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Abstract
Coevolution occurs between viruses and their hosts. The hosts need to evolve means 
to eliminate pathogenic virus infections, and the viruses, for their own survival and 
multiplication, have to develop mechanisms to escape clearance by hosts. Hepatitis C 
virus (HCV) of Flaviviridae is a pathogen which infects human liver and causes hepatitis, 
a condition of liver inflammation. Unlike most of the other flaviviruses, HCV has an 
excellent ability to evade host immunity to establish chronic infection. The persistent 
liver infection leads to chronic hepatitis, liver cirrhosis, hepatocellular carcinoma (HCC), 
as well as extrahepatic HCV-related diseases. HCV genomic RNA only expresses 10 
proteins, many of which bear functions, in addition to those involved in HCV life cycle, for 
assisting the virus to develop its persistency. HCV core protein is a structural protein which 
encapsulates HCV genomic RNA and assembles into nucleocapsids. The core protein 
is also found to exert functions to affect host inflammation and immune responses by 
altering a variety of host pathways. This paper reviews the studies regarding the HCV core 
protein-induced alterations of host immunity and inflammatory responses, as well as the 
involvements of the HCV core protein in pro- and anti-inflammatory cytokine stimulations, 
host cellular transcription, lipid metabolism, cell apoptosis, cell proliferations, immune cell 
differentiations, oxidative stress, and hepatocyte steatosis, which leads to liver fibrosis, 
cirrhosis, and HCC. Implications of roles played by the HCV core protein in therapeutic 
resistance are also discussed.
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regions, the open reading frame of genomic RNA encodes a 
polyprotein with approximately 3000 amino acids [6]. The 
polyprotein is cleaved post-translationally by virus and host 
proteases into structural proteins and non-structural proteins. 
The primary functions of HCV proteins in virus infection, 
replication, and assembly are also indicated in Figure 1. The 
structural proteins, including core, E1, and E2, are the building 
blocks assembling into virus particles. The non-structural 
proteins, including ion channel protein p7 (NS1), NS2, 
NS3, NS4A, NS4B, NS5A, and NS5B, are responsible for 
forming virus replication systems and virus productions [6]. 
The best-known primary function of HCV core protein is to 
assemble into nucleocapsid and encapsulate the virus genomic 

Introduction

Despite the characteristic similarities of viruses within the 
genera Flaviviridae, hepatitis C virus (HCV) possess 

unique epidemiological and pathophysiological properties 
among the viruses in the family: HCV is most frequently 
transmitted via blood-to-blood contact between humans, 
while the majority of flaviviruses are vectored by mosquitos 
or ticks [1]; HCV has an exceptional ability to evade 
clearance by host immune response to develop its chronicity, 
with 60%–85% of infected patients develop into chronic 
infections [2,3], no known other flaviviruses have this high 
chronicity rate in humans [4]. The persistent liver infection 
can lead to chronic hepatitis, liver cirrhosis, and in some cases, 
hepatocellular carcinoma (HCC) [5]. HCV is an enveloped 
RNA virus containing a positive-sense, single-stranded 
genomic RNA of approximately 9600 nucleotides. The HCV 
genomic RNA and the translated proteins are schematically 
indicated in Figure 1. Sandwiched by 5’- and 3’-untranslated 
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RNA. However, additional properties of the HCV core protein 
for modulating host cell transcription, inhibition or stimulation 
of apoptosis, and suppression of host immunity have been 
documented [7-11]. These functions and properties will be 
discussed and summarized in the following sections.

Hepatitis C virus‑induced host 
inflammation

HCV infection triggers host inflammation, which can be 
acute or chronic. While acute inflammation is considered to 
play a protective role and one of the means for the host to fight 
against infections and speed up the healing process, chronic 
inflammation can cause serious problems in the host. Apart 
from the problems caused in liver, chronic liver inflammation 
is suggested to associate with heart disease, diabetes, bowel 
disease, arthritis, and cancer [12]. It has been indicated that 
broadly directed CD4+ and CD8+ T cell responses are associated 
with clearance of HCV infection [13]. However, when the host 
fails to eliminate HCV virion, the infection develops into chronic 
hepatitis. During inflammatory response in the liver, cells such 
as macrophages, dendritic cells, hepatic stellate cells, Kupffer 
cells, bile duct epithelial cells, and sinusoidal endothelial cells 
are recruited in the fight against invading pathogens [14]. 
However, the development of effective immunity to fight 
against HCV is complicated, because of the persistent changes 
in the virion genome [15]. In addition to liver inflammation, 
it is suggested that systemic inflammation can be developed 
in HCV-infected patients due to elevated pro-inflammatory 
cytokine levels and monocyte activations [16]. Thus, knowledge 
of the underlying mechanisms of HCV-induced inflammation 
and disease evolution can be a significant aid for disease 
prognosis and development of therapeutic strategies [17].

Hepatitis C virus core protein
HCV core protein, derived from N-terminal 191 amino 

acids of the polyprotein, is the only HCV protein to directly 

interact with and encapsulate HCV genomic RNA and form 
nucleocapsids. The HCV core protein consists of three 
domains: the highly cationic domain 1, with approximately 
117 amino acids, is the major domain to associate with HCV 
genomic RNA and to form nucleocapsids; the hydrophobic 
domain 2 is responsible for association with lipid droplets 
crucial for infectious virus particle productions [18]; 
the domain 3, also hydrophobic, is the endoplasmic 
reticulum (ER) anchoring domain [19]. The majority of 
HCV core protein is found to locate at the ER, mitochondria, 
and lipid droplets in cytoplasm. The interaction between 
HCV core protein and mitochondria reduces electron 
transfer complex I activity and increases reactive oxygen 
species (ROS) productions [20]. On the other hand, nuclear 
localization of the core protein has been detected and was 
found to be mediated by nuclear localization signal-like 
sequences within protein domain 1 [21]. HCV core 
protein can be secreted from HCV-infected hepatocytes 
and detected in the circulating bloodstream [22,23]. The 
roles played by the core protein in the modulations of host 
transcription and lipid metabolism, stimulation or inhibition 
of apoptosis, alterations of immune cell differentiations, 
and pro- and anti-inflammatory cytokine releases have been 
investigated [2,9-11,24], and the ability of HCV core protein 
to trigger hepatic angiogenesis was also discovered [25]. The 
core protein-induced dysfunction of components of several 
important pathways, including p53, AP-1, MAPK extracellular 
signal-regulated kinase-extra-cellular signal-regulated kinase, 
transforming growth factor β, vascular endothelial growth 
factor, Wnt/β-catenin, cyclooxygenase 2 (COX-2) and 
peroxisome proliferator-activated receptor α (PPARα), are 
suggested to be involved in the development of HCC [26-28]. 
Immune suppression and liver damage induced by HCV core 
protein were also demonstrated [29]. The effects caused by 
the HCV core protein on host immune and inflammatory 
response are discussed in the following sections.

Figure 1: Hepatitis C virus genomic RNA, the translated proteins, and protein functions. Hepatitis C virus genomic RNA consists of a long open reading frame, sandwiched 
by 5’- and 3’-untranslated regions. The encoded polyprotein by the hepatitis C virus genome is cleaved by hepatitis C virus and host proteases into structural and non-
structural proteins. The putative primary functions of the hepatitis C virus proteins are indicated in the figure
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Effects of hepatitis C virus core protein 
on apoptosis

Apoptosis is programmed cell death naturally essential 
in the development and maintenance of homeostasis in 
multicellular organisms. As viruses must utilize host 
machinery for their multiplication, apoptosis of the infected 
cells is used as an effective weapon to eliminate virus 
infections by multicellular organisms. The core protein in 
both positive and negative regulation of cell death have 
been described.  Cellular experiments indicated that HCV 
core protein induced apoptosis via casein kinase 1α-p53 
signaling [9]. The Bcl-2 family proteins are famous for their 
roles in the regulation of apoptosis [30]. Interestingly, a Bcl-2 
homology 3 (BH3) domain is identified in the core protein, 
and this domain induced apoptosis by specifically interacting 
with human myeloid cell factor 1 (Mcl-1) in virus-infected 
Huh-7 cells [31]. The core protein was found also to trigger 
apoptosis by causing ER stress and ER calcium depletion 
in replicon-expressing cells and in the liver of HCV core 
transgenic mice [32]. However, other studies suggested an 
apoptosis inhibitory role played by the core protein. The core 
protein inhibits apoptosis in HepG2 cells by inhibiting p53 
signaling through sirt1-p53-bax pathway [10] or inhibiting 
TNF-α mediated pathway through NF-κB activation [33,34]. 
The core protein was also found to inhibit Huh-7 cell 
apoptosis despite mitochondrial ROS were generated [35].  In 
addition, antiapoptotic effect of HCV core gene in Huh-7 cells 
was also found to associate with downregulation of expression 
of proapoptosis proteins caspases, cytochrome C, and p53 [36] 
and was found to promote cell proliferation by elevation of 
cellular p-Akt levels [36]. The core protein was found to be 
able to even immortalize primary human hepatocytes [37]. In 
liver, the proapoptotic properties of HCV core protein may 
cause liver damage and result in inflammation, while the role 
played by the core protein to prevent the host from apoptosis 
may aid the viral persistence and lead to the development of 
HCC. HCV also infects immune cells [38] and is suggested to 
promote apoptosis of immune cells through the Fas-signaling 
pathway [11]. HCV core protein was also found to induce 
apoptosis in mature DCs [39]. Apoptosis of the infected cells 
is a natural defense mechanism of the host to eliminate virus 
infection. Indeed, hepatocyte apoptosis can be triggered by 
HCV core protein. However, interestingly, the core protein 
also shows the ability to inhibit apoptosis and even promote 
proliferation of host cells favorable for virus survival and 
amplification. On the other hand, in the cases of immune 
cells, which are important for fighting the virus infection, 
the core protein induces their apoptosis. The proapoptotic 
properties of HCV core protein targeting immune cells might 
also contribute to impaired host immunity and lead to HCV 
infection persistency.

Pro‑ and anti‑inflammatory regulations by 
hepatitis C virus core protein

The inflammation regulations by HCV core protein are 
very complicated and still not fully understood. Both pro- and 
anti-inflammatory roles have been suggested by different 

studies. The induction of oxidative stress in hepatocyte by the 
HCV core protein was observed [40]. Microarray analysis on 
immortalized human hepatocytes suggested that the HCV core 
protein induces inflammatory cytokines through the STAT3 
signaling pathway [41], and extracellular HCV core protein 
activations of STAT3 in human monocytes, macrophages, 
and dendritic cells (DCs) were observed to related to an 
interleukin (IL)-6 pathway [22]. HCV core protein in a primate 
model was found to induce hepatic inflammation through 
stimulated expression of IL-32 via phosphoinositide 3-kinases 
pathway [42]. On the other hand, the anti-inflammatory effects 
by the HCV core protein were also evidenced. Multiple studies 
have identified that the HCV core protein suppressed IL-12 
and NO production in activated macrophages and human blood 
monocytes, thus inhibiting inflammatory responses [2,43,44]. 
IL-10 is considered as an anti-inflammatory cytokine, which 
played a central role in the production of other cytokines [45]. 
While a study claimed that the lipopolysaccharide-induced 
level of IL-10 was not upregulated by HCV core protein [44], 
other studies observed elevated level of IL-10 produced from 
HCV core protein-stimulated monocytes, cultured DCs [2,45], 
and HCV patients’ DCs [2]. Cellular inflammatory response 
can also be inhibited by the core protein in cells via inhibition 
of COX-2 expressions [46]. Acute inflammation is a mean for 
the host to defend against virus infection. Host inflammation 
can indeed be triggered by HCV core protein. On the other 
hand, the core protein is found to be able to downregulate the 
host inflammation, contributing the development of persistent 
virus infection.

Hepatitis C virus core protein and 
toll‑like receptors

Toll-like receptors (TLRs), a family of pattern recognition 
receptors, play crucial roles in the innate immune system [47]. 
They are expressed in a variety of cells and are used by the 
host defense system to sense viral structural proteins [48]. As 
mentioned previously, HCV is one of the most efficient viruses 
in developing themselves to persistent infections by means of 
escaping host immune detections and/or avoiding the attack 
from host immune responses [49]. HCV core antigen induction 
of conjunctival inflammation via TLR-mediated signaling is 
indicated [50]. Among TLRs, TLR2 is identified to be the 
primary target of HCV core protein [51], and TLR2 was found 
to sense only the core protein but not the complete enveloped 
infectious virus particles, indicating that the monomeric 
core protein is the one sensed by TLR2 [48]. HCV core 
protein-related TLRs and their downstream molecular signaling 
are schematically summarized in Figure 2. The core protein 
monomer is suggested to bind to the TLR heterodimers [49]. 
The coreceptors to TLR2 for core protein interaction are 
identified to be TLR1 and TLR6 [49,52]. Th17 cells are 
considered important in the development and progression of 
autoimmune diseases, and the activation of TLR2 by agonist 
was found to increase IL-17 production and promote Th17 
cell responses [53]. The interaction between HCV core 
protein and TLR2 of human monocytes was found to increase 
the production of pro-inflammatory IL-8 and TNF-α [51]. 
However, it was also found that stimulation of TLR2 by 
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HCV core protein can cause homotolerance effects on TLR2 
and cross-tolerance effects on TLR4 to their ligands [54], 
leading to downregulations of pro-inflammatory IL-6 and IL-8 
productions induced by TLR ligands in monocytes of infected 
patients [54]. In host immunity, the core protein is sensed 
by TLR1/2 or TLR1/6 receptors for the detection of HCV 
infection, leading to the activation of host innate immune 
responses for virus clearance. However, the core protein has 
the ability to induce homo- and cross-tolerance of TLRs, thus 
desensitizing the TLR signaling.

Hepatitis C virus core protein on immune 
cell activities and differentiations

HCV core protein is an effector to immune related 
cell differentiations. HCV core protein inhibits monocyte 
differentiation into DCs [24] and suppresses monocyte 
differentiation into both M1 and M2 macrophages through a 
TLR2/STATs signaling pathway [24]. While M1 macrophages 
produce pro-inflammatory cytokines, nitric oxide (NO) or 
ROS, phagocytize microbial pathogens, and initiate an immune 
response to eliminate virus infections, M2 macrophages, 
activated by molecules such as IL-10 or C1q, are associated 
with wound healing and tissue repair.  CD4+ and CD8+ T cells 

play important roles in clearance of virus infections [55,56]. 
HCV core protein inhibits phagocytosis ability of both M1 
and M2 macrophages and inhibits M1 macrophage-induced 
autologous and allogeneic CD4+ T cell proliferation [57]. 
The inhibition of M1 macrophage activities, CD4+ T cell 
differentiation, and CD8+ cell proliferation by the core protein 
might contribute to HCV persistence. On the other hand, the 
core protein was found to promote M2 macrophage-induced 
autologous and allogeneic CD4+ T cell proliferation [57]. 
Interaction of HCV core protein with gC1q receptor, a 
multifunctional pattern recognition protein, inhibits Th1 
differentiation of CD4+ T cells via suppression of IL-12 
production in DCs [58]. Prolonged exposure to HCV core 
protein results in the development of APCs with a limited 
ability to drive differentiation of the pro-inflammatory Th17, 
and this condition might be due to reduced TLR driven IL-6 
production [49]. Reduction of CD8+ T-cell proliferation by 
HCV core protein has also been shown in a recent study [59]. 
In transgenic mouse models, immune suppression was identified 
to correlate with diminishing of INF-γ and IL-2 production in 
T cell responses [29]. In addition to T cells, HCV core protein 
also exerts inhibitory activity on B cells. The expression of 
HCV core protein downregulates MHC class II molecules [60].

Figure 2: Hepatitis C virus core protein related TLRs and downstream pathways involved in innate immunity. Hepatitis C virus core protein is found to interact with TLR2 
and stimulate TLR2 signaling pathway. Hepatitis C virus core protein interact with TLR2 in TLR1/TLR2 and TLR2/TLR4 heterodimers. The core protein is also found 
to induce homo- and cross-tolerance effects on TLR2 and TLR4. NFκB: Nuclear factor κ B; IFN-γ: Interferon γ; APCs: Antigen-presenting cells; TGF-β: Transforming 
growth factor β; IRF: Interferon regulatory factor; IRAK: Interleukin-1 receptor-associated kinase; TRAF: TNF receptor-associated factor protein; TRAM: Translocating 
chain-associating membrane protein
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It is suggested that there is a vicious cycle of inflammation 
and insulin resistance. Linkage of between adipose tissue 
insulin resistance and liver macrophages in patients has 
been suggested [61]. Insulin resistance in adipocytes was 
found to cause production of monocyte chemoattractant 
protein 1 (MCP1), which recruits monocytes and activates 
pro-inflammatory macrophages [62]. Transition in macrophage 
polarization from an alternative M2 activation state, 
maintained by STAT6 and PPARs, to a classical M1 activation 
state, induced by transcription factors including NF-κB, and 
AP1, promotes insulin resistance in hepatocyte [63]. HCV core 
protein impairs downstream signaling of insulin and regulate 
insulin growth factor binding protein-1 expression [64], whose 
levels are correlated with non-alcoholic fatty liver disease, 
and are suggested as a marker for advanced fibrosis [65]. 
The ability of HCV core protein to induce insulin resistance 
should also trigger the insulin resistance-inflammation cycle. 
In summary, HCV core protein plays roles in inhibiting the 
activation, differentiation, as well as functions of immune 
cells, thus reduces the virus-clearance ability of host immune 
system, contributing the persistence of HCV infection.

Hepatitis C virus core protein variability 
in relation with host inflammation and 
therapy resistance

One of the important features of RNA viruses is their 
genetic variability resulting largely from the lack of 
proofreading mechanism during viral RNA replication [66]. 
HCV has currently been classified into 7 genotypes and 
67 subtypes [67]. The HCV genotypes, subtypes, and 
their major geographical distributions are summarized in 
Table 1 [67-71]. In infected patients, HCV forms a mixture 
of genetically distinct but closely related variant, the so-called 
quasispecies, duo to high viral mutation rate [66]. Different 
from other HCV proteins, the core protein is highly conserved. 
However, the differences in its sequence are associated with 
different pathogenic consequences and therapeutic outcomes 
of the infection [72]. Before the applications of direct-acting 
antiviral (DAA) drugs, such as telaprevir, boceprevir, 
simeprevir, and sofosbuvir, interferon (IFN)-α combined 
with ribavirin was used as the standard treatment for chronic 
hepatitis C [73]. IFN-α is an innate immune response 
mediator, which induced expressions of IFN-stimulated 

genes to perform non-specific antiviral effects within the 
cells [74]. In the presence of HCV core protein, inhibition 
of IFN-α-induced signaling through the JAK-STAT pathway, 
essential for establishment of the cellular antiviral state, was 
observed in the liver of transgenic mice [75]. HCV core 
protein expression in HepG2 cells was found to downregulate 
IFN-α-induced downstream antiviral genes expression [76]. 
The core protein binds to STAT1 resulting in decreased 
phosphorylated STAT1 level, leading to blockage of STAT1 
heterodimerization with STAT2, thus disrupting binding of 
IFN-stimulated gene factor-3-mediated gene transcription [77]. 
The efficacy of the IFN treatment is largely depending on 
the HCV genotype [78]. Amino acid variations in HCV core 
protein have been suggested to link to resistance to IFN 
therapy [78]. It was indicated that substitutions of amino 
acids 70 and/or 91 of core protein of genotype 1b patients 
can be acting as indicators of poorer sustained virologic 
response (SVR) to PEG-IFN-ribavirin treatment and can be 
considered risk factors for HCC development [79]. A study 
compared full-length HCV sequence from patients with or 
without HCC using a logistic regression model identified 7 
polymorphisms, including the codon for amino acid 70 in HCV 
core protein sequence, significantly associated with increased 
HCC risk [72]. In the cases of DAA treatments, different SVR 
rates of the treatments are found to associate with different 
HCV genotypes [80-83]. HCV genotype 3 seems to be more 
resistant to DAA treatments [83]. The direct roles played by 
core protein viability in DAA resistance have not yet been 
identified. Lipid metabolism has also linked to inflammation 
pathways [84]. HCV genotypes are associated with different 
degrees of hepatic steatosis. Transcriptional alterations of 
host genes involved in lipid metabolism in HCV genotype 1 
and genotype 3 are linked to inflammation in HCV-infected 
patients [85]. The relationships between HCV core protein 
and host lipid metabolism have been documented [86], 
and the HCV core protein–lipid droplet interaction is 
believed to play a role in virus-induced steatosis [87]. Liver 
steatosis is common in patients with chronic HCV infection. 
Studies expressed HCV core protein from patients with no 
liver steatosis (genotype 1b, 2a, 3h, 4h, and 5a) and with 
severe liver steatosis (genotype 3a, core protein Y164F) in 
hepatocytes found that the genotype 3a core protein causes 
the highest level of cellular lipid accumulation, as compared 
to those induced by other genotypes [87,88]. Although the 

Table 1: Hepatitis C virus genotypes, subtypes, and their geographical distributions
Genotypes Subtypes Major distributions
1 a, b, c, e, g, h, i The most prevalent worldwide and has a widespread geographic distribution, including 

Europe, North America, Central Africa, Oriental countries, such as Japan and Taiwan, 
representing approximately 46% of all HCV infections

2 a, b, c, d, e, i, j, k, m, q, r Western Africa, Mediterranean countries, oriental countries
3 a, b, g, h, i, k The second most prevalent genotype accounting for approximately 30% of global infections. 

Major distribution: South Asia, Southeast Asia, Australasia, and some countries in Europe
4 a, b, c, d, f, g, k, i, m, n, o, p, q, r, t, v, w Central and Eastern Africa, North Africa, the Middle East
5 a South Africa
6 a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, 

r, s, t, u, v, w, xa
Southeast Asia (including Hong Kong, Vietnam), Australia

7 a Central Africa
HCV: Hepatitis C virus
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new generation of DAAs has increased the SVR rate to more 
than 95%, between 2%–5% of the infected patients are not 
responding to the treatments [89,90]. The DAA therapies may 
also cause selection of drug-resistant virus strain. In addition, 
as the HCV infections are very often mild-symptomatic or 
asymptomatic, approximately 80% of the infected individuals 
are unaware of their infection [91]; it is impossible to eliminate 
the pathogenic virus just by applying therapeutic treatments. 
The best way to eliminate infectious virus in human population 
is vaccination. However, because of the fact that HCV is a 
high variant virus, it is difficult to develop vaccines against 
it. The core protein is highly conserved among different HCV 
strains; as a result, it was once considered to be a candidate 
for vaccine developments [92]. Nevertheless, until now, the 
development of core protein-based vaccine has not yet been 
successful. The development and application of HCV core 
protein-based vaccines still need to consider the ability of 
the core protein to interfere with innate and adaptive antiviral 
immunity, thus reducing the efficacy of the vaccination, and 
the unwanted effects induced by the core protein such as those 
leading to oncogenesis in HCC.

The highly mutated nature of RNA viruses results in a 
fast evolution rate of HCV. Resistance to currently applied 

antivirals might soon be developed in HCV. Compared to other 
HCV proteins, HCV core protein is highly conserved [93], 
thus can be considered as a target for antiviral drug 
developments. Inhibitory effects of designed and optimized 
peptides, small molecules, and aptamers on HCV core protein 
dimerization, crucial for nucleocapsid assembly, and virus 
production have been investigated for their possible antiviral 
applications [94-96]. On the other hand, highly conserved virus 
proteins are normally considered ideal candidates for vaccine 
developments. However, as reviewed by this study, although 
HCV core protein is highly conserved, the core protein exerts 
effects on immune suppression and direct/indirect induction 
of HCC; therefore, it might not be a great choice for vaccine 
developments, unless modifications are made for elimination 
of its detrimental effects.

Conclusion
Alterations in host immunity and chronic inflammation are 

linked to the development of persistent virus infection and 
HCC. The related pathways in which the HCV core protein is 
involved are graphically summarized in Figure 3. As illustrated 
in Figure 3, the nucleocapsid forming HCV core protein exerts 
effects on host cell apoptosis, pro- and anti-inflammatory 

Figure 3: Roles played by hepatitis C virus core protein in relation with host inflammation and the evolution from hepatitis C virus infection in liver to hepatocellular 
carcinoma. Repeated injury of liver tissue and chronic inflammation resulted from chronic hepatitis C, accompanied with liver tissue repair process leads to liver fibrosis 
that might further results in cirrhosis and hepatocellular carcinoma. The hepatitis C virus core protein plays multiple rules in the process. The core protein is suggested to 
trigger host inflammation by interaction with pro-inflammatory cell surface receptors, induction of release of pro- and anti-inflammatory cytokines, as well as induction 
of oxidative stress. The core protein is also identified to involve in promoting the persistent infection by inhibiting host apoptosis, promoting host cell proliferation, and 
suppression of immune cell differentiations and functions. The core protein is also able to alter the lipid metabolism of the host and induce steatosis which also contribute 
to the development of liver fibrosis
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regulations, alterations of TLR signaling, and immune cell 
activations and differentiations. These effects play crucial 
roles in the progression from the persistent infection, chronic 
inflammation, fibrosis, and cirrhosis to the HCC. According to 
the literature review in this study, it seems that the core protein 
may exhibit opposite/contrary effects on the host immune 
and inflammatory responses (stimulative and suppressive 
effects). We suggest that these opposite effects might be 
resulted from strategies adopted by the host or the virus. The 
pro-inflammatory effects and immunity stimulated by the core 
protein might be due to the ability of the host to sense the 
structural proteins of invading virus and initiate the immune 
and inflammatory responses aiming for virus elimination and 
clearance. On the other hand, the anti-inflammatory effects 
and immunosuppression induced by the core protein are 
possibly coming from the results of virus evolved to resist and 
escape the host virus clearance mechanisms for virus survival 
and multiplication. The core protein is able to stimulate 
anti-inflammatory effects by altering expression of cellular 
proteins, suppressing pro-inflammatory cytokine productions, 
and increasing anti-inflammatory cytokine productions. To 
maintain efficient virus multiplication, it is important to 
keep the host cell alive. The core protein inhibits apoptosis, 
boots proliferation, and even promote immortalization of 
hepatocytes, which might link to HCC development. For the 
virus to evade the attack from host immunity, the core protein 
can also alter immune cell differentiations and promote the 
apoptosis of immune cells. HCV core protein is able to directly 
interact with cellular machinery involved in lipid metabolism 
and is suspected to play a role in liver steatosis [97,98], 
a contributor of HCC development. Owning to the high 
mutation nature of single-stranded RNA virus, HCV presents a 
high degree of genetic variability. The degree of effectiveness 
of therapeutic treatments for HCV infection is correlate to the 
genetic strains of HCV treated. However, the highly conserved 
nature of HCV core protein makes it a promising target for 
antiviral drug developments [94-96]. As the core protein is an 
effector of host inflammatory and immunological responses, 
the detailed knowledge to HCV core protein regarding these 
issues should provide crucial considerations for future design 
of novel therapeutic strategies and development of effective 
HCV vaccines.
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