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A B S T R A C T   

Background: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized 
by inflammatory cell infiltration, which can lead to chronic disability, joint destruction and loss of 
function. At present, the pathogenesis of RA is still unclear. The purpose of this study is to explore 
the potential biomarkers and immune molecular mechanisms of rheumatoid arthritis through 
machine learning-assisted bioinformatics analysis, in order to provide reference for the early 
diagnosis and treatment of RA disease. 
Methods: RA gene chips were screened from the public gene GEO database, and batch correction 
of different groups of RA gene chips was performed using Strawberry Perl. DEGs were obtained 
using the limma package of R software, and functional enrichment analysis such as gene ontology 
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO), and gene set 
(GSEA) were performed. Three machine learning methods, least absolute shrinkage and selection 
operator regression (LASSO), support vector machine recursive feature elimination (SVM-RFE) 
and random forest tree (Random Forest), were used to identify potential biomarkers of RA. The 
validation group data set was used to verify and further confirm its expression and diagnostic 
value. In addition, CIBERSORT algorithm was used to evaluate the infiltration of immune cells in 
RA and control samples, and the correlation between confirmed RA diagnostic biomarkers and 
immune cells was analyzed. 
Results: Through feature screening, 79 key DEGs were obtained, mainly involving virus response, 
Parkinson’s pathway, dermatitis and cell junction components. A total of 29 hub genes were 
screened by LASSO regression, 34 hub genes were screened by SVM-RFE, and 39 hub genes were 
screened by Random Forest. Combined with the three algorithms, a total of 12 hub genes were 
obtained. Through the expression and diagnostic value verification in the validation group data 
set, 7 genes that can be used as diagnostic biomarkers for RA were preliminarily confirmed. At the 
same time, the correlation analysis of immune cells found that γδT cells, CD4+ memory activated 
T cells, activated dendritic cells and other immune cells were positively correlated with multiple 
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RA diagnostic biomarkers, CD4+ naive T cells, regulatory T cells and other immune cells were 
negatively correlated with multiple RA diagnostic biomarkers. 
Conclusions: The results of novel characteristic gene analysis of RA showed that KYNU, EVI2A, 
CD52, C1QB, BATF, AIM2 and NDC80 had good diagnostic and clinical value for the diagnosis of 
RA, and were closely related to immune cells. Therefore, these seven DEGs may become new 
diagnostic markers and immunotherapy markers for RA.   

1. Introduction 

Rheumatoid arthritis is an autoimmune disease dominated by inflammatory arthritis [1]. It is characterized by multi-joint, sym-
metrical, and invasive arthritis of the small joints of the hand and foot. In the course of rheumatoid arthritis, the immune system 
attacks the joint tissue, often accompanied by extra-articular organ involvement and serum rheumatoid factor positive, which can 
eventually lead to chronic disability, joint destruction and loss of function [2–4]. According to the 2017 Global Burden of Disease 
(GBD) epidemiological report, the global prevalence of RA is 0.27 % [5]. The actual cause of RA is still unknown, which has a serious 
impact on individuals and society. However, early diagnosis of RA disease provides an opportunity for effective therapeutic response. 
At present, rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (ACPA) are used as serum biomarkers for early 
diagnosis of RA [6]. However, these two serum markers are not positive in all early RA patients. Therefore, it is of great significance to 
find novel and feasible biomarkers for early diagnosis and effective treatment of RA [7,8]. 

Recent studies have shown that immune cells interfere with the information transmission between cells in the immune response of 
RA, and stimulate cells to move to inflammation, infection and trauma sites, participate in the whole process of RA occurrence, 
development and repair, and play a crucial role in the pathological changes caused by RA [9,10]. Among them, B cells secrete 
rheumatoid factors that recognize immunoglobulin Fe segments and form immune complexes, and can release chemokines and fix 
complements, so that inflammatory cells accumulate in the joints of patients [11]. Macrophages are abundant in cartilage tissue and 
synovium of RA patients. When activated, they can overexpress major histocompatibility complex (MHC) II molecules, chemokines 
and inflammatory factors, which are closely related to the degree of joint injury and clinical symptoms of patients [12]. The number of 
neutrophils increases significantly during RA activity and is always activated [13]. T cells bind to MHC II and antigen peptides, activate 
macrophages, release pro-inflammatory cytokines, activate synovial fibroblasts and chondrocytes, and secrete a variety of enzymes 
that degrade glycoproteins and collagen, thereby destroying tissues [14]. Th17 cells can induce synovial matrix and innate lym-
phocytes to secrete granulocyte-macrophage colony stimulating factor (MG-CSF), thereby triggering and enhancing RA [15]. 
Therefore, exploring the correlation between RA and immune cells from the perspective of the immune system is of great significance 
for elucidating the molecular system of RA and finding new diagnostic biomarkers and immunotherapy targets. 

Based on the gene chip data in the GEO public database, this study used multiple sets of GEO data chips to obtain RA differentially 
expressed genes, and performed GO, KEGG, DO, and GSEA functional enrichment analysis. Three machine learning methods, such as 
LASSO regression, SVM-RFE and Random Forest, were used to identify potential biomarkers of RA, and their expression and diagnostic 
value were verified. Finally, the potential biomarkers of RA were analyzed for immune cell infiltration and immune cell correlation. 
This study will help to further understand the pathogenesis of RA and provide reference for its diagnosis, prevention and treatment as 
well as new biomarkers. 

2. Materials and methods 

2.1. Data acquisition and preprocessing 

2.1.1. Data acquisition 
Five datasets were obtained from the GEO database (Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo), as detailed in 

Table 1. The four data sets of GSE1919, GSE93272, GSE10500 and GSE29746 were used as the training group, and the GSE55235 data 
set was used as the verification group for subsequent analysis. 

2.1.2. Data processing 
The gene expression matrix was extracted using the GEOquery package of R 4.3.1 software, and the gene probes and non-specific 

probes containing missing values were removed and annotated according to the official website information. DEGs were screened with 

Table 1 
Information on RA-related datasets obtained from the GEO database.  

GEO data set name Country Platform file name Number of RA samples Number of control samples 

GSE1919 Germany GPL91 5 5 
GSE93272 Japan GPL570 232 43 
GSE10500 America GPL8300 5 3 
GSE29746 Spain GPL4133 9 11 
GSE55235 Germany GPL96 10 10  
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|log2FC|≥0.5, P < 0.05 as the screening criteria, and heat maps and volcano maps were drawn. The data with large values in the gene 
expression matrices of GSE1919, GSE93272, GSE10500 and GSE29746 were processed by log2, and the R 4.3.1 software ’limma’ and 
’sva’ packages were used. After merging the data, the data set was corrected to eliminate the differences caused by batch effects. 

2.2. Enrichment analysis 

Gene ontology (GO) enrichment analysis was performed using R 4.3.1 software ’clusterProfiler’, ’org.Hs.eg.db’, ’enrichplot’, 
’ggplot2’, ’stringi’, ’limma’ packages with p-value and q-value less than 0.05 as screening conditions. At the same time, based on the 
KEGG database (www.kegg.jp/kegg/kegg1.html) [16–18], the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis was performed using the above R 4.3.1 software toolkit, and the results with significant P values were selected for visual 
analysis. With p-value and q-value less than 0.05 as the filtering conditions, disease ontology enrichment analysis (DO) was performed, 
and the top 30 diseases with q-value significance were selected for visual analysis. Gene set enrichment analysis (GSEA) was performed 
with p-adjust<0.05 as the filtering condition, and the enrichment of the top five biological functions or pathways in the normal group 
samples and RA disease group samples was selected for visual analysis. 

2.3. Machine learning to identify potential biomarkers 

The LASSO regression analysis was performed using the ’glmnet’ package in R 4.3.1 software. The point with the smallest cross- 
validation error was used as the filtering condition. The number of genes corresponding to the point with the smallest cross-validation 
error was selected as the number of potential biomarkers identified by LASSO machine learning. The genes corresponding to the 
average ranking of LASSO regression analysis were used as RA potential biomarkers. SVM-RFE analysis was performed using R 
software ’e1071’, ’kernlab’, and ’caret’ packages. The number of genes corresponding to the minimum cross-validation error in the 
analysis results was used as the number of potential biomarkers identified by SVM-RFE machine learning. The genes corresponding to 
the average ranking of SVM-RFE analysis were used as RA potential biomarkers. Random Forest analysis was performed using the 
’randomForest’ package of R software. The importance score of each differential gene was obtained at the minimum error of the cross- 
validation curve. Genes with an importance score greater than 1 were used as potential biomarkers for RA. The venn package was used 
to intersect the intersection genes obtained by LASSO, SVM-RFE, and Random Forest to obtain the final RA potential biomarkers 
obtained by the three machine learning methods. 

2.4. Expression and diagnostic value verification of potential biomarkers for RA 

The Extra Trees classifier model was used to screen out biomarkers with discriminative ability in the training test set and the 
verification test set. Meanwhile, The GSE55235 data set was used as the verification group to analyze the differences of RA potential 
biomarkers under ’2.3′ and verify their expression differences in other RA sample data. Using the gene expression matrix of the 
validation group, the survival analysis of the RA potential markers with significant differences in expression was performed to verify its 
diagnostic value. 

2.5. To obtain the correlation analysis of immune cell matrix and immune cell infiltration 

Perl 5.32.1.1 software was used to organize the gene expression data into a gene matrix with row name as gene name and column 
name as sample name. The ‘limma’ package in R 4.3.1 language BioManager was used to correct the gene expression matrix of RA 
group and control group. The CIBERSORT method was used to perform deconvolution analysis on the expression matrix of human 
immune cell subtypes. The relative proportions of 22 immune cells were calculated, and a P value was obtained for each sample. The 
samples were screened according to P < 0.05 to obtain the immune cell composition matrix. The barplot function of R language 
‘graphics’ package was used to draw the histogram of each immune cell composition ratio in the two groups of samples. The ‘corrplot’ 
package in R language was used to analyze the correlation of immune cells in the samples. The ’vioplot’ package in R language was 
used to compare the proportion of immune cells in the samples of RA patients and control groups, and a violin map was drawn. 

2.6. Correlation analysis of immune cells 

The CIBERSORT algorithm was used to evaluate the immune cell infiltration of normal samples and RA samples in multiple sets of 
GEO data, and P < 0.05 was used as the screening standard. The immune cells evaluated include: B cells naive, B cells memory, Plasma 
cells, T cells CD8, T cells CD4 naive, T cells CD4 memory resting, T cells CD4 memory activated, T cells CD4 memory activated, T cells 
follicular helper, T cells regulatory, T cells gamma delta, NK resting, NK activated, Monocytes, Macrophages M0, Macrophages M1, 
Macrophages M2, Macrophages M2, Dendritic mast cells activated, Monocytes, Macrophages M0, Macrophages M1, Macrophages M2, 
Dendritic mast cells activated. Correlation analysis was used to study the correlation between RA potential biomarkers and immune 
infiltrating cells to explore the effect of RA potential biomarkers on immune microenvironment. Finally, the correlation between RA 
potential biomarkers and immune cells was analyzed. 
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3. Result 

3.1. DEGs identification 

Four RA gene chip data, including 251 RA and 62 normal samples, were used to obtain 79 DEGs by GEOquery package of R 4.3.1 
software, including 77 up-regulated genes and 2 down-regulated genes. The results of DEGS identification were visualized by volcano 
map and heat map, as shown in Fig. 1A and. B. It can be seen from the figure that among the four genes with significant differences in 
RA gene chip data, up-regulated genes account for the majority, and DEGs have obvious expression differences in normal samples and 
RA samples. 

3.2. Biological function analysis of DEGs 

GO analysis obtained 227 BP items. It mainly involves the response to virus (GO:0009615), defense response to virus 
(GO:0051607), defense response to symbiont (GO:0140546), antimicrobial humoral response (GO:0019730), mucosal innate immune 
response (GO:0002227), antimicrobial peptide-mediated antimicrobial humoral immune response (GO:0061844), etc. MF entry 27. It 
mainly involves vitamin D-dependent calcium-binding protein (GO:0048306), RAGE receptor binding (GO:0050786), structural 
composition of ribosome (GO:0003735), toll-like receptor binding (GO:0035325), etc. CC item 40. It mainly involves cytochrome 
complex (GO:0070069) respiratory chain complex (GO:0098803), mitochondrial respiratory complex (GO:0005746), secretory 
granule lumen (GO:0034774), cytoplasmic vesicle lumen (GO:0060205), vesicle lumen (GO:0031983), etc (Fig. 2A). 

DO enrichment analysis showed that RA differential genes were enriched in 84 diseases, including Dermatitis, Prostate cancer, 
Male reproductive organ cancer, Intracranial hypertension, Atopic dermatitis, etc (Fig. 2B). A total of 38 KEGG pathways were 
significantly enriched, including Parkinson disease, Prion disease, Huntington disease, Non-alcoholic fatty liver disease, Alzheimer 
disease, etc (Fig. 2D). 

GSEA enrichment analysis is shown in Fig. 2C. Biological processes such as cell junction assembly, cell junction organization, 
response to epidermal growth factor and molecular functions such as actin binding and chromatin binding were significantly active in 
the control group. It is highly expressed in KEGG pathways such as Alzheimers disease, Huntington disease, Oxidative phosphory-
lation, Parkinson disease and Ribosome in RA samples. 

3.3. Potential biomarkers of RA 

Using LASSO regression analysis from DEGs expression matrix data, when the cross validation error is the smallest. LASSO 
regression analysis obtained 29 potential RA biomarkers: EVI2A, COX7A2, CGRRF1, KYNU, RPL39, FCGBP, CD52, PDCD10, AIM2, 
ZNF267, BATF, SPAG1, PSMA4, TNFSF10, TSPAN2, NDC80, ENTPD1, S100A12, RPL34, LRRN3, C1QB, KLRB1, BMX, IFI6, CXCL10, 
TNFRSF17, CRISP3, IFI27 and IFI44L (Fig. 3A). SVM-RFE machine learning method is used to minimize the cross-validation error. 
CKS2, PSMA2, CD58, S100A8, UQCRQ, C14orf2, CLEC2B, CAPZA2, CD52, FCGBP, EVI2A, IL15, CGRRF1, LY96, KYNU, COX7C, DBI, 
C1QB, CASP3, NDUFB3, SNRPG, COX7A2, ANXA3, GPR65, FAS, SUB1, IFI6, BATF, NDC80, RPL39, TMCO1, AIM2, SPAG1 and LRRN3 
can be used as potential biomarkers of RA obtained by SVM-RFE method (Fig. 3B). Random Forest machine learning method was used 
to obtain CKS2, LY96, S100A8, COX7C, IL15, EVI2A, NDC80, LRRN3, C1QB, PSMA2, CD58, CASP3, CGRRF1, LMNB1, NAT1, AIM2, 
C14orf2, BMX, SPAG1, KLRB1, BATF, CD86, DBI, TSPAN2, UQCRQ, ENTPD1, COX7A2, FCGBP, TFEC, POLR2K, IFI27, ANXA3, BCL2A1, 
RNASE2, CD52, RSAD2, RPS7, HAT1 and KYNU 39 RA potential biomarkers obtained by Random Forest method (Fig. 3C). A total of 12 
RA potential biomarkers such as EVI2A, COX7A2, CGRRF1, KYNU, FCGBP, CD52, AIM2, BATF, SPAG1, NDC80, LRRN3, and C1QB were 
obtained by intersecting the results obtained by the three machine learning methods (Fig. 3D). 

Fig. 1. Differential gene expression in RA. A: Heat map, B: Volcano map.  

K.-l. Mu et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e35511

5

3.4. Diagnostic value of biomarkers for rheumatoid arthritis 

The GSE55235 data set was used to verify the expression differences of RA potential biomarkers in control samples and RA samples 
(Fig. 4). P < 0.05 was considered to have significant differences. From Fig. 4, it can be seen that 8 RA biomarkers such as KYNU, 
FCGBP, EVI2A, CD52, C1QB, BATF, AIM2 and NDC80 have significant differences in the expression of control samples and RA samples 
in the validation dataset, while 4 RA biomarkers such as COX7A2, CGRRF1, SPAG1 and LRRN3 have no significant differences in the 
expression of control samples and RA samples in the validation dataset. The Extra Trees classifier model was used to construct multiple 
decision trees, and their prediction results were integrated. At the same time, the ROC analysis of RA markers was performed using the 
validation group data set to verify their diagnostic efficacy for RA (Fig. 5A and. B). AUC>0.800 was considered to have diagnostic 
ability. It can be seen from Fig. 5 that the ROC curve of the Extra Trees classifier model shows that the AUC of all RA feature genes is 
greater than 0.800, and the main diagonal of the confusion matrix shows higher prediction accuracy, indicating that this model has 
higher generalization ability and prediction accuracy(Fig. 5C). The ROC of single RA characteristic gene showed that the AUC of seven 
RA biomarkers, such as KYNU, EVI2A, CD52, C1QB, BATF, AIM2 and NDC80, were all greater than 0.800, which could be preliminarily 
determined as the diagnostic biomarkers of RA. The R software ’dplyr’, ’pROC’, ’ggplot2’, ’survival’, ’regplot’, ’rms’, ’ggsci’, ’surv-
miner’, ’timeROC’, ’ggDCA’ and ’limma’ packages were used to identify seven RA diagnostic biomarkers in the training group data 
expression matrix using the Norman logistic regression model to analyze their weight coefficients. The nomogram model is further 
established (Fig. 6A). The R software ’pROC’ package was used to verify the diagnostic nomogram model in the training group data set 
(Fig. 6B). When the AUC value in nomoscore was greater than 0.6, it could be considered that the established diagnostic nomogram 
model had good diagnostic value. It can be seen from Fig. 6B that the AUC value in nomoscore was 0.601, indicating that the 
established RA diagnostic nomogram model had good diagnostic value. The AUC values of each potential biomarker were all greater 
than 0.7, and the AUC value of EVI2A even reached 0.836, further indicating that the established RA diagnostic nomogram model had 
good diagnostic value. 

3.5. Results of immune cell infiltration 

The histogram of the proportion of immune cells showed the infiltration ratio of 22 immune cells in RA samples and control samples 
(Fig. 7A). Compared with the control group, the T cells gamma delta and Macrophages M0 infiltration levels in the RA group were 
higher. The infiltration level of Mast cells activated was low. The correlation heat map (Fig. 7B) showed that Neutrophils was positively 
correlated with Macrophages M0 (r = 0.31, P < 0.05), that is, when Neutrophils decreased, Macrophages M0 also decreased relatively; 
there was a negative correlation between T cells CD8 and Neutrophils (r = − 0.560, P < 0.05). The difference of immune cell infiltration 
between RA group and control group was analyzed by violin diagram (Fig. 7C). We found that T cells CD4 naive (P = 0.009), T cells 
CD4 memory activated (P < 0.001), T cells regulatory (P < 0.001), T cells gamma delta (P = 0.001), Dendritic cells resting (P < 0.001), 
Mast cells activated (P = 0.012) and Neutrophils (P = 0.043) were significantly different between RA samples and control samples. 

Fig. 2. Diagram of biological function analysis of differential genes. A represents GO enrichment analysis map, B represents DO enrichment analysis 
map, C represents GSEA enrichment analysis map, and D represents KEGG enrichment analysis map. 
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3.6. Correlation between potential biomarkers and RA infiltrated immune cells 

The CIBERSORT algorithm evaluates the immune cell infiltration of normal samples and RA samples in multiple sets of GEO data. 
After calculating the score of each immune cell, the correlation between seven RA diagnostic biomarkers and immune cells was 
analyzed (Fig. 8A–G). Dendritic cells resting, T cells gamma delta, Neutrophils, T cells CD4 memory activated were positively 
correlated with AIM2, T cells CD4 naive, B cells naive, T cells regulatory, NK cells resting were negatively correlated with AIM2. T cells 
gamma delta, T cells CD4 memory activated, T cells CD8 were positively correlated with BATF, T cells CD4 naive, Neutrophils were 
negatively correlated with BATF. T cells CD4 memory activated and dendritic cells activated were positively correlated with C1QB, 
while T cells CD4 naive was negatively correlated with C1QB. T cells gamma delta, T cells CD4 memory activated, T cells CD8 were 
positively correlated with CD52, while Neutrophils, Macrophages M0, T cells regulatory were negatively correlated with CD52. 

4. Discussion 

In this study, four RA disease-related gene data chips were used to analyze 79 DEGs.These DEGs have significant expression dif-
ferences in 62 control samples and 251 RA samples, which can be used for further study of RA diagnostic biomarkers. GO functional 
enrichment analysis showed that 79 DEGs mainly played a role in response to viruses, defense response to viruses and symbionts, 
antimicrobial humoral response, mucosal innate immune response, antimicrobial peptide-mediated antimicrobial humoral immune 
response, vitamin D-dependent calcium binding protein, RAGE receptor binding, ribosomal structure composition, toll-like receptor 
binding, cytochrome complex, respiratory chain complex, mitochondrial respiratory complex, secretory granule lumen, cytoplasmic 
vesicle cavity and vesicle cavity. KEGG pathway enrichment analysis showed that 79 DEGs were mainly involved in Parkinson’s 
pathway, prion pathway, Huntington pathway, nonalcoholic fatty liver pathway and Alzheimer ’s disease pathway. DO enrichment 
analysis showed that 79 DEGs were highly expressed in the occurrence and development of prostate cancer, dermatitis, male 

Fig. 3. Machine learning screens potential biomarker maps. a represents the LASSO regression analysis chart, showing 29 potential biomarkers 
when the cross-validation error is minimal. b represents the SVM-RFE analysis plot, and there are 34 potential biomarkers when the cross-validation 
error is the smallest. c represents a random forest tree map, which is screened with an importance score greater than 1, showing 39 potential 
biomarkers. d represents the intersection graph of veen machine learning results, showing that the three machine learning algorithms have 12 
common potential biomarkers. 
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reproductive organ cancer, intracranial hypertension and atopic dermatitis. GSEA enrichment analysis of 79 DEGs showed that these 
DEGs were significantly active in biological processes such as cell junction components, cell junction tissues, response to epidermal 
growth factor, and molecular functions such as actin binding and chromatin binding in the control samples. It is highly expressed in 
KEGG pathways such as Alzheimer’s disease, Huntington ’s disease, oxidative phosphorylation, Parkinson’s disease and ribosome in 
RA samples. 

The LASSO regression algorithm is a biased estimation method for processing multi-collinearity data. It is suitable for processing 
high-dimensional data or large amounts of data, and can scientifically and objectively screen characteristic indicators related to 
research purposes [19–22]. SVM-RFE is a sequential backward selection algorithm based on the maximum margin principle of SVM 
[23–25]. It trains samples through the model, then sorts the scores of each feature, removes the features with the smallest feature score, 
and then uses the remaining features to train the model again for the next iteration. Finally, the required number of features is selected, 
and the feature index can be obtained objectively according to the eigenvalue [26]. Random Forest is an algorithm that integrates 
multiple trees through the idea of ensemble learning, and can accurately screen out characteristic indicators with importance scores as 
thresholds [27]. At present, three machine learning algorithms, LASSO, SVM-RFE and Random Forest, are widely used in disease 
characteristic biomarkers and prognosis model construction, which are of great value in promoting the development of life science 
[28–31]. In this study, 29,34 and 39 characteristic genes were obtained by using LASSO regression analysis, SVM-RFE and Random 
Forest machine learning methods, respectively. The intersection of the three machine learning screening results was obtained, and a 
total of 12 RA potential biomarkers were obtained. These potential biomarkers have excellent performance in terms of sample dif-
ference, multicollinearity, sequence backward selection, and importance score, and can be further studied for RA diagnostic 
biomarkers. 

The expression differences of 12 RA potential biomarkers in control samples and RA samples were analyzed by using the validation 
group data set (P＜0.05). The results showed that KYNU, FCGBP, EVI2A, CD52, C1QB, BATF, AIM2 and NDC80 had significant 
expression differences between the control group and the experimental group (AUC＞0.800), showing high sensitivity and low 
misjudgment rate. Preliminary analysis showed that KYNU, EVI2A, CD52, C1QB, BATF, AIM2 and NDC80 could be used as biomarkers 
with diagnostic value for RA. Modern pharmacological studies have shown that KYNU can be specifically highly expressed under the 
induction of inflammation in the body [32]. CD52 can activate NF-κB by inhibiting Toll-like receptors and trigger apoptosis in the 
process of inflammatory response [33]. C1QB can be used as a prognostic or predictive marker for neuropathic pain and can stimulate 
body pain in RA diseases [34]. BATF can regulate the destruction of osteoarthritis cartilage, and its expression is up-regulated in 
synovial tissue caused by CIA or K/BxN serum metastasis [35,36]. AIM2 can regulate the activation of caspase-1, promote the cleavage 
of caspase-1 and activate proinflammatory cytokines (such as IL-1β and IL-18), which is highly expressed in the process of inflam-
matory response [37]. EVI2 A and NDC80 have not been reported to be associated with RA disease, or can be used as potential new 
diagnostic biomarkers for RA. 

By studying the correlation between seven RA diagnostic biomarkers and immune cells, it was found that γδ T cells, CD4+ memory 

Fig. 4. Differential expression of potential biomarkers of RA in the validation dataset. When P＜0.05 was considered as statistically significant for 
the potential biomarker in the validation dataset. 
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activated T cells, activated dendritic cells and other immune cells were positively correlated with multiple RA diagnostic biomarkers, 
and CD4+ naive T cells, regulatory T cells and other immune cells were negatively correlated with multiple RA diagnostic biomarkers. 
Studies have shown that the increase of γδ T cells can promote the production of IL-17 inflammatory factors, thereby accelerating the 
body’s inflammatory response [38]. CD4+ memory activated T cells are involved in the pathogenesis of RA autoimmune diseases, 
which can penetrate into the joints of RA patients and produce cytokines including tumor necrosis factor-α (TNF-α), leading to joint 
inflammation and bone destruction [39]; activation of dendritic cells can promote the development of arthritis [40]; CD4+ naive T cells 
are easy to differentiate into regulatory T cells [41], and the depletion of regulatory T cells can lead to the occurrence of various 
autoimmune diseases, including arthritis. The supplement of regulatory T cells can alleviate the symptoms of arthritis [42]. 

RA is a chronic, autoimmune disease that mainly affects joints, but may also cause systemic symptoms and organ damage [1]. Its 
clinical significance mainly includes the following aspects: (1) Joint destruction and loss of function. RA can lead to joint 

Fig. 5. Analysis of RA biomarkers in the validation group data set. A: ROC analysis of RA biomarkers with significant differences in the validation 
group data set; B: Common ROC analysis of RA biomarkers under the Extra Tree classifier model; C: Confusion matrix of training set and test set. 
AUC greater than 0.800 was considered to be a potential biomarker for RA with diagnostic ability. 
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inflammation, articular cartilage and bone destruction, and ultimately lead to impaired joint function, or even loss of normal function. 
This will greatly affect the quality of life and daily activities of patients. (2) Systemic symptoms. In addition to joint symptoms, RA may 
also cause systemic symptoms, such as fatigue, anorexia, weight loss and anemia. These symptoms may affect the patient ’s overall 
health. (3) May cause cardiovascular and other organ damage. There is a correlation between RA and cardiovascular disease, and 
patients have a higher risk of cardiovascular disease. In addition, RA may also cause inflammation and damage to organs such as eyes, 
skin, and lungs. (4) It may have an impact on psychosocial interaction. The nature and symptoms of chronic diseases may lead to 
depression, anxiety, and depression in patients, affecting their social activities and mental health. (5) Produce economic burden. The 
treatment and management of RA requires long-term drug therapy, physical therapy, rehabilitation and regular medical monitoring, 
which may bring economic burden, especially for patients who cannot get enough medical care [6,7]. Therefore, understanding and 
effective management of RA is essential to alleviate the suffering of patients and improve their quality of life. In this study, the clinical 
sample data of RA were used to analyze and explore the diagnostic biomarkers of RA and their correlation with immune cells. The 
results of this study are helpful for the early diagnosis and treatment of RA disease, which can help slow down the progression of 
disease, reduce the occurrence of complications and improve the overall health level of patients. 

There are some limitations in this study. First, the study lacks clinical information, including changes in gene expression during 
disease progression, and is limited by the small sample size of the validated data set. Secondly, this study is only carried out from the 
perspective of gene transcriptome, and lacks multi-omics experiments. In addition, the results of this study are not completely 

Fig. 6. Nomogram model for RA diagnosis. According to the sum of the test results of each index, the possibility of RA was judged. A: Nomogram 
model. B: Validation of ROC curve. 
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consistent with the results of several similar studies [43–46]. Therefore, GEO chip data is crucial for further analysis in future studies to 
minimize the error range. At the same time, while providing a reference for the diagnosis, prevention and treatment of RA diseases and 
new biomarkers, it is still necessary to further verify the reliability of the results through large sample experiments. 

5. Conclusion 

In summary, this study combines RA gene expression profile chip data, bioinformatics, GO function, KEGG pathway, DO disease 
ontology, GSEA gene set analysis, machine learning (including LASSO, SVM-RFE, Random Forest), GEO verification and immune- 
related research methods are combined to reveal seven differentially expressed genes of RA (KYNU, EVI2 A, CD52, C1QB, BATF, 
AIM2 and NDC80), and their expression and diagnostic value are verified to identify new RA diagnostic biomarkers. It provides a new 
idea for the accurate diagnosis and immunotherapy of RA disease. 
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Fig. 7. Results of immune cell infiltration. A represents bars of 22 immune cells. B represents the heat map of immune cell correlation, with a reder 
color indicating a greater positive correlation and a bluer color indicating a greater negative correlation. C represents violin plot, showing the 
difference in the expression of 22 immune cells between RA samples and control samples, and P < 0.05 was considered as significant difference. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 8. Seven potential biomarkers were associated with RA infiltrating immune cells. (A: BATF. B: EVI2A. C: KYNU. D: CD52. E: AIM2. F: C1QB. G: NDC80.)  
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