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Abstract: This paper proposes a measurement of risk (MOR) method to recognize risky driving
behavior based on the trajectory data extracted from surveillance videos. Three types of risky
driving behavior are studied in this paper, i.e., speed-unstable driving, serpentine driving, and risky
car-following driving. The risky driving behavior recognition model contains an MOR-based risk
evaluation model and an MOR threshold selection method. An MOR-based risk evaluation model is
established for three types of risky driving behavior based on driving features to quantify collision
risk. Then, we propose two methods, i.e., the distribution-based method and the boxplot-based
method, to determine the threshold value of the MOR to recognize risky driving behavior. Finally, the
trajectory data extracted from UAV videos are used to validate the proposed model. The impact of
vehicle types is also taken into consideration in the model. The results show that there are significant
differences between threshold values for cars and heavy trucks when performing speed-unstable
driving and risky car-following driving. In addition, the difference between the proportion of
recognized risky driving behavior in the testing dataset compared with that in the training dataset
is limited to less than 3.5%. The recognition accuracy of risky driving behavior with the boxplot-
and distribution-based methods are, respectively, 91% and 86%, indicating the validation of the
proposed model. The proposed model can be widely applied to risky driving behavior recognition in
video-based surveillance systems.

Keywords: traffic safety; risky driving behavior recognition; vehicle trajectory; MOR; threshold value

1. Introduction

Driving safety is influenced by different factors (e.g., drivers, traffic environment,
vehicle types), with the driver being one of the most important. It has been shown that
about 95% of traffic accidents in China are caused by drivers [1]. Risky driving behavior
of drivers results in crashes on the road [2]. Risky driving behavior refers to the unsafe
or illegal driving behavior of drivers to realize the driving intention, such as arriving at
the destination as soon as possible. The accurate and timely recognition of risky driving
behavior will prevent traffic accidents and improve traffic safety [2].

There are several classification methods of risky driving behavior [3,4], which are
summarized in Table 1. Kaufman et al. [3] classified risky driving behavior into aggressive
driving and assertive driving based on drivers’ psychology. Driving skills are also classified
into different groups, such as skilled safe driving, aggressive driving, unskilled driving,
and conservative driving [5]. Some studies classified risky driving behavior based on
traffic flow characteristics and occurrence frequency under different environments [6].
Li [7] classified risky driving behavior under snow and ice conditions into four types, i.e.,
overspeed driving, near car-following, illegal overtaking, and driving on the central lines by
analyzing the features of roads and the environment. Si [8] studied risky driving behavior
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on highways such as fatigue driving, overspeed driving, illegal overtaking, frequent lane
changing, driving on curves without slowing down, etc. Commercial vehicles have also
been studied based on driving features [9]. In addition, risky driving behavior is also
classified into different types based on crash severity such as major accidents, minor, or
general accidents [10].

Table 1. Risky driving behavior classification.

Features Classification

Risky driving behavior
classification

Based on drivers’ psychology Aggressive driving, assertive driving

Based on driving skill Skilled safe driving, aggressive driving,
unskilled driving, and conservative driving

Based on traffic flow characteristics and
occurrence frequency

Overspeed driving, near car-following, illegal
overtaking, driving on the line, fatigue driving,

frequent lane-changing

Based on crash severity Major accidents, minor or general accidents

In recent years, there have been a lot of studies to recognize risky driving behavior
and evaluate driving style [3,11]. Various data collection methods exist, such as naturalistic
driving experiments, vehicle-based sensors, and driving simulation. With naturalistic
driving experiments, researchers installed sensors and equipment on vehicles to collect
operation data, driving data, and environment data [3]. Although high-precision vehicle
motion data can be collected with naturalistic driving experiments, the cost of equipment
is high, and vehicle-equipped sensors (e.g., cameras, smartphones) may affect the driving
behavior of drivers, thus leading to abnormal driving behavior [12]. Smartphones have
gradually been applied to collect trajectory data [13–15]. However, compared with cameras,
such as surveillance video, smartphones can only collect the data of subject vehicles rather
than the relative relationships between subject and adjacent vehicles. Therefore, it is
difficult to evaluate the interaction between two vehicles. Additionally, smartphones
cause privacy problems for drivers. For example, the specific position of vehicles will
be located, which is private to drivers. Some studies used vehicle-based sensors such
as gyroscopes [16] and accelerometers [17] to extract longitudinal and lateral speed and
acceleration as data sources to analyze driving behavior. Although the cost of vehicle-based
sensor data remains low, it limits the data type [18]. For example, accelerometers can only
collect acceleration data of vehicles, and they have no access to the relative distance or
speed between subject and preceding vehicles. Driving simulation experiments are also
important data sources [19,20]. Although driving simulation experiments can simulate
driving behavior under extreme conditions, they depend on the reliability of the driving
environment design.

Compared with the above data collection methods, video surveillance systems have
obvious advantages. Road surveillance systems have been widely developed in China,
and they can collect more vehicle trajectory data and surrounding traffic environment
data at the same time. In addition, video surveillance systems can capture the naturalistic
driving of drivers without causing a disturbance to drivers. Trajectory data extracted from
video surveillance systems have been widely applied in risky driving behavior recognition
research [21–23]. However, in order to establish a recognition model, risky driving behavior
needs to be labeled to provide training data, which would require experts to analyze video,
resulting in inefficiency [22].

The threshold method is one of the most commonly used recognition methods for
risky driving behavior recognition. Dingus et al. [24] proposed a threshold set of vehicle
kinematics parameters, including lateral acceleration, longitudinal acceleration, and yaw
rate based on a naturalistic driving dataset. A possible collision event would be labeled
if any of a vehicle’s kinematics parameters exceeded the threshold value. Malta et al. [25]
proposed a new threshold set of kinematics parameters based on the test data of a Euro-
pean active safety system. Based on basic acceleration and other parameters, headway,
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lane change time, and other parameters were added to the threshold set. Cheol et al. [26]
determined the recognition threshold through the parameters of vehicle position, speed,
acceleration, and angular velocity of risky driving events (e.g., sudden acceleration and
deceleration and sudden lane change events) in a training dataset to detect risky driving
behavior. Fitch et al. [27] considered road type when determining the threshold of the
identification parameters of risky driving behavior. For example, when a vehicle trav-
els at a speed of 64 km/h on a highway, it is marked as risky driving behavior when
the longitudinal acceleration exceeds −0.3 g. However, most threshold methods do not
consider changeable traffic environment conditions, and the proposed threshold exhibits
good performance in similar datasets but may not be applicable to other environments.
In addition, commonly used vehicle kinematics parameters (e.g., speed, acceleration) are
often used as feature indicators.

In this paper, a risky driving behavior recognition model is proposed based on the
trajectory data extracted from videos. The model contains two parts: an MOR-based
risk evaluation model and an MOR threshold selection method. The MOR-based risk
evaluation method establishes the MOR formulation for three types of risky driving
behavior, i.e., speed-unstable driving, serpentine driving, and risky car-following driving.
The driving features of risky driving behavior are extracted as parameters to establish the
MOR formulation. Then, the threshold of the MOR is selected based on the distribution-
based method and the boxplot-based method to recognize risky driving behavior. Finally,
the risky driving behavior recognition mode is verified based on the trajectory data. The
research results can be applied to the real-time detection of risky driving behavior in video
surveillance systems and provide support for accidents prevention and traffic management.

2. Risky Driving Behavior Recognition Model

A risky driving behavior recognition model is established in this paper to quantify
collision risk based on driving features and risk measurements. There are two parts to
the model:

(1) MOR-based risk evaluation method. The MOR is proposed in terms of the driving
features of risky driving behavior. The MOR can evaluate the risk of driving behavior
in real time based on driving trajectory data.

(2) MOR threshold selection method. The distribution-based method and boxplot-based
method are adopted to determine the threshold of the MOR based on trajectory data.

Then, the threshold of the MOR is verified based on the testing data to recognize risky
driving behavior. The process of the risky driving behavior recognition model is shown
in Figure 1.

Figure 1. Process of the risky driving behavior recognition model.
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2.1. MOR-Based Risk Evaluation Method

Driving behavior can be classified into lane-keeping and lane-changing maneuvers
when driving on the road. As for risky lane-keeping maneuvers, we mainly study speed-
unstable driving, serpentine driving, and risky car-following driving. As there are not
enough lane-changing samples extracted from the videos, we do not study risky lane-
changing behavior in this paper. According to the characteristics of driving behavior, we
establish the MOR to recognize risky driving behavior with easily accessible variables from
videos. The MORs are as below.

(1) Speed-unstable driving

Speed-unstable driving is when a vehicle frequently accelerates or decelerates during
the driving process. It can result in the misjudgment of a preceding vehicle’s movement
for the following vehicles, thus increasing the rear-end crash probability. In order to reflect
the speed fluctuation and variability during the driving process, we select the coefficient of
variation [28] as MOR1 to indicate the risk of speed-unstable driving.

MOR1 =
SD(v)

Mean(v)
× 100% (1)

where SD(v) is the standard deviation of the speed, and mean(v) is the mean value of the
speed. The driving speed stays more stable with a smaller value of MOR1.

(2) Serpentine driving

Serpentine driving is when a vehicle frequently swings from one side of the road to
the other, presenting a serpentine driving state. It is easy to disturb surrounding drivers’
sight with frequent lateral swinging. It can make surrounding drivers unaware of the
accurate traffic environment and unable to respond to the abrupt deceleration or turning of
other vehicles, resulting in traffic crashes.

The lateral swing distance from one time step to the next can reflect the swing severity
of serpentine driving; therefore, it is adopted as a feature to establish the MOR for serpen-
tine driving. MOR2 is defined as the cumulative distance of lateral swing during a certain
period, as shown in Equation (2).

MOR2 =
N

∑
t=2

|y(t)− y(t − 1)| (2)

where y(t) is the lateral position of the vehicle at time step t, and y(t−1) is the lateral
position of the vehicle at time step t−1. A smaller value of MOR2 indicates a stable
driving trajectory.

(3) Risky car-following

The car-following (CF) maneuver describes the interactive relationship between two
following vehicles. However, the following vehicle will not be influenced by the preced-
ing vehicle if there is a large relative distance between the two vehicles. According to
Zhu et al. [29], a CF period was ultimately extracted if the following criteria were met
simultaneously: (1) a leading vehicle exists; (2) gap < 120 m (this criterion eliminated free-
flow traffic conditions); (3) duration of following period > 15 s (this criterion guaranteed
that the CF persisted long enough to be analyzed). The CF samples are extracted from the
CF period, whose time interval is defined as 4 s.

Risky CF maneuvers are mainly caused by the shorter relative distance and higher
velocity of the following vehicles, resulting in a rear-end crash, as there is not enough time
for the following vehicle to take counter maneuvers while the preceding vehicle abruptly
decelerates. There have been some risk surrogates to describe the rear-end crash risk, e.g.,
time to collision (TTC) [30,31], modified time to collision (MTTC) [32], and time to collision
with disturbance (TTCD) [33]. The TTC has been adopted as the standard collision warning
parameter for vehicle collision avoidance systems or driver assistance systems. However,
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it cannot describe the collision risk when the relative velocity of two following vehicles is 0.
Therefore, the inverted TTC (ITTC) is adopted in this paper as the MOR to evaluate the
rear-end collision risk of CF maneuvers, as shown in Equation (3).

MOR3 =
vi−1(t)− vi(t)

xi−i(t)− xi(t)− li−1
(3)

where vi−1(t) is the speed of the following vehicle i−1 at time step t, vi(t) is the speed of
the preceding vehicle i behind at time step t, xi−1(t)is the end position of the following
vehicle i−1, xi(t)is the end position of the preceding vehicle i, and li−1 is the length of the
following vehicle i−1. The collision risk of car-following maneuvers is lower with smaller
values of MOR3.

2.2. MOR Threshold Selection Method

The threshold value of the MOR needs to be determined as a criterion to classify
risky driving behavior. In particular, the threshold value is influenced by the road, traffic
environment, individuals, and vehicles. For example, the same driving trajectory at free
flow and congested flow would result in different levels of collision risk. Therefore, the
threshold value is not a specific value for all traffic environments. We can apply the
threshold selection method to different traffic environments to analyze driving data and
obtain the corresponding threshold value. In this paper, we adopt two methods, i.e., the
boxplot-based method and the distribution-based method, to determine the threshold of
the MOR based on training data.

2.2.1. Boxplot-Based Method

Risky driving behavior is usually the abnormal trajectory data to a normal driving
trajectory, whose MOR values are extraordinarily higher compared with the values of
normal driving behavior. The boxplot method is useful for recognizing abnormal points
(i.e., outliers), as shown in Figure 2. Boxplots visually show the distribution of numerical
data and skewness by displaying data quartiles (or percentiles) and averages. Box plots
show the five-number summary of a set of data, including the upper boundary, first
quartile, median, third quartile, and lower boundary. As shown in Figure 2, Q1 and Q3
are, respectively, the first quartile and third quartile of the data. Then, the interquartile
range (IQR) can be obtained as the difference between Q1 and Q3. The upper boundary
and lower boundary of the MOR boxplot can be determined with the IQR, Q3, and Q1.
The 1.5 coefficient is the most selected value in related research to detect outliers [34].
The outliers beyond the upper boundary or below the lower boundary are the abnormal
data, i.e., risky driving behavior. Risky driving behavior can be recognized with the
boxplot method.

Figure 2. Box-and-whisker plot.
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2.2.2. Distribution-Based Method

Some researchers also adopted the statistical method to determine threshold values.
For example, the 85th percentile of speed is normally assumed to be the highest safe speed
for a roadway section [35]. Therefore, the distribution-based method is also applied in this
paper to select the threshold value of the MOR. Videos can capture mass driving trajectory
data under similar environments within a limited period, providing enough training data
to use in the distribution-based method.

The process of the distribution-based method is detailed as below:

(1) Different types of risky driving behavior samples are extracted from the trajectory
dataset, and the samples are classified into the training set and testing set. Each type
of risky driving behavior is included in the two sets.

(2) The MOR value of each driving behavior sample is calculated based on the MOR-
based risk evaluation method.

(3) The cumulative distribution curve for all driving behavior samples of one type is
obtained, and the percentile value is obtained as a threshold value based on the
training dataset.

(4) The threshold value is used to recognize risky driving behavior in the test dataset.

3. Data Acquisition and Processing

The length of the UAV video coverage area is about 250 m. The time period of each
video is about 15 min due to the battery. Thirty videos were collected at a highway in
Shanghai, China, during off-peak hours from 10:00 a.m. to 12:00 a.m. The highway consists
of eight lanes, including two right-turn lanes and two left-turn and straight lanes. Video
processing software developed by Nanjing University of Science and Technology was
used to extract the vehicle driving data from the UAV videos, as shown in Figure 3. The
vehicle information that the software can directly extract includes vehicle ID, time, position
information, speed, acceleration, vehicle type, and preceding vehicle ID. It can help to
match two following vehicles, which can help to study the relative position and assess
collision risk. The data extraction frequency was 10 Hz. The extracted vehicle behavior
trajectory can be stored in Excel and imported into MATLAB software for analysis. In
order to ensure the accuracy of data extraction, the difference between the actual speed of
a naturalistic driving vehicle (measured directly by equipped sensors) and the extracted
speed (UAV video) was within 3.5%.

Figure 3. UAV video screenshot of road traffic and trajectory extraction.

This paper selected three maneuver types to study. Although current image recogni-
tion and machine learning technologies can ensure that the trajectory data extracted from
videos have high accuracy, some errors are inevitable, which leads to some noises in the
trajectory data. The data extraction and process are depicted as follows.

(1) The software extracts vehicle ID, lateral and longitudinal speed, acceleration, vehicle
length and width, lane ID, position information, and preceding vehicle ID every 0.1 s.

(2) It deletes abnormal IDs that remain static and IDs that cannot be further matched
and processed.
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(3) For the missing frames in the extracted trajectory data, the cubic spline
interpolation [36] method is used to fill in information such as position, velocity,
and acceleration. Then, the sliding time window method is applied to eliminate
abnormal data and noises.

(4) By matching the ID and time stamp between the preceding and following vehicles,
the relative distance and velocity between two vehicles are calculated.

The data process can provide data for the risky driving behavior recognition model.
We selected 600 vehicles from videos to study in this paper. The trajectory data of each
vehicle were divided into different types of maneuvers based on the sample extraction
standard mentioned above. The sample distribution is shown in Table 2.

Table 2. Sample distribution of three types of risky driving behavior.

Maneuver Type Training Samples Testing Samples

Speed-unstable driving 400 180
Serpentine driving 400 180

Car-following 300 100

4. Threshold Value Selection and Comparison
4.1. Threshold Value Based on Boxplot

The threshold value of the three types of risky driving behavior was calculated by the
boxplot-based method using the training dataset. The results are analyzed as follows.

(1) Speed-unstable driving

A boxplot of speed-unstable driving samples is shown in Figure 4. It is known that
a smaller value of MOR1 indicates lower collision risk. Therefore, the upper boundary
was taken as the threshold value to detect risky driving behavior. The threshold values of
MOR1 for cars and heavy trucks are, respectively, 0.03 and 0.01. The threshold value for
heavy trucks is much lower than that of passenger cars, indicating that heavy truck drivers
tend to maintain a stable driving velocity. This may result from the fact that the acceleration
and deceleration performance for heavy trucks is worse than that of passenger cars.

Figure 4. Box-and-whisker plot of MOR1.

(2) Serpentine driving

A smaller MOR2 indicates less lateral swing of vehicles and less collision risk. There-
fore, the upper boundary of the boxplot was selected as the threshold value to detect risky
serpentine driving, as shown in Figure 5. The threshold values of MOR2 for cars and heavy
trucks are, respectively, 0.54 m and 0.69 m. The threshold value for heavy trucks is higher
than that of passenger cars.
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Figure 5. Box-and-whisker plot of MOR2.

(3) Risky car-following

A smaller value of MOR3 indicates less crash possibility to the preceding vehicle.
It was investigated that there is no possibility to have a crash with a negative ITTC. To
be more specific, the value of the ITTC is negative if the preceding vehicle’s speed is
higher than that of the following vehicle. Then, it will not cause a crash. Therefore, we
only considered the positive ITTC and extracted the upper outliner of the boxplot. As
shown in Figure 6, the threshold values of MOR3 for passenger cars and heavy trucks
are, respectively, 0.58 s−1 and 0.35 s−1. The threshold values for heavy trucks are much
lower than those of passenger cars. This may be explained by the fact that the deceleration
performance of heavy trucks is worse than that of cars, so truck drivers need to maintain a
larger distance to preceding vehicles to avoid a collision.

Figure 6. Box-and-whisker plot of MOR3.

4.2. Threshold Value Based on Distribution

The distribution of the MOR for each risky driving maneuver was fitted by an appro-
priate curve. In particular, the MOR distribution of cars and trucks was analyzed due to
the performance difference. The distribution results are detailed as follows.

(1) Speed-unstable driving

We adopted the Normal distribution, Beta distribution, and T distribution to fit the
MOR1 distribution, as shown in Figure 7. The mean-square error (MSE) between the
distribution fitting curve and real data were calculated for the three types of distribution
to select the best one. The MSE values for the three distributions are, respectively, 12.03,
10.98, and 11.05. According to the fitting results, the Beta distribution can better describe
the features of the MOR1 distribution. Therefore, the Beta distribution was selected to fit
the distribution. The slope of the cumulative distribution curve changed greatly at 90–99%.
Therefore, we selected the 95% percentile value as the threshold value, which is 0.03 for car
drivers. The fitting results of truck drivers are shown in Figure 8, and the T distribution
shows better performance. The 95% percentile value of the T cumulative distribution curve
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was calculated as the threshold value, which is 0.01. The threshold value of heavy trucks is
still lower than that of passenger cars.

Figure 7. MOR1 fitting results and threshold for cars.

Figure 8. MOR1 fitting results and threshold for trucks.

(2) Serpentine driving

The fitting results of the three distributions of MOR2 are shown in Figures 9 and 10.
Because of the good fitting performance of the T distribution, the 95% percentile value was
selected as the threshold value to detect risky serpentine driving. The threshold values for
cars and trucks are, respectively, 0.41 m and 0.43 m. The threshold value of heavy trucks is
higher than that of cars.

Figure 9. MOR2 fitting results and threshold for cars.
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Figure 10. MOR2 fitting results and threshold for trucks.

(3) Risky car-following

The fitting results of the Normal distribution, Beta distribution, and T distribution
are shown in Figures 11 and 12. While the fitting performance of the Beta distribution
was better, the 95% percentile value of the T cumulative probability curve was selected as
the threshold value to recognize risky car-following maneuvers, which is 0.38 s−1 for car
drivers. The Beta distribution was adopted for truck drivers, and the threshold value to
recognize risky following maneuvers for truck drivers is 0.23 s−1.

Figure 11. MOR3 fitting results and threshold for cars.

Figure 12. MOR3 fitting results and threshold for trucks.

4.3. Comparison and Analysis of Results

In order to validate the threshold value, we analyzed the proportion of risky driving
maneuvers in the training dataset and testing dataset. To be more specific, the threshold
value determined by the boxplot- or distribution-based method was applied to the testing
set for the recognition of risky driving maneuvers. Then, the proportion of recognized risky
maneuvers in the testing set was compared with that in the training dataset. The threshold
value proved to be efficient if there was little difference between the two proportion values.
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The proportion of risky driving maneuvers with the threshold value of the boxplot-
based method is shown in Table 3. The absolute differences between the training dataset
and testing dataset are 0.73% and 0.17% in the speed-unstable driving proportion for car
and truck drivers, 0.02% and 3.35% in serpentine driving, and 0.57% and 1.39% in risky
car-following. The average difference is 1.04%. The insignificant differences between the
training and testing datasets in risky driving maneuvers recognition indicate the efficiency
of the threshold value.

Table 3. Proportion of risky driving behavior with boxplot-based method.

Dataset
Unstable Driving Serpentine Driving Car-Following

Cars Trucks Cars Trucks Cars Trucks

Training dataset Normal 95.25% 95.21% 96.82% 95.86% 98.55% 93.16%
Risky 4.75% 4.79% 3.18% 4.14% 1.45% 6.84%

Testing dataset Normal 95.98% 95.04% 96.84% 92.51% 97.98% 94.55%
Risky 4.02% 4.96% 3.16% 7.49% 2.02% 5.45%

Absolute difference 0.73% 0.17% 0.02% 3.35% 0.57% 1.39%

The proportion of risky driving maneuvers with the threshold value of the distribution-
based method is shown in Table 4. The absolute differences between the training dataset
and testing dataset are 1.77% and 0.38% in the speed-unstable driving proportion for car
and truck driving, 0.57% and 2.67% in serpentine driving, and 1.93% and 1.68% in risky
car-following driving. The average difference is 1.18%. This also indicates the efficiency of
the threshold value.

Table 4. Proportion of risky driving behavior with distribution-based method.

Dataset
Unstable Driving Serpentine Driving Car-Following

Cars Trucks Cars Trucks Cars Trucks

Training dataset Normal 95.00% 95.00% 95.00% 95.00% 95.00% 95.00%
Risky 5.00% 5.00% 5.00% 5.00% 5.00% 5.00%

Testing dataset Normal 96.77% 94.62% 94.43% 92.33% 96.93% 93.32%
Risky 3.23% 5.38% 5.57% 7.67% 3.07% 6.68%

Absolute difference 0.73% 1.77% 0.38% 0.57% 1.93% 1.68%

We also conducted a sensitivity analysis to evaluate the impact of the threshold value
on the recognition results. We selected 80%, 85%, 90%, 95%, and 99% as threshold values
to detect risky driving behavior. The absolute difference in risky behavior between the
training and testing datasets with the five threshold values is shown in Table 5. The average
difference is shown in Figure 13. It can be seen that the average difference decreases with the
improvement in the threshold value and reaches the lowest point with the 95% threshold
value. Then, the difference increases from 1.81% to 2.14% when adopting the 99% threshold
value. By comparing the five threshold values, we can see that the 95% threshold value is
the most suitable to recognize risky driving behavior.

Table 5. Absolute difference in risky behavior between training and testing datasets with five
threshold values.

Threshold
Value

Unstable Driving Serpentine Driving Car-Following

Cars Trucks Cars Trucks Cars Trucks

80% 1.27% 2.63% 0.56% 0.83% 3.53% 3.45%
85% 0.98% 2.11% 0.49% 0.78% 3.01% 2.92%
90% 0.82% 1.89% 0.41% 0.61% 2.51% 2.36%
95% 0.73% 1.77% 0.38% 0.57% 1.93% 1.68%
99% 0.75% 1.81% 0.43% 0.59% 2.35% 1.92%
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Figure 13. Average difference in risky behavior between training and testing datasets.

To further validate the effectiveness of the proposed model, the expert scoring method
was applied in this paper as the ground truth to evaluate the model. Videos of the identified
risky driving behavior were extracted for the experts to evaluate the risk. Table 6 describes
the accuracy of the identified risky maneuvers with expert scoring. It indicates that the
average accuracy of the boxplot-based and distribution-based methods is, respectively,
90% and 85%.

Table 6. Accuracy of identified risky maneuvers with expert scoring.

Method
Unstable Driving Serpentine Driving Car-Following

Cars Trucks Cars Trucks Cars Trucks

Boxplot-based method 98% 88% 92% 90% 91% 83%
Distribution-based method 92% 82% 90% 81% 87% 80%

The boxplot-based and distribution-based methods are both statistical methods to
detect risky driving maneuvers. The boxplot-based method is a commonly used method to
detect abnormal data, without the need for experienced knowledge, while the distribution-
based method relies highly on the data collection amount. The threshold value based on
the distribution will not be efficient if there are not enough driving samples. Therefore, the
selection of the threshold extraction method depends on the data quantity.

5. Conclusions

A risky driving behavior recognition model is proposed based on the trajectory data
extracted from videos. Three types of risky driving behavior, i.e., speed-unstable driving,
serpentine driving, and risky car-following driving, are evaluated and recognized in
this paper.

(1) An MOR-based risk evaluation method is proposed to establish an MOR formulation
with driving features and safety surrogates for risky driving maneuvers. Two methods
(distribution-based method and boxplot-based method) are applied in the MOR
distribution to extract the threshold value to recognize risky maneuvers. The model
is verified with a comparison of risky driving maneuvers proportion in the training
and testing datasets.

(1) The proposed method can be applied to the real-time detection of risky driving
behavior in video surveillance systems and provide support for the design and
optimization of traffic control strategies.

Despite the merits of this study, we have to acknowledge some limitations that need
to be addressed in future research. Firstly, we only concentrated on three types of risky
driving behavior, which can be extended into more types with more trajectory information.
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Secondly, contextual factors, such as traffic flow and road type, are not taken into account.
This can be addressed with more data under different contextual environments. In the
future, more risky driving maneuvers can be studied in the recognition model with more
features extracted from the trajectory.
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