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Abstract: A series of novel fluorescent 4H-1-benzopyrans was designed and developed as near-
infrared fluorescent molecules with a compact donor–acceptor-donor architecture. Spectral intensity
of the fluorescent molecules M-1, M-2, M-3 varied significantly with the increasing polarities of
solvents, where M-3 showed high viscosity sensitivity in glycerol-ethanol system with a 3-fold
increase in emission intensity. Increasing concentrations of compound M-3 to 5% BSA in PBS
elicited a 4-fold increase in fluorescence intensity, exhibiting a superior environmental sensitivity.
Furthermore, the in vitro cellular uptake behavior and CLSM assay of cancer cell lines demonstrated
that M-3 could easily enter the cell nucleus and bind to proteins with low toxicity. Therefore, the
synthesized near-infrared fluorescent molecules could provide a new direction for the development
of optical imaging probes and potential further drugs.

Keywords: dye; fluorescence intensity; environmental sensitivity; near-infrared fluorescent molecules;
potential probe

1. Introduction

Since British physicist Joseph John Thomson discovered free electrons from cathode
rays, the application of electrons has brought earth-shaking changes to human life [1].
Especially in the booming period of chemistry and industry, electrons have played an
indelible role in advancing the development of chemical materials [2–4]. Precisely due to
the unique characteristics of electrons, building the construction of D-A-D conjugated light-
emitting structures has propelled the advancement of fluorescent small molecules. When
it comes to D-A-D or D-A structure, electrons transition freely in the entire conjugation
interval, and as the effective conjugation area expands, the energy band gap decreases,
which would change the fluorescence characteristics of target compounds. Therefore,
through the modification of the conjugated skeleton or terminal substituents, different
application requirements of fluorescent molecules could be met [5]. Currently, D-A or D-A-
D fluorescent molecules including rhodamine, fluorescein and BODIPY [6–11] have several
main applications, such as detecting diseases (cancers and Alzheimer) [12,13], imaging
live-cell fluorescence [14], and being fluorescent molecular switches [15]. In this work, we
laid focus on the coumarins [16], and explored the changes in the fluorescence properties of
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a series of compounds when the electron donor and acceptor structure are changed. When
it comes to luminescence mechanism, there are mechanical luminescence (including that
triboluminescence and mechanical force is sufficient to break the material bonds and cause
fractures, which called fractoluminescence [17]) or photoluminescence [18].

Although the original coumarin fluorescent molecule usually presents a low two-photon
absorption cross section [19], the absorption can be increased with the expansion of the
conjugate system. Meanwhile, the introduction of electron-donating groups (EDG) or electron-
withdrawing groups (EWG) would bring about large two-photon absorption (TPA) in the near-
infrared reflectance (NIR) region of fluorescent molecules (Figure 1). This structure will show
potential applications in biology, especially in photoacoustic imaging or ion detecting [20].
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Figure 1. Design of near-infrared small molecule M-3.

In this work, dimethyl group was introduced at 1-position of the coumarin core, and
p-π hyperconjugation expanded with the increase of electron donating part. In addition,
the introduction of vinyl chain [21] at position 3 could effectively expand the conjugation
area, and the para-substituted benzene ring can also bring electron-withdrawing groups.
Under the guidance of the above ideas, a series of fluorescent molecules M-1, M-2, M-3
were rationally designed, synthesized (Scheme 1) and modified with molecular weight less
than 400, realizing the leap from far infrared to infrared region [22]. It is worth mentioning
that this series of compounds exhibited excellent solvent sensitivity [23,24] and superior
quantum yield [25,26] in a hydrophobic environment. When applied to live-cell imaging,
these fluorescent molecules could easily reach the nucleus, suggesting the huge potential
applications for early diagnoses.
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2. Results
2.1. Chemical Properties Experiment
2.1.1. Spectral Properties of Compound M Series

To investigate the spectroscopic properties of compounds M, we calculated their
π−π* transitions using time-dependent density functional theory [27]. According to the
geometrical parameters of the optimized ground state of the 3 compounds, the S1 state of
all compounds belongs to the charge transfer singlet state 1CT, which is mainly formed
by the transition from HOMO to LUMO. For the D-π-A system, the electron cloud of
HOMO was mainly delocalized on donor part and the molecular core, while LUMO is
completely delocalized on the acceptor plane. The HOMO and LUMO electron clouds of
checked the three compounds are completely separated, and the numerical difference is
tiny; also, the degree of separation of the electron clouds between HOMO and LUMO is
greater than that of existing fluorescent small molecules. The overlap of electron cloud
between HOMO and LUMO is mainly determined by the steric hindrance of the atoms
connected between the donor part, molecular core and acceptor unit [27]. The greater the
steric hindrance is, the greater distortion degree is between the units, and the same as
conjugated π bond. The smaller the angle became, the greater the degree of separation
of the front-line orbital electron cloud is [28,29]. It can be seen from Figure 2A,B that the
D-π-A M series compounds basing on the coumarin core with a specific steric hindrance
(four-membered, five-membered, six-membered heterocyclic ring containing N), where
the electron clouds of these compounds’ HOMO and LUMO (Table S8) can be effectively
separated. This structural feature is conducive to small ∆Est [30]. Therefore, these three
compounds have great potential to create more near-infrared fluorescent molecules probe.
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The spectral properties of the M series were observed in various solvents. According
to UV absorption spectrum data (Table 1), the targeted compounds have tiny different max
absorption wavelengths. The main absorption peak of the synthesized compounds ranks
from 480 nm to 520 nm. With the distinguishment in donor part of the whole p-conjugated
bridge of D-A-D architecture, there is a wider Stokes Shift with the increasing rigidity
of nitrogen-containing cycloalkane. It was rationally predicted that the rigidness has an
impact on the rotation of carbon-carbon single bond and fixed conjugate delocalization
range, leading to strong fluorescence characteristics. Therefore, M-3 with the most excellent
fluorescence characteristics is selected from the three compounds as the model molecule
for the following discussion.

Table 1. M-3 spectrum data.

Solvent λa
b (nm) λa

c (nm) 4λ (nm) QEin AF

EA 492 658 166 0.0411 0.3750
DCM 501 668 167 0.0528 0.2486
EtOH 500 693 193 0.0457 0.5244
MeOH 497 696 199 0.0171 0.5827
MeCN 495 698 203 0.0306 0.5956
DMSO 518 719 201 0.0516 0.4858
H2O 479 784 305 N N
PBS 487 774 287 N N

a maximum b absorption c emission.

The quantum yield test in this experiment obtains QEin (Internal Quantum Efficiency)
through an integrating sphere device, The AF value is a calibration parameter of the
instrument and does not affect the comparison of internal quantum yield.

The optical properties of compound M-3 were observed in several solvents with
diverse polarities. The detailed wavelength of absorption, excitation, and emission maxima
and the Stokes shift of M-3 in different solvents were shown in Table 1. M-3 showed the
highest optical intensity in DMSO. Moreover, with the increasing polarity of solvents, the
optical intensity of M-3 enhanced [31]. Expectedly, M-3 showed no optical ability in PBS
and H2O, suggesting a greater stabilizing effect on the excited state than on the ground
state [32].

The maxima absorption wavelength in PBS is at 486 nm, while the maxima in the
other solvents were found in the range of wavelengths 490–508 nm (Figure 3A and Table 1).
Stokes shift of M-3 are in the range of wavelengths 275–320 nm, which is a typical Donor-
Acceptor-Donor (D-A-D) fluorescent molecule. If the solvents are more polar than acetone,
the existence of intramolecular charge transfer state got through nonradiative deactivation,
causing the quench of fluorescent emission of M-3 (Figure 3B). M-3 didn’t fully overcome
aggregation quenching in water and PBS, since fluorescence emission intensity was much
weaker than the emission intensity in organic solvents. Though quenching wasn’t com-
pletely overcame, but that did not affect the entry of M-3 into the cell to bind to proteins in
further tests.

Molecules 2021, 26, x FOR PEER REVIEW 4 of 12 
 

 

The spectral properties of the M series were observed in various solvents. According 

to UV absorption spectrum data (Table 1), the targeted compounds have tiny different 

max absorption wavelengths. The main absorption peak of the synthesized compounds 

ranks from 480 nm to 520 nm. With the distinguishment in donor part of the whole p-

conjugated bridge of D-A-D architecture, there is a wider Stokes Shift with the increasing 

rigidity of nitrogen-containing cycloalkane. It was rationally predicted that the rigidness 

has an impact on the rotation of carbon-carbon single bond and fixed conjugate delocali-

zation range, leading to strong fluorescence characteristics. Therefore, M-3 with the most 

excellent fluorescence characteristics is selected from the three compounds as the model 

molecule for the following discussion. 

The quantum yield test in this experiment obtains QEin (Internal Quantum Efficiency) 

through an integrating sphere device, The AF value is a calibration parameter of the in-

strument and does not affect the comparison of internal quantum yield. 

Table 1. M-3 spectrum data. 

Solvent λ
a 

b (nm) λ
a 

c (nm) △λ(nm) QEin AF 

EA 492 658 166 0.0411 0.3750 

DCM 501 668 167 0.0528 0.2486 

EtOH 500 693 193 0.0457 0.5244 

MeOH 497 696 199 0.0171 0.5827 

MeCN 495 698 203 0.0306 0.5956 

DMSO 518 719 201 0.0516 0.4858 

H2O 479 784 305 N N 

PBS 487 774 287 N N 
a maximum b absorption c emission. 

The optical properties of compound M-3 were observed in several solvents with di-

verse polarities. The detailed wavelength of absorption, excitation, and emission maxima 

and the Stokes shift of M-3 in different solvents were shown in Table 1. M-3 showed the 

highest optical intensity in DMSO. Moreover, with the increasing polarity of solvents, the 

optical intensity of M-3 enhanced [31]. Expectedly, M-3 showed no optical ability in PBS 

and H2O, suggesting a greater stabilizing effect on the excited state than on the ground 

state [32]. 

The maxima absorption wavelength in PBS is at 486 nm, while the maxima in the 

other solvents were found in the range of wavelengths 490–508 nm (Figure 3A and Table 

1). Stokes shift of M-3 are in the range of wavelengths 275–320 nm, which is a typical 

Donor-Acceptor-Donor (D-A-D) fluorescent molecule. If the solvents are more polar than 

acetone, the existence of intramolecular charge transfer state got through nonradiative 

deactivation, causing the quench of fluorescent emission of M-3 (Figure 3B). M-3 didn’t 

fully overcome aggregation quenching in water and PBS, since fluorescence emission in-

tensity was much weaker than the emission intensity in organic solvents. Though quench-

ing wasn’t completely overcame, but that did not affect the entry of M-3 into the cell to 

bind to proteins in further tests. 

 

Figure 3. (A) UV absorption spectrum of 50 µM M-3 in different solvents; (B) Fluorescence emission
spectrum of M-3 in different solvents.



Molecules 2021, 26, 6986 5 of 11

2.1.2. Viscosity Sensitivity Studies of M-3

Figure 4 showed the emission behavior of M-3 at eleven different viscosities. In
the experiment, PEG-400 was used as a viscous solvent, and the concentration of PEG-
400 ranges from 0% to 100%, divided into gradient concentrations. PEG-400 was mixed
with ethanol in proportion to determine the corresponding emission spectrum of M-3. The
concentration of M-3 maintained below 50 nM in order to reduce the possibility of hydrogen
bonding, aggregation and self-quenching [33]. As the concentration of PEG-400 increased,
the increase in fluorescence can be clearly observed (Figure 4A). The spectrum results in
Figure 4 showed that the fluorescence intensity of M-3 had increased by approximately
2 times, implying its viscosity sensitivity. The UV spectroscopy and fluorescence emission
spectra data of M-2 and M-3 in various solvents were showed in Figures S13 and S14 and
Tables S1 and S2 for comparison and reference It was known that the polarity of the
solvent affects the emission intensity of the emission intensity of the charge transfer class
of molecules. Therefore, the effects of increased polarity of protons and polar solvents
(such as EtOH and PEG-400) need should to be considered [34]. Also, the luminescence
mechanism of M-3 was known as a single bond rotation as well as delocalization of π
electrons in the conjugate region. Herein, PEG-400 played a great role in increasing the
viscosity of the medium to fix the rotation strength, so that electrons applied activities in a
relatively regular space.
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2.1.3. BSA Binding Affinity of M-3

According to the previous viscosity sensitivity studies, data showed M-3 can penetrate
the cell membrane inside the cell, and the binding affinity of M-3 in bovine serum albumin
was further validated in order to show the efficient binding to the protein after entering
the cell. BSA was dissolved in PBS to prepare 3% BSA solution, and M-3 was dissolved in
DMSO to prepare a 10 mM mother liquor. After calculating the equivalent, the M-3 mother
liquor was added to BSA solution to prepare a gradient concentration of BSA+M-3 mixed
solution. It is worth mentioning that after full mixing each time, the mixed solution needed
to be left still at room temperature for 20–40 min, and finally the fluorescence absorption-
emission spectrum measurements were performed. After mixing with BSA, M-3 bound to
the protein and the molecular structure was fixed. Since there was gaps between molecules,
they no longer gathered together. Moreover, due to single bond rotation decreased and
the electronic transition area tended to be fixed, there were stable fluorescence emission
wavelength measured. With the increasing concentration of M-3, fluorescence intensity
in BSA was caught a linear increase and a mild blue shift was observed in the emission
wavelength (Figure 4B). The fluorescence emission intensity of the 100 nM M-3 group
was over 4-fold stronger than that of the control group, suggesting that M-3 showed
significant environmentally sensitivity in living cells, which led to a solid basis for further
biological evaluations.
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2.1.4. Fluorescence Lifetime Measurements of M-3

Related fluorescent molecule properties are mainly governed by the excited state
bond twisting or rotation, leading to non-radiative decay from the excited state back to the
ground state.

First, as shown in Figure 5A, fluorescence decays of M-3 in H2O, PBS, MeCN, MeOH,
EtOH, EA, and DCM were measured. An increase in the fluorescence lifetime was observed
from 0.2 ns to 0.9 ns (Table S5) with the increase of solvent polarity. It could be explained
by the stabilization of the TICT state due to strong solvation in a more polar medium,
which leads to an increase in lifetime and internal quantum efficiency (Table 1 and S5). The
fluorescence decay data of M-1 and M-2 in different solvent were showed in Figure S15
and Tables S3 and S4. In addition, due to the hydrogen bond in water and alcohol [35],
it will excite multiple vibrational quanta to reduce the fluorescence lifetime, leading to
the relatively shorter value in H2O and PBS. Moreover, higher solvation in polar solvents
especially the existing of hydrogen bonding in water and alcohol results in the effective
transformation of excitation energy into multiple vibrational quanta, which in contrast
would decrease the values of the fluorescence time.
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M-3 in different viscosity conditions; (C) The fluorescence decays of M-3 in BSA solution.

Viscous solvents are used to hinder the rotation of molecules, to block the TICT state
and the lifetime of M-3 was proved to increase from 0.6 ns at 0% PEG400 to 1.4 ns at 100%
PEG400, indicating the viscosity sensitivity of M-3 (Figure 5B and Table S7).

We also studied the fluorescence decay of the compound M-3 in the presence of
3% BSA (Figure 5C), comparing with the decay behavior of M-1, M-2 (Table S6). The
existence of BSA increased the fluorescence lifetime five times compared with organic
solvents. This obvious enhancement is caused by the affinity binding of the compound M-3
to the hydrophobic pocket of the protein. Due to the addition of BSA, small molecule
M-3 is difficult to aggregate after binding proteins, resulting in emission efficiency and
enhancement of fluorescence lifetime.

2.2. Brief Biological Evaluation

HSC cell, known as healthy human liver stellate cell, is used here as the target of
cytotoxicity tests. (Figure 6) HSC cells were treated with different concentrations of M-3,
ranking from 10 to 100 M. Results of CCK-8 assay illustrated that all showed high cell
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viability over 92%, which indicated that M-3 has low toxicity in healthy cells, indicating a
great potential to create future fluorescent probes.
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chart of the cytotoxicity in HSC cells.

Based on the results discussed above, we evaluated that the tumor bioimaging capa-
bility of M-3 in DU-145, HT-29, and SJSA-1 cell lines through a single-photon laser confocal
microscope. Cells with proper densities were incubated with 50 µM of M-3 at 37 ◦C under
5% CO2 for 24 h. As shown in Figure 7, all groups were observed to have strong red
fluorescence in the cytoplasm, suggesting the tumor selective bioimaging ability.
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Figure 7. In vitro cellular uptake of M-3 in three cancer cell lines and one normal cell line. Cells were
incubated with M-3 at a concentration of 1.0 µM for 12 h.

To further confirm the subcellular distribution of M-3, after uptake into tumor cells,
DAPI was used, which is known to stain intact nuclei selectively and strongly. The sub-
cellular distribution behavior of M-3 in three cells was measured by CLSM. As shown in
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Figure 7, strong red and blue fluorescence was observed in the nuclei, obviously demon-
strating that M-3 was mostly located in the nuclei. In short, all the results demonstrated
the effective cellular uptake of M-3.

3. Discussion

In summary, a series of small fluorescent molecules based on 4H-1-benzopyran core
was rationally designed and synthesized. Among them, M-3 shows the best fluorescent
characteristics. M-3 exhibited long wavelength, strong red-emission, and highly efficient
optical performance, due to the p···π and CH···N hyperconjugation effect [36]. Besides,
M-3 exhibited typical properties of molecular rotors with high viscosity sensitivity in a
glycerol-ethanol system and showed high environmental sensitivity [37,38] in different
polar solvents with a certain degree of polarity dependence. M-3 also possessed high
environmental sensitivity in that the addition of gradient concentrations of BSA in PBS
and elicited a significant 4-fold increase in fluorescence intensity. Fluorescence lifetime
measurements further confirmed the viscosity and BSA sensitivity properties. In addition,
M-3 showed obvious cellular uptake behavior in the three tumor cell lines, and it could
smoothly enter the nucleus. Also, experimental data confirmed the possibility of using M-3
in tumor imaging. Above all, all these results elucidate that M-3 could be used for imaging
of the tumor micro-environment and the detection of cancer lesions, which could also
be conjugated to different high-affinity ligands for investigating various in vivo process.
Furthermore, the benzene ring of the mother nucleus in the structure of M-3 could be used
for structural modification; if it was connected to a specific target head, it was expected to
become a potential near-infrared probe.

4. Materials and Methods
4.1. Experimental Material

Bovine serum albumin (BSA) and PEG400 were obtained from Shanghai Macklin Bio-
chemical Co., Ltd. (Shanghai, China). The other reagents used were all spectroscopic grade.
UV–visible (UV–Vis) absorption spectra and emission spectra and fluorescence spectra
were determined at room temperature (22–25 ◦C) at concentrations around 50 µM with
SHIMADZU UV-3600 Plus Spectrophotometer (Kyoto, Japan) and Edinburgh Instruments
FLS980 fluorescence spectrometer Spectrophotometer (Shanghai, China) with slit widths
routinely set at 5 nm respectively. The quantum yield test in this experiment obtains QEin
data through an integrating sphere device, specifically an absolute quantum efficiency test
integrating sphere. The test sample cuvette is placed in the center of the integrating sphere,
and a beam of excitation light is used to directly illuminate the sample. The stimulated light
emitted by the sample is received by the integrating sphere and transmitted to the optical
measuring device to obtain the absolute quantum efficiency test result. The instrument
was SHIMADZU UV-3600 Plus Spectrophotometer and Edinburgh Instruments FLS980
fluorescence spectrometer and integrating sphere device. The AF value is a calibration
parameter of the instrument and does not affect the comparison of internal quantum yield.
Fluorescence lifetime was detected on A1 fluorescence lifetime microscope system (Nikon,
Tokyo, Japan). High performance liquid chromatography (HPLC) analysis was performed
at room temperature using Nexera UHPLC LC-30A (Shimadzu, Kyoto, Japan). All images
were mounted and observed with a LEICA TCS SP8 Confocal Microscope System Spec-
trophotometer (Weztlar, Germany). NMR spectra were recorded on a Bruker DRX-400 MHz
spectrometer Spectrophotometer (Zurich, Switzerland). Chemical shifts were reported in
ppm and coupling constants (J) were reported in Hz. High-resolution mass spectra (HRMS)
were performed on an electron spray injection (ESI) Thermo Fisher Scientific LTQ FTICR
mass spectrometer.

All calculations were performed using Gaussian 16 software Spectrophotometer
(Wallingford, CT, USA). B3LYP functional, 6-31G(d,p) basis set, and IEFPCM solvent
model were used to optimize the molecular structure and calculating properties in different
solvent. TD-B3LYP were used to calculate the excitation energy and optimize the structure
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of the first excited state. For M-1, M-2 and M-3, other functionals such as APFD, PBE1PBE,
M06-2X, and wB97XD were also used to study the influence of functional [39].

4.2. Synthetic Procedures for Compounds M-2 Compounds

General procedures for the preparation of compound 2. NaH (60%, 5 g, 125 mmol,
5.0 equiv.) was dissolved in 40 mL tetrahydrofuran at 0 ◦C. After the mixture being stirred
for 10 min, 1-(2-hydroxyphenyl)ethanone, (3.07 mL, 25 mmol, 1.0 equiv.) and ethyl acetate
(7.4 mL, 75 mmol, 2.5 equiv.) were generally added in the above mixture, and then was
15 mL tetrahydrofura. The whole mixture was heated under reflux (65 ◦C) for 8 h. The
mixture was cooled down to room temperature and 4M HCl was added dropwise until
pH = 6–7. After well stirred, the mixture was extracted with ethyl acetate (3 × 85 mL). The
extracted organic layer was then dried over Na2SO4, filtrated, and concentrated to dryness.
The crude product was purified by column chromatography on silica gel (petroleum ether:
ethyl acetate = 10: 1 to 8: 1) to give compound 2 as a cream-colored solid (3.1 g, 72%).

General procedures for the preparation of compound 3. Compound 2 (1.5 g, 8.42 mmol,
1.0 equiv.) was dissolved in acetic acid (18 mL). After the mixture being stirred for 10 min,
98% H2SO4 (0.2 mL, 0.1 eq.) was gently added to the above solution. The mixture was
heated under 85 ◦C for 45 min and poured into 120 mL ice water. Saturated sodium hydrox-
ide solution was then added dropwise into the water solution until pH = 6–7. After well
stirred, the mixture was extracted with ethyl acetate (3 × 90 mL). The extracted organic
layer was washed by saturated NaCl solution (65 mL), then dried over Na2SO4, filtrated,
and concentrated to dryness. The crude product was purified by column chromatography
on silica gel (petroleum ether: ethyl acetate = 5:1) to collect compound 3 as white solid
(1.1 g, 83%).

General procedures for the preparation of compound 4. Compound 3 (1 g, 6 mmol,
1.0 equiv.) was dissolved in 15 mL acetic anhydride and stirred for 15 min. Propanedinitrile
(0.59 g, 9 mmol, 1.5 eq.) were generally added in the mentioned solution. The reaction
mixture was heated under reflux (110 ◦C) for 16 h. Then 1.5 mL water was poured into
the cooled mixture and the mixed solution was further heated for 40 min. The reaction
mixture was cooled to room temperature and filtered. The solution was concentrated and
the crude product was purified by column chromatography on silica gel (petroleum ether:
dichloromethane = 5:1) to collect compound 4 as mild yellow solid (0.77 g, 62%).

General procedures for the preparation of compound M-1, M-2, and M-3. Compound 4
(0.2 g, 0.96 mmol, 1.0 equiv.) was dissolved in 10 mL methylbenzene, and then 0.5 mL of
piperidine and 0.5 mL of acetic acid were successively added. The well-mixed solution
was heated under reflux (90 ◦C) for 12 h. The reaction mixture was cooled down to room
temperature and filtrated. M-1 was collected as red solid (0.15 g, 42%) after purified by column
chromatography on silica gel (petroleum ether: ethyl acetate = 3: 1 to 1: 1); M-2 was collected
as purple solid (0.14 g, 40%) after purified by column chromatography on silica gel (petroleum
ether: ethyl acetate = 2:1); M-3 was collected as dark red solid (0.12 g, 36%) after purified by
column chromatography on silica gel (petroleum ether: ethyl acetate =2:1). NMR spectra for
M series was showed in Figures S1–S6; The HR-MS and HPLC spectrum for M series was
showed in Figures S7–S12.

4.3. Cell Culture

Human healthy liver stellate cells (HSC), human osteosarcoma cells SJSA-1 cells, hu-
man colorectal adenocarcinoma HT-29 cells and human prostate cancer DU-145 cells were
purchased from the cell bank of the Chinese Academy of Sciences (Shanghai, China). HSC
cells and DU-145 cells were cultured in RPMI-1640 media; SJSA-1 cells were cultured in
DMEM media; HT-29 cells were cultured in McCoy’s 5A medium. All media were sup-
plemented with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin/streptomycin.
Cells were incubated in a humid atmosphere of 5% CO2 at 37 ◦C. The HSC cell line and
DU-145 cell line were obtained from Dr. Yeying Wang. The SJSA-1 cell line and HT-29 cell
line were provided by lab of Dr. Suzheng Dong.
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Supplementary Materials: The following are available online. Figure S1: 1H NMR (400 MHz) of M-1
in CDCl3, Figure S2: 13C NMR (400 MHz) of M-1 in CDCl3, Figure S3: 1H NMR (400 MHz) of M-2 in
CDCl3, Figure S4: 13C NMR (400 MHz) of M-2 in CDCl3, Figure S5: 1H NMR (400 MHz) of M-3 in
CDCl3, Figure S6: 13C NMR (400 MHz) of M-3 in CDCl3, Figure S7: The HR-MS spectrum of M-1,
Figure S8: The HR-MS spectrum of M-2, Figure S9: The HR-MS spectrum of M-3, Figure S10: The
HPLC spectrum of M-1 under 254 nm and 485 nm, Figure S11: The HPLC spectrum of M-2 under
254 nm and 495 nm, Figure S12: The HPLC spectrum of M-3 under 254 nm and 500 nm, Figure S13:
UV absorption spectrum of 50uM M-1 and M-2 in different solvent, Figure S14: Fluorescence emission
spectrum of 50 uM M-1 and M-2 in different solvent, Figure S15: The fluorescence decays of M-1 and
M-2 in different solvent, Table S1: M-1 spectrum data, Table S2: M-2 spectrum data, Table S3: M-1
average lifetime in different solvents, Table S4: M-2 average lifetime in different solvents, Table S5:
M-3 average lifetime in different solvents, Table S6: M-1~3 average lifetime in BSA, Table S7: M-3
average lifetime in PEG. Table S8: The xyz coordinates of the optimized geometry at B3LYP/6-
31g(d,p)-IEFPCM(water) level of all molecules in both ground (GS) and first excited states (ES).
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