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Background: Although numerous studies are conducted every year on how to reduce

the fatality rate associated with sepsis, it is still a major challenge faced by patients,

clinicians, and medical systems worldwide. Early identification and prediction of patients

at risk of sepsis and adverse outcomes associated with sepsis are critical. We aimed to

develop an artificial intelligence algorithm that can predict sepsis early.

Methods: This was a secondary analysis of an observational cohort study from the

Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University. A total of 4,449

infected patients were randomly assigned to the development and validation data set at a

ratio of 4:1. After extracting electronic medical record data, a set of 55 features (variables)

was calculated and passed to the random forest algorithm to predict the onset of sepsis.

Results: The pre-procedure clinical variables were used to build a prediction model

from the training data set using the random forest machine learning method; a 5-fold

cross-validation was used to evaluate the prediction accuracy of the model. Finally, we

tested the model using the validation data set. The area obtained by the model under the

receiver operating characteristic (ROC) curve (AUC) was 0.91, the sensitivity was 87%,

and the specificity was 89%.

Conclusions: This newly established machine learning-based model has shown good

predictive ability in Chinese sepsis patients. External validation studies are necessary to

confirm the universality of our method in the population and treatment practice.

Keywords: sepsis, machine learning, prognostication, infection, ICU patients

INTRODUCTION

Although numerous studies and papers on sepsis are published every year, it remains a major
challenge for patients and clinicians worldwide. Between 2002 and 2012, the proportion of sepsis
patients admitted to hospitals in the European ICU remained unchanged; however, the severity of
the disease increased significantly (1). The standardized sepsis-related mortality rate in China in
2015 was 67 deaths per 100,000, which was equivalent to more than 1 million deaths due to sepsis
(2). Despite these alarming numbers, the public seems to lack an awareness about sepsis. An adult
survey found that <30% of people are aware of the severity of sepsis, which was much lower than
the proportion for cardiovascular diseases, cancer, and asthma (3).
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To date, the diagnosis of sepsis has largely relied on
determining the presence of infection and organ dysfunction
(4). In addition, screening laboratory tests are often required to
confirm the diagnosis. However, laboratory testing takes time, so
treatment is further delayed (5).

The early detection and prediction of patients who may
develop sepsis is essential to improve the adverse consequences of
sepsis. Although there are many studies on the early predictions
of sepsis, such as calcitonin, C-reactive protein, white blood
cells, platelets, and lactic acid (6, 7). However, disappointingly,
most studies are limited in clinical prediction (8). Since sepsis
is a complex clinical syndrome, it contains a wide range of
multifaceted clinical and biological features; therefore, a single
clinical index may not be a good reflection of the disease state
(9). There is still a lack of effective biomarker combinations
that can distinguish patients with sepsis from those not affected
with sepsis.

Current research mainly uses data collected by bedside
monitors to determine the probability of sepsis in ICU patients.
Bloch et al. constructed a sepsis prediction model based on the
four vital signs of mean arterial pressure, heart rate, respiratory
rate, and body temperature (10). The best area under the curve
(AUC) was achieved with Support Vector Machine (SVM) with
radial basis function, which was 88.38%. Guillén et al. used vital
sign measurements and laboratory test results to predict the
likelihood of severe sepsis in patients with sepsis during ICU
hospitalization (11). The study showed that the AUROC based
on vital signs data was 0.84; based on vital signs and laboratory
results, the AUROC was calculated to be 0.882. Calvert et al.
studied the correlation between pairs and triples of vital sign
measurements and the overall trend (i.e., increase, decrease, and
no change) of the measurements over time to predict sepsis in
the adult ICU population disease (12). Their results show that
the average AUROC measurement accuracy is 0.83, but requires
a larger data set, which usually requires longer processing time.
Since the above studies are based on the previous definition of
the Third International Consensus Definition of Sepsis (sepsis-
3), our current understanding of sepsis is of limited reference
value. Nemati et al. used electronicmedical record data combined
with high-resolution time series of heart rate and blood pressure
to dynamically predict sepsis, with an area under the receiver
operating characteristic (AUROC) of 0.83–0.85 (13). Although
the study is based on the third international definition of sepsis
(sepsis-3), its predictive power is not significantly different from
previous studies.

Machine learning has been applied to multiple healthcare
fields, including diabetes, cancer, cardiology, and mental health
(14–17). Most of the machine learning models and tools
developed in the research environment has studied the potential
of prognosis, diagnosis, or clinical componentization, thus
demonstrating the prospect of developing computerized decision
support tools (18, 19). In general, the use of machine learning

Abbreviations: ICU, Intensive care unit; LDL, Low-density lipoprotein; PT,

Prothrombin time; ROC, Receiver operating characteristic; WBC, White blood

cells.

models can improve patient safety, improve the quality of care,
and reduce medical costs (20).

The application of artificial intelligence in the medical field
is gaining increasing recognition in the improvement of clinical
practice and achievement of personalized treatment (21, 22).
This study used machine learning methods to evaluate predictive
clinical indicators and biomarkers related to sepsis and to
establish a model that could effectively predict sepsis early, which
is necessary to identify high-risk patients and may enhance the
understanding and facilitate clinical management of sepsis.

MATERIALS AND METHODS

Study Population
This study was a secondary analysis of a retrospective
observational study conducted from 2014 to 2016 in the intensive
care unit (ICU) of the First Affiliated Hospital of Zhengzhou
University. The inclusion criteria were (1) infection at the time
of admission to the ICU; (2) compliance with the international
consensus definition of sepsis and septic shock (Sepsis-3.0); (3)
age ≥18 years. The exclusion criteria were (1) age <18 years;
(2) diseases without infection status such as coronary heart
disease, cardiac arrest, fracture, neoplasm, cerebral infarction,
and brain injury; and (3) more than three missing data. Clinical
or laboratory parameters related to infection and sepsis were
collected for each patient.

Statistical Analysis
The binary variables were described as counts and percentages
and were evaluated using the Chi-square test or Fisher’s exact test.
If the continuous variables conformed to a normal distribution,
they were compared using a t-test and expressed as means ±

SEM. For a non-normal distribution, the Mann–Whitney U
test was used. P < 0.05 was considered statistically significant.
The ensemble model was written Python scripting language
(Version 3.6.5, Python Software Foundation, Wilmington, DE,
USA, https://www.python.org).

Modeling and Feature Selection
The random forest algorithm, which belongs to the category of
machine learning methods and captures non-line relationships
between dependent and independent variables with high
flexibility and sufficient accuracy, has been successfully applied
to various fields such as the estimation of the genetic effects
(23), clinical deterioration prediction (24), association estimation
(25), clinical outcome prediction (26), and others (27–30). In
this study, we used the random forest algorithm to predict the
risk of sepsis in ICU patients by analyzing laboratory/clinic data
as follows: (i) lipids, (ii) liver function, (iii) hemagglutination,
(iv) blood cells, (v) renal function, and (vi) electrolyte. The
essential idea of the random forest algorithm is to build multiple
decision trees to reduce the correlation between trees using
bootstrap aggregating or bagging, which can avoid the over-
fitting problem. The random forest algorithm was written in
the Python scripting language (version 3.6.5, Python Software
Foundation, Wilmington, DE, USA, https://www.python.org).
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Generally, models with more features will achieve higher
accuracy than those with fewer features. However, in clinical
practice, having more features cannot always improve the
performance of the model because of irrelevant or redundant
features, which may mislead the models. To recognize the key
features and the optimal combination of features, we performed
a random forest algorithm on different subsets of the training
set. In this study, we identified 55 features, which were potential
candidates for sepsis prediction. Because the number of possible
feature combinations was large (255), as shown in Figure 2, we
used the Gini importance to rank the importance of all potential
features (31, 32). Specifically, a high Gini importance value was a
high priority for incorporation into themodel. On the basis of the
Gini importance value of each feature, we performed the random
forest algorithm on the various feature subsets.

Validation
In this study, we used a 5-fold cross-validation to assess the
prediction performance of the model because it was the most
commonly used method for machine learning-based medical
problem exploration (33–37). Specifically, the available training
set was divided into five roughly equal-sized subsets: the training
set and the validation (or internal validation) set. Four of them
were applied to fit the random forest model, and the remaining
one was used to estimate the accuracy of the model.

We measured the performance of the model by applying
several different indices, namely (i) AUC, (ii) accuracy, (iii)
precision, (iv) recall, and (v) F1-Score, which were defined
as follows:

Accuracy =
TN + TP

TN + FP + FN + TP

Precision =
TP

FP + TP

Recall =
TP

FN + TP

F1− Score =
2× Precision× Recall

Precision+ Recall

Here, TP, FP, TN, and FN are the number of positive samples
classified as positive (true positives), the number of negative
samples classified as positive (false positives), the number of
positive samples classified as negative (true negatives), and
the number of negative samples classified as negative (false
negatives). Briefly, we used five prediction performance indices,
5-fold cross-validation for internal validation, and the testing set
for external validation to estimate the performance of the model.

RESULTS

Patient Characteristics
Our database consisted of 17,005 patients admitted to the
ICU. After a series of exclusions, 4,449 adult patients were
included in this study, and 3,539 patients developed sepsis.
The process of cohort selection is shown in Figure 1. A total
of 55 variables, including age, sex, red blood cell count, total
cholesterol, D-dimer, and other clinical or laboratory parameters

related to infection and sepsis, were collected for each patient.
The baseline characteristics of the included patients are shown in
Supplementary Table 1. We then randomly divided the patients
into the training and testing sets. Supplementary Table 2 shows
the basic information compared between the two sets.

Variables of Importance
Generally, the error of the model decreased with an increase
in variable selection. However, increasing the number of
variables was not conducive to clinical practice. In order to
identify the prominent features, we used the random forest
method to select variables by using various feature subsets.
Therefore, the relative importance of each feature based on
the fact that the features built on the tree top contributed
more to the prediction of sepsis in high-risk patients is
shown in Figure 2. It can be observed in Figure 3 that the
error value remained at a similar degree when the number
of features reached 20. Therefore, we utilized a combination
of 20 selected features to predict sepsis in ICU patients
(shown in Supplementary Table 3): neutrophils%, D-dimer,
neutrophils, eosinophils, lymphocytes, albumin, white blood cells
(WBCs), direct bilirubin, potassium, calcium, cholinesterase,
magnesium, low-density lipoprotein (LDL), prothrombin time
(PT), lymphocytes, lactate dehydrogenase (LDH), basophils%,
total cholesterol (TBIL), urea, and platelets (PLT).

Next, we performed a random forest classification with the
same parameters (to make the comparison possible and remove
the effect of the parameters) with different subsets of features
to calculate the changes in AUC values. The AUC loss value
changed when we set the number of features to different values
(Supplementary Table 3).

Classification Results
As shown in Table 1 and Figure 4, on average, the random forest
algorithm achieved an AUC of 0.88 (±0.04), accuracy of 0.88
(±0.03), precision of 0.90 (±0.03), recall of 0.96 (±0.01), and
recall of 0.93 (±0.02) in the internal validation. For the external
validation, the model gave an AUC of 0.91, accuracy of 0.87,
precision of 0.89, recall of 0.95, and recall of 0.92.

DISCUSSION

Early identification and treatment of sepsis is a highly complex
and multifaceted challenge (38). It requires highly skilled and
well-trained human experts (39). However, with the continuous
emergence of AI applications in the medical field, some of these
decisions will soon be replaced by machines called “intelligence”
to improve clinical practice and patient outcomes (40). Most of
what we call “artificial intelligence” is machine learning, which
means learning from data and using this knowledge to acquire
new knowledge or skills.

This study used a supervised learning method (a machine
learning method) to build a predictive model, which included
20 predictors of sepsis events predicted by the random forest
method. The AUC of this newly developed model was 0.91,
demonstrating good discriminative power. These prediction
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FIGURE 1 | Flow chart depicting number of patients who were included in analysis after exclusion criteria. The total included encounters were divided into those with

and without sepsis.

FIGURE 2 | Importance of the 20 variables included in the predictive model for sepsis events.
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FIGURE 3 | The relationship between the cross-validation error and the

number of variables.

TABLE 1 | Internal and external validation results of the prediction model.

AUC Accuracy Precision

Internal validation/validation set

(95% CI)

0.88 (±0.04) 0.88 (±0.03) 0.90 (±0.03)

External validation/testing set 0.91 0.87 0.89

Recall F1-Score

Internal validation/validation set

(95% CI)

0.96 (±0.01) 0.93 (±0.02)

External validation/testing set 0.95 0.92

CI, confidence intervals; AUC, indicates area under the receiver-operating curves.

results suggest that the ensemble model with 20 key features is
feasible and practical.

To our knowledge, most previous studies have developed
models to predict the prognosis of sepsis. However, only few
researchers have paid attention to the differences in the incidence
of sepsis after infection, although it is important for clinical
preventive intervention. Thomas et al. developed machine
learning models for the early identification of sepsis risk (41);
however, they did not obtain precise biomarkers that could be
applied to clinicians. All calculations are trivial for a computer,
which may limit generalization of the results to other hospitals
and hospital systems. Other artificial intelligence systems such as
random forest models may be a valuable tool to predict sepsis (8).

The variables in our model were mainly blood cells, lipids,
liver function, hemagglutination, renal function, electrolyte,
enzyme, and others. Interestingly, blood-related variables
accounted for a large part of our model; the first five variables
in Figure 2 are related to the blood system. Neutrophils were
an ideal choice for eliminating pathogenic bacteria because
they store a large number of proteolytic enzymes that can
rapidly produce reactive oxygen species to degrade internal

FIGURE 4 | ROC curve (of the testing set) for predicting Sepsis events using

the predictive model. ROC receiver operating characteristic.

pathogens. Hence, patients with sepsis often have neutrophil
infiltration, and the degree of infiltration is related to tissue
damage (42, 43). Other blood cells, including eosinophils,
basophils, lymphocytes, and WBCs, are also associated with the
body’s defense against infection. For example, some studies have
speculated that individuals with basophilic granulocytopenia
have a weak resistance to infection and thus are more likely
to develop sepsis (44). In addition, studies have shown that
eosinophilia was a moderate marker for distinguishing SIRS
from infection in critically ill patients newly admitted to the
hospital, which suggested that eosinophilia may be a useful
clinical tool for the prediction of sepsis (45). In addition,
lymphocyte apoptosis has been recognized as an important step
in the pathogenesis of experimental sepsis by inducing a state of
“immune paralysis” that renders the host vulnerable to invading
pathogens (46).

In the past decade, there has been a growing awareness
about the role of the coagulation and fibrinolysis systems in
the development of inflammation. Patients with sepsis may
have common host reactions, such as coagulation, inflammation,
and endothelial injury. Abnormal inflammatory and coagulation
biomarkers were found to be associated with disease severity
and mortality in patients with severe sepsis (47). Platelets are
the main effector cells involved in blood coagulation and can
promote the development of excessive inflammation, DIC, and
microthrombosis (48). PT can reflect the coagulation function
of the body, and D-dimer levels increase under hypercoagulable
state (49). Therefore, changes in these substances may predict the
occurrence of sepsis.

Sepsis is often associated with multiple organ dysfunction
such as that involving the heart, liver, and kidney (50). Therefore,
some indicators reflecting organ function may be used to predict
the occurrence of sepsis. Albumin which is the most important
protein in human plasma, maintains nutrition and osmotic
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pressure. When liver synthesis is dysfunctional, its level usually
decreases. Lactate dehydrogenase and urea are associated with
cardiac and renal function, respectively. Patel et al. revealed
an association between serum bilirubin levels and mortality
during sepsis, suggesting that serum bilirubin may be a potential
predictor of sepsis occurrence and death (51).

Previous studies have shown that lipids are also involved in
the occurrence and development of sepsis. Yamano et al. found
that low total cholesterol and high total bilirubin levels are
associated with prognosis in patients with prolonged sepsis (52).
Hofer et al. found that pharmacologic inhibition of cholinesterase
improves survival in experimental sepsis, probably by activating
the cholinergic anti-inflammatory pathway (53). The results
of Feng’s study suggest that a decrease in LDL-C levels is
significantly associated with an increased risk of sepsis in infected
patients, although the association was due to the presence of
complications (54).

Although the association between electrolytes other than
calcium and sepsis appears to be poorly studied, this study found
that the decrease of potassium and magnesium is closely related
to the occurrence of sepsis. We know that the critical illness
itself is associated with a decrease in serum total calcium and
free calcium levels, which is related to the severity of underlying
diseases as measured by the APACHE II score. In addition,
studies have shown that total and ionized hypocalcemia is
more significantly associated with increased severity of infection,
which suggested the role of calcium in predicting the risk of
sepsis in patients with infection (55). Regarding magnesium
and potassium, a study pointed out that ATP-MgCl2 may be
beneficial in sepsis (56). An increasing amount of evidence has
suggested that potassium channels are involved in cardiovascular
dysfunction in sepsis after systemic inflammation, cardiovascular
dysfunction, and organ damage, and that potassium channels
may affect the emergence of sepsis after infection (57). In
conclusion, we believe that because sepsis is not a simple disease
that can be predicted by a single marker, the biomarkers included
in our model can be combined to predict the risk of sepsis in
infected patients.

Our study has several limitations. First, this was a
retrospective study, which had its own shortcomings, such
as information bias. Second, the prediction model may have
lacked generality because the 55 variables are still too few, and
many other variables were omitted due to the loss of too many
values. Generally, the more the variables included, the higher the

prediction accuracy. Therefore, we hope to include more patients
and variables in future prospective studies.

A model with 20 key features was successfully established to
predict sepsis events in Chinese patients. Thismodel has excellent
ability to predict sepsis events in Chinese patients.
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