytotoxic activities of new dimers 1–3 were evaluated against the tumor cells A549, N87, H1299, HUCCT1, 143B, B16F10, SPC-A1, and HCT-116 via the CTG assay.^{17,18} The cytotoxic activity of the known dimer 4 was evaluated against MCF-7, A549, and HCT-116 tumor cell lines via the MTT assay¹⁷ using doxorubicin (DOX) as the positive control. Only compounds 2 and 3 showed cell proliferation inhibition against H1299 (human lung adenocarcinoma) and HUCCT1 (human bile duct cancer) cell lines with the IC₅₀ values of 10.52 and 10.41 μ M for 2 and 9.33 and 8.83 μ M for 3, respectively (Table 2 and Figure S1). No inhibitory activity was observed for other compounds and tumor cell lines (IC₅₀ > 100 μ M).

3. CONCLUSIONS

In addition to the reported phaeochromycin F (4), we identified three new polyketide dimers within a methylene linkage, phaeochromycins I–K (1–3, respectively). According

to the literature, phaeochromycin F (4) was the sole phaeochromycin possessing the SEK34b dimer joined by a methylene linkage.¹⁰ Phaeochromycins J (2) and K (3) with one or two hemiacetal groups exhibited selective antiproliferative activities against H1299 and HUCT1 cell lines, indicating that SEK34b with a hemiacetal group at C-11 was the pharmacophore or bioactive function unit against these two tumor cells.

4. EXPERIMENTAL SECTION

4.1. General Experimental Procedures. Ultraviolet (UV) data were obtained using a Waters 2487 dual λ absorbance detector. Infrared (IR) spectra were measured on a Nicolet Nexus 470 spectrophotometer using KBr disks. NMR spectra were recorded using a Varian System 500. The corresponding residual solvent signals ($\delta_{H/C}$ 2.50/39.5 for DMSO- d_6 , 7.26/77.2 for CDCl₃, or 3.31/49.2 for CD₃OD) were used to reference the chemical shifts in NMR spectra. Furthermore, HRESIMS spectra were measured using a Q-

TOF Ultima Global GAA076 LC mass spectrometer, and LRESIMS spectra were obtained using a Waters SQ Detector 2 mass spectrometer. Semipreparative HPLC was performed using a phenyl column (YMC-pack Ph, 10 mm × 250 mm) or a π -NAP column (COSMOSIL, 10 mm × 250 mm). TLC was performed on plates precoated with silica gel GF254 (10–40 μ m). Column chromatography (CC) was performed over silica gel (200–300 mesh, Qingdao Marine Chemical Factory) and Sephadex LH-20 (Amersham Biosciences). Finally, vacuum liquid chromatography (VLC) was performed using silica gel H (Qingdao Marine Chemical Factory).

4.2. Fermentation and Extraction. The fermentation and extraction of *Streptomyces* sp. 166# were described in detail in our previous report.¹¹

4.3. Purification. The ethyl acetate (EtOAc) extract (5.0 g) of the fermentation broth was separated into 12 fractions (Fr.1-Fr.12) via VLC using a silica gel column. The column was eluted with a step gradient of petroleum ether (PE)- CH_2Cl_2 (1:0, 1:1, and 0:1, v/v) and then of CH_2Cl_2 -MeOH (100:1, 80:1, 70:1, 60:1, 40:1, 20:1, 15:1, 10:1, and 1:1, v/v). Fr.10 (407 mg) was separated into 13 subfractions (Fr.10.1-Fr.10.13) via CC using Sephadex LH-20. The column was eluted with MeOH-CH₂Cl₂ (1:1, v/v). Fr.10.13 (20 mg) was further purified via HPLC using the semipreparative π -NAP column. This column was eluted with 30% MeCN-H₂O containing 0.05% trifluoroacetic acid (TFA) at a flow rate of 4 mL/min to obtain compounds 1 (2.8 mg; $t_{\rm R}$ = 12.1 min) and 2 (3.2 mg; $t_{\rm R}$ = 15.2 min). Similarly, Fr.11 (151 mg) was separated into eight subfractions (Fr.11.1-Fr.11.8) via CC using Sephadex LH-20. The column was eluted with MeOH- CH_2Cl_2 (1:1, v/v). Fr.11.6 (18 mg) was purified via HPLC using a phenyl column. This column was eluted with 30% MeCN-H₂O (with 0.05% TFA) at a flow rate of 4 mL/min to obtain compound 3 (6.6 mg; $t_{\rm R}$ = 14.4 min). Using the same CC and elution with 45% MeCN-H₂O (with 0.05% TFA) at 4 mL/min, compound 4 (2.0 mg; $t_{\rm R}$ = 12.3 min) was obtained from Fr.11.8 (7 mg).

4.3.1. Phaeochromycin 1 (1). Colorless powder; UV (MeOH) λ_{max} (log ε): 221 (4.68), 300 (4.37) nm; IR (KBr) ν_{max} : 3424, 2927, 1685, 1644,1620, 1508, 1437, 1388, 1210, 1140, 1030, 841, 803, 724 cm⁻¹; ¹H and ¹³C NMR data are presented in Table 1; HRESIMS m/z 665.1660 [M + H]⁺ (calcd. for C₃₇H₂₉O₁₂, 665.1654).

4.3.2. Phaeochromycin J (2). Colorless powder; $[\alpha]_D^{25} 0$ (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε): 215 (4.68), 252 (4.20), 280 (4.09), 309 (4.11) nm; IR (KBr) ν_{max} : 3394, 2927, 1683, 1603,1577, 1473, 1439, 1385, 1320, 1209, 1140, 1028, 880, 841, 802, 724 cm⁻¹; ¹H and ¹³C NMR data are presented in Table 1; HRESIMS *m*/*z* 617.1654 [M + H]⁺ (calcd. for C₃₃H₂₉O₁₂, 617.1654).

4.3.3. Phaeochromycin K (3). Colorless powder; $[\alpha]_D^{25} 0$ (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε): 215 (4.14), 248 (3.77), 303 (3.77) nm; IR (KBr) ν_{max} : 3368, 2261, 2131, 1684, 1541, 1507, 1456, 1385, 1209, 1141, 1051, 1026, 1004, 829, 801, 768, 721 cm⁻¹; ¹H and ¹³C NMR data are presented in Table 1; HRESIMS m/z 599.1544 [M + H]⁺ (calcd. for C₃₃H₂₇O₁₁, 599.1548).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c07038.

NMR and HRESIMS spectra for compounds 1-3, physico and spectral data for compound 4, and a description of the bioassay protocol used (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Ying Wang College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; Email: waying@cpu.edu.cn
- Weiming Zhu Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; ⊙ orcid.org/0000-0002-7591-3264; Phone: +86-532-82031268; Email: weimingzhu@ ouc.edu.cn

Authors

- Yibo Xu Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- **Dongyang Wang** Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Qianqian Lv Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Peng Fu Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; ◎ orcid.org/0000-0002-7768-4004

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c07038

Author Contributions

^{II}Y.X., D.W., and Q.L. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. U1906213 and 41876172).

REFERENCES

(1) Maschio, L.; Parnell, A. E.; Lees, N. R.; Willis, C. L.; Schaffitzel, C.; Stach, J. E. M.; Race, P. R. Cloning, expression, and purification of intact polyketide synthase modules. *Methods Enzymol.* **2019**, *617*, 63–82.

(2) Pokhrel, A. R.; Chaudhary, A. K.; Nguyen, H. T.; Dhakal, D.; Le, T. T.; Shrestha, A.; Liou, K.; Sohng, J. K. Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient *Streptomyces peucetius* ATCC 27952. *Microbiol. Res.* **2016**, *192*, 96–102.

(3) Dutta, S.; Basak, B.; Bhunia, B.; Chakraborty, S.; Dey, A. Kinetics of rapamycin production by Streptomyces hygroscopicus MTCC 4003. *3 Biotech.* **2014**, *4*, 523–531.

(4) Hajjaj, H.; Niederberger, P.; Duboc, P. Lovastatin biosynthesis by *Aspergillus terreus* in a chemically defined medium. *Appl. Environ. Microbiol.* **2001**, *67*, 2596–2602.

(5) Weston, L. A.; Mathesius, U. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. *J. Chem. Ecol.* **2013**, *39*, 283–297.

(6) Du, Y.; Chen, Z.; Li, H.; Wang, Y.; Fu, P.; Zhu, W. Pafuranones A and B, two dimeric polyketides from a rare marine algae-derived fungus *Paraconiothyrium* sp. *Chin. Chem. Lett.* **2019**, *30*, 981–984.

(7) Zhu, G.; Kong, F.; Wang, Y.; Fu, P.; Zhu, W. Cladodionen, a cytotoxic hybrid polyketide from the marine-derived *Cladosporium* sp. OUCMDZ-1635. *Mar Drugs.* **2018**, *16*, 71.

(8) Risdian, C.; Mozef, T.; Wink, J. Biosynthesis of polyketides in *Streptomyces. Microorganisms.* **2019**, *7*, 124.

(9) Graziani, E. I.; Ritacco, F. V.; Bernan, V. S.; Telliez, J.-B. Phaeochromycins A–E, anti-inflammatory polyketides isolated from the soil actinomycete *Streptomyces phaeochromogenes* LL-P018. *J. Nat. Prod.* **2005**, *68*, 1262–1265.

(10) Li, J.; Lu, C.-H.; Zhao, B.-B.; Zheng, Z.-H.; Shen, Y.-M. Phaeochromycins F-H, three new polyketide metabolites from *Streptomyces* sp. DSS-18. *Beilstein J. Org. Chem.* **2008**, *4*, 46.

(11) Lv, Q.; Fan, Y.; Tao, G.; Fu, P.; Zhai, J.; Ye, B.; Zhu, W. Sekgranaticin, a SEK34b-granaticin hybrid polyketide from *Streptomyces* sp. 166#. *J. Org. Chem.* **2019**, *84*, 9087–9092.

(12) McDaniel, R.; Ebert-Khosla, S.; Hopwood, D. A.; Khosla, C. Engineered biosynthesis of novel polyketides: actVII and actIV genes encode aromatase and cyclase enzymes, respectively. *J. Am. Chem. Soc.* **1994**, *116*, 10855–10859.

(13) McDaniel, R.; Ebert-Khosla, S.; Hopwood, D.; Khosla, C. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. *Nature* **1995**, *375*, 549–554.

(14) Wohlert, S.-E.; Wendt-Pienkowski, E.; Bao, W.; Hutchinson, C. R. Production of aromatic minimal polyketides by the daunorubicin polyketide synthase genes reveals the incompatibility of the heterologous DpsY and JadI cyclases. *J. Nat. Prod.* **2001**, *64*, 1077–1080.

(15) Fan, Y.; Shen, J.; Liu, Z.; Xia, K.; Zhu, W.; Fu, P. Methylenebridged dimeric natural products involving one-carbon unit in biosynthesis. *Nat. Prod. Rep.* **2022**, *39*, 1305–1324.

(16) Minassi, A.; Cicione, L.; Koeberle, A.; Bauer, J.; Laufer, S.; Werz, O.; Appendino, G. A multicomponent Carba-Betti strategy to alkylidene heterodimers–Total synthesis and structure–activity relationships of arzanol. *Eur. J. Org. Chem.* **2012**, 2012, 772–779.

(17) Wang, D.; Wang, Y.; Ouyang, Y.; Fu, P.; Zhu, W. Cytotoxic *p*-terphenyls from a marine-derived *Nocardiopsis* species. *J. Nat. Prod.* **2019**, *82*, 3504–3508.

(18) Shen, J.; Fan, Y.; Zhu, G.; Chen, H.; Zhu, W.; Fu, P. Polycyclic macrolactams generated via intramolecular Diels–Alder reactions from an Antarctic *Streptomyces* species. *Org. Lett.* **2019**, *21*, 4816–4820.