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Abstract: Causality analysis is an important problem lying at the heart of science, and is of particular
importance in data science and machine learning. An endeavor during the past 16 years viewing
causality as a real physical notion so as to formulate it from first principles, however, seems to
have gone unnoticed. This study introduces to the community this line of work, with a long-due
generalization of the information flow-based bivariate time series causal inference to multivariate
series, based on the recent advance in theoretical development. The resulting formula is transparent,
and can be implemented as a computationally very efficient algorithm for application. It can be
normalized and tested for statistical significance. Different from the previous work along this line
where only information flows are estimated, here an algorithm is also implemented to quantify the
influence of a unit to itself. While this forms a challenge in some causal inferences, here it comes
naturally, and hence the identification of self-loops in a causal graph is fulfilled automatically as the
causalities along edges are inferred. To demonstrate the power of the approach, presented here are
two applications in extreme situations. The first is a network of multivariate processes buried in
heavy noises (with the noise-to-signal ratio exceeding 100), and the second a network with nearly
synchronized chaotic oscillators. In both graphs, confounding processes exist. While it seems to be a
challenge to reconstruct from given series these causal graphs, an easy application of the algorithm
immediately reveals the desideratum. Particularly, the confounding processes have been accurately
differentiated. Considering the surge of interest in the community, this study is very timely.

Keywords: causal graph reconstruction; information flow; time series; synchronization

1. Introduction

Recent years have seen a surge of interest in causality analysis. The main thrust is
the recognition of its increasing importance in machine learning and artificial intelligence,
a milestone being the connection of the principle of independent causal mechanisms to
semi-supervised learning by Schölkopf et al. [1]. Different methods have been proposed
for inferring the causality from data, in addition to the classical ones such as Granger
causality testing. While traditionally causal inference has been categorized as a subject in
statistics, and now also a subject in computer science, it merits mentioning that, during
recent decades, contributions from different disciplines have augmented the subject and
significant advances have been made ever since. Early efforts since Clive Granger and Judea
Pearl (cf. [2] include, for example, Spirtes and Glymour (1991) [3], Schreiber (2000) [4],
Paluš et al. (2001) [5], and Liang and Kleeman (2005) [6]. Recently, due to the rush in
artificial intelligence, publications have been growing rapidly, among which are Zhang
and Spirtes (2008) [7], Maathuis et al. (2009) [8], Pompe and Runge (2011) [9], Janzing et al.
(2012) [10], Sugihara et al. (2012) [11], Schölkopf et al. (2012) [1], Sun and Bollt (2014) [12],
Peters et al. (2017) [13], to name but a few; see [13] and [14] for more references.

Although causality has long been investigated ever since Granger[15], thanks to the
systematic works by Pearl (e.g., [2]) and others, its “mathematization is a relatively recent
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development,” said Peters, Janzing and Schökopf (2017) [13]. On the other hand, Liang
(2016) [16] argued that it is actually “a real physical notion that can be derived ab initio.”
Despite the current rush, this latter line of work, which starts some 16 years ago, seems to
have gone almost unnoticed. It can be traced back to a discovery of two-dimensional (2D)
information flow in 2005 by Liang and Kleeman [6]. With the later efforts of, e.g., Liang
(2008) [17] and Liang (2014) [18], a very easy method for bivariate time series causality
analysis has been established, validated, and applied successfully to real world problems
in different disciplines. More details can be found below in Section 2. Recently, the whole
formalism has been put on a rigorous footing [16]; explicit formulas for multidimensional
information flow have been obtained in a closed form with both deterministic and stochastic
systems.

The multivariate time series causality analysis, however, has not been established
since Liang (2016)’s comprehensive work [16]. Considering the enormous interest in this
field, we are henceforth intented to fill the gap. The purpose of this study is hence two-fold:
(1) Implement Liang (2016)’s theory into the long-due multivariate time series causality
analysis; (2) along with the implementation present a brief introduction of this line of work.

The remaining of the paper is organized as follows. In Section 2, we first establish
the framework, and then take a stroll through the theory of information flow and the
information flow-based bivariate time series causality analysis. Section 3 presents an
estimate of the information flow rates among multivariate time series, and their significance
tests. These information flows can be normalized to reveal the impact of the role in question
(Section 4). In order to test the power of the method, in Section 5, it is applied to infer
the causal graphs with two extreme processes, one being a network with heavy noise
(noise-to-signal ratio exceeding 100), another being a network of almost synchronized
chaotic oscillators. Section 6 closes the paper with a brief summary of the study.

2. An Overview of the Theory of Information Flow-Based Causality Analysis
2.1. Directed Graph, Uncertainty Propagation, and Causality

In this framework, causal inference is based on information flow (rather than the
other way around), which has been recognized as a real physical notion that can be put
on a rigorous footing (see Liang, 2016). Consider a graph (V, E), where V and E are the
sets of vertexes and edges, and the structural causal model on the graph, (C, PN), where
C is a collection of d structural assignments Xi = Fi(PA(Xi), εi), i = 1, . . . , d, PA(Xi) ⊆
{X\i} = X1, . . . , Xd}\{Xi} indicating the parents or direct causes of Xi, and PN being a
joint distribution over the noise variables [2]. The basic idea is that this can be recast
within the framework of dynamical systems, and that the causal inference problem can
be carried forth to that between the coordinates in a dynamical system. This is how Liang
and Kleeman (2005) [6] originally conceptualized the problem. Recently, it has also been
realized by R/oysland (2012) [19], Mooij et al. (2013) [20] and Mogensen et al. (2018) [21].

In physics there is a notion called information flow, which can be readily cast within
the dynamical system framework. As Shannon entropy (simply “entropy” hereafter) is by
interpretation “self information”, it is natural to measure it with the propagation of entropy
or uncertainty, from one component to another. (Other entropies may provide alternative
choices. Particularly, a generalized permutation entropy is referred to [22].) In this light,
we have the following definition:

Definition 1. In a dynamical system (Ω, Φt) on the d-dimensional phase space Ω, where Φt may
be a continuous-time flow (t ∈ R+) or discrete-time mapping t ∈ Z+), the information flow from
a component/coordinate Xj to another component/coordinate Xi, written Tj→i, is defined as the
contribution of entropy (uncertainty) from Xj per unit time (t ∈ R+) or per step (t ∈ Z+) in
increasing the marginal entropy of Xi.

With information flow, causality can be defined, and, moreover, quantitatively defined:
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Definition 2. Xj is causal to Xi iff Tj→i 6= 0. The magnitude of the causality from Xj to Xi is
measured by |Tj→i|.

By evaluating the information flow within a dynamical system, the underlying causal
graph is henceforth determined.

For this study, we consider only the continuous flow case. The vector field that forms
the structural assignments is hence differentiable. Further, we assume a Wiener process for
the noise (white noise). Note that some of these assumptions can be easily relaxed, and the
generalization is straightforward. However, that is outside the scope of this study.

2.2. A Brief Stroll through the Theory and Recent Advances

This line of work begins with Liang and Kleeman (2005) [6] within the framework of
2D deterministic systems. Originally, it is based on a heuristic argument, but later on it is
rigorized. Its generalization to multidimensional and stochastic systems, however, has not
been fulfilled until the recent theoretical work by Liang (2016) [16]. The following is just a
brief review.

We begin by stating an observational fact about causality:

If the evolution of an event, say, X1, is independent of another one, X2, then the informa-
tion flow from X2 to X1 is zero.

Since it is the only quantitatively stated fact about causality, all previous empirical/half-
empirical causality formalisms have attempted to verify it in applications. For this reason, it
has been referred to as the principle of nil causality (e.g., [16]). We will soon see below that,
within the information flow framework, this principle turns out to be a proven theorem.

Consider a d-dimensional continuous-time stochastic system for X = (X1, . . . , Xd)

dX = F(X, t)dt + B(X, t)dW, (1)

where F = (F1, . . . , Fd) may be arbitrary nonlinear functions of X and t, W is a vector of
standard Wiener processes, and B = (bij) is the matrix of perturbation amplitudes, which
may also be any functions of X and t. Assume that F and B are both differentiable with
respect to X and t. We then have the following theorem [16]:

Theorem 1. For the system (1), the rate of information flowing from Xj to Xi (in nats per unit time) is

Tj→i = −E

[
1
ρi

∫
Rd−2

∂(Fiρ\j)

∂xi
dx\i\j

]
+

1
2

E

[
1
ρi

∫
Rd−2

∂2(giiρ\j)

∂x2
i

dx\i\j

]
,

= −
∫
Rd

ρj|i(xj|xi)
∂(Fiρ\j)

∂xi
dx+

1
2

∫
Rd

ρj|i(xj|xi)
∂2(giiρ\j)

∂x2
i

dx, (2)

where dx\i\j signifies dx1 . . . dxi−1dxi+1 . . . dxj−1dxj+1 . . . dxn, E stands for mathematical expecta-
tion, gii = ∑n

k=1 bikbik, ρi = ρi(xi) is the marginal probability density function (pdf) of Xi, ρj|i is
the pdf of Xj conditioned on Xi, and ρ\j =

∫
R ρ(x)dxj.

For discrete-time mappings, the information flow is in a more complicated form;
see [16].

Corollary 1. When d = 2,

T2→1 = −E
[

1
ρ1

∂(F1ρ1)

∂x1

]
+

1
2

E

[
1
ρ1

∂2(g11ρ1

∂x2
1

)

]
. (3)
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This is the early result of Liang (2008) [17] on which the bivariate causality analysis is
based; see Theorem 5 below.

There is a nice property for the above information flow:

Theorem 2. If in (1) neither F1 nor g11 depends on X2, then T2→1 = 0.

Note this is precisely the principle of nil causality. Remarkably, here it appears as a
proven theorem, while the classical ansatz-like formalisms attempt to verify it in applications.

Moreover, it has been established that [23]:

Theorem 3. T2→1 is invariant under arbitrary nonlinear transformation of (X3, X4, . . . , Xd).

This is a very important result, as we will see soon in the causal graph reconstruction.
On the other hand, this tells that the obtained information flow should be an intrinsic
property in physical world.

For linear systems, the information flow can be greatly simplified.

Theorem 4. In (1), if F(X) = f + AX, and B is a constant matrix, then

Tj→i = aij
σij

σii
, (4)

where aij is the (i, j)th entry of A, and σij the population covariance between Xi and Xj.

Observe that, if σij = 0, then Tj→i = 0; but if Tj→i = 0, σij does not necessarily vanish.
Contrapositively, this means that correlation does not mean causation. We hence have the
following corollary:

Corollary 2. In the linear sense, causation implies correlation, but correlation does not imply causation.

This explicit mathematical expression hence provides a solution to the long-standing
debate ever since George Berkeley (1710) [24] over correlation versus causation. Note,
however, this is for linear systems only. For nonlinear systems, the existence of such a
relation, and, if existing, how it is like, are yet to be explored. Nonetheless, as proved in [25],
this relation indeed holds for some counter-examples in terms of normalized information
flow (see Section 4 below).

In the case with only two time series (no dynamical system is given), we have the
following result [18]:

Theorem 5. Given two time series X1 and X2, under the assumption of a linear model with additive
noise, the maximum-likelihood estimator (mle) of (3) is

T̂2→1 =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C2

12
, (5)

where Cij is the sample covariance between Xi and Xj, and Ci,dj is the sample covariance between
Xi and a series derived from Xj using the Euler forward differencing scheme: Ẋj,n = (Xj,n+k −
Xj,n)/(k∆t), with k ≥ 1 some integer.

Equation (5) is rather concise in form; it only involves the common statistics, i.e.,
sample covariances. In other words, a combination of some sample covariances will
give a quantitative measure of the causality between the time series. This makes causality
analysis, which otherwise would be complicated with the classical empirical/half-empirical
methods, very easy. Nonetheless, note that Equation (5) cannot replace (3); it is just the mle
of the latter. A statistical significance test must be performed before a causal inference is
made based on the computed T̂2→1. For details, refer to [18].
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The above formalism has been validated with many benchmark systems such as baker
transformation, Hénon map, Kaplan–Yorke map, Rössler system (see [16]), to name a few.
Particularly, the concise Equation (5) has been validated with problems where traditional
approaches fail. An example is the mysterious anticipatory system problem discovered by
Hahs and Pethel [26], which with (5) is successfully fixed in an easy way.

The formalism has been successfully applied to the studies of many real world
problems, among them are the El Niño-Indian Ocean Dipole relation [18], global cli-
mate change [27], soil moisture–precipitation interaction [28], glaciology [29], and neuro-
science problems [30], to name a few. Here, we particularly want to mention the study by
Stips et al. [27], who, through examining with (5) the causality between the CO2 index and
the surface air temperature, identified a reversing causal relation with time scale. They
found, during the past century, indeed CO2 emission drives the recent global warming;
the causal relation is one-way, i.e., from CO2 to global mean atmosphere temperature.
Moreover, they were able to find how the causality is distributed over the globe, thanks to
the quantitative nature of (5). However, on a time scale of 1000 years or over, the causality
is completely reversed; that is to say, on a paleoclimate scale, it is global warming that
drives the CO2 concentration to rise.

3. Information Flow among Time Series and Algorithm for Multivariate
Causal Inference

We now estimate (2), given observations of the d components, in order to arrive at a
practically easy-to-use formula for causal inference. As mentioned in Section 1, this has not
been done yet; the available estimator (5) is for (3). Here, we only consider time series, but
it can be easily extended to other forms of data. We further assume the series are stationary
and equi-distanced. Without loss of generality, it suffices to examine T2→1.

As in the bivariate case considered in [18], we estimate the linear version (4). We hence
examine a linear stochastic differential equation

dX = f + AXdt + BdW, (6)

where f is a constant vector, and A = (aij) and B = (bij) are constant matrices. Initially,
if X obeys a Gaussian distribution, then it is a Gaussian for ever, i.e., X ∼ N (µ, Σ), with
µ = (µ1, . . . , µd)

T and Σ = (σij) being the mean vector and covariance matrix, respectively.
Hence, X1 ∼ N (µ1, σ11).

The above results need to be estimated if what we are given are just d time series.
That is to say, what we know is a single realization of some unknown system, which, if
known, can produce infinitely many realizations. We use maximum-likelihood estimation
(e.g., [31]) to achieve the goal. The procedure follows that of [18], which for easy reference,
we briefly summarize here. As established before, a further assumption that B is diagonal,
i.e., bij = 0, for i 6= j, and hence g11 = b2

11, will greatly simplify the problem, while in
practice, this is quite reasonable.

Suppose that the series are equal-distanced with a time stepsize ∆t, and let N be
the sample size. Consider an interval [n∆t, (n + 1)∆t], and let the transition pdf be
ρ(Xn+1|Xn; θ), where θ stands for the vector of parameters to be estimated. So, the log
likelihood is

`N(θ) =
N

∑
n=1

log ρ(Xn+1|Xn; θ) + log ρ(X1).

As N is usually large, the term ρ(X1) can be dropped without causing much error. The
transition pdf is, with the Euler–Bernstein approximation (see [18]),

ρ(Xn+1 = xn+1|Xn = xn) = [(2π)d det(BBT∆t)]−1/2

×e−
1
2 (xn+1−xn−F∆t)T(BBT∆t)−1(xn+1−xn−F∆t),
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where F = f + AX. This results in a log likelihood functional

`N(f, A, B) = const− N
2

log ∏
i

gii −
∆t
2

(
1

∑d
i=1 gii

N

∑
n=1

R2
i,n

)
,

where

Ri,n = Ẋi,n − ( fi +
d

∑
j=1

aijXj,n), i = 1, 2, . . . , d

and Ẋi = {Ẋi,n} is the Euler forward differencing approximation of dXi
dt :

Ẋi,n =
Xi,n+k − Xi,n

k∆t
, (7)

with k ≥ 1. Usually, k = 1 should be used to ensure accuracy, but in some cases of
deterministic chaos and the sampling is at the highest resolution, one needs to choose k = 2.
Maximizing `N , it is easy to find that the maximizer ( f̂1, â11, . . . â1d) satisfies the following
algebraic equation:

1 X1 . . . Xd

X1 X2
1 . . . X1Xd

...
...

. . .
...

Xd X1Xd . . . X2
d




f̂1
â11
...

â1d

 =


Ẋ1

X1Ẋ1
...

XdẊ1

 (8)

where the overline signifies sample mean. After some algebraic manipulations as that
in [18], this yields the maximum-likelihood estimators (mle):

â1i =
1

det C

d

∑
j=1

∆ijCj,d1 (9)

ĝ11 =
QN,1∆t

N
, (10)

f̂1 = Ẋ1 −
d

∑
i=1

â1iX̄i, (11)

where

Cij = (Xi − X̄i)(Xj − X̄j), (12)

Ci,dj = (Xi − X̄i)(Ẋj − Ẋj), (13)

are the sample covariances, ∆ij the cofactors of the matrix C = (Cij), and

QN,1 =
N

∑
n=1

[
Ẋ1,n − ( f̂1 +

d

∑
j=1

â1jXj,n)

]2

=
N

∑
n=1

[
(Ẋ1,n − Ẋ1)−

d

∑
i=1

â1i(Xi,n − X̄i)

]2

= N(Cd1,d1 − 2
d

∑
i=1

â1iCd1,i +
d

∑
i=1

d

∑
j=1

â1i â1jCij.

By (4), this yields an estimator of the information flow from X2 to X1:
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T̂2→1 =
1

det C
·

d

∑
j=1

∆2jCj,d1 ·
C12

C11
, (14)

where Cj,d1 is the sample covariance between Xj and the derived series Ẋ1 as computed
by (7). When d = 2, it is easy to show that this is reduced to (5), the 2D estimator as
obtained in [18].

Information flow concerns the influence from one element to another element, i.e.,
the causal relation between different elements. A relation can also contain two identical
elements; this corresponds to a self-loop in a graph. Historically, before establishing the
information flow from, say X2, to another component, say X1, the contribution of the
change of marginal entropy of X1 by itself is first established. This contribution, denoted
by dH∗1 /dt, proves to be E( ∂F1

∂x1
(cf. [16]). As we can see from above, besides the estimator of

information flow, in this study, we actually have also estimated dH∗1 /dt, i.e., the influence
of a component (here X1) on itself.

Theorem 6. Under a linear assumption, the maximum-likelihood estimator of dH∗1 /dt is

(̂
dH∗1
dt

)
=

1
det C

·
d

∑
j=1

∆1jCj,d1. (15)

Proof. Since dH∗1 /dt = E( ∂F1
∂x1

), which is a11 in this case. The mle hence follows.

This supplies information not seen in previous causality analysis along this line. As
will be clear soon, this helps identify self loops in a causal graph.

Statistical significance tests can be performed for (14) and (15). When N is large, they

are approximately normally distributed around their true values with variances
(

C12
C11

)2
σ̂2

a12

and σ̂2
a11

, respectively, thanks to the mle property. Here, σ̂2
a12

and σ̂2
a11

are determined as
follows (e.g., [31]). Denote θ = ( f1, a11, a12, . . . , a1d, b1). Compute

Iij = −
1
N

N

∑
n=1

∂2 log ρ(Xn+1|Xn; θ̂)

∂θi∂θj

to form a (d + 2)× (d + 2) matrix I, namely, the Fisher information matrix. The inverse
(NI)−1 is the covariance matrix of θ̂, within which are σ̂2

a12
and σ̂2

a11
. Given a significance

level, the confidence interval can be found accordingly.
From the above, an algorithm for causal inference hence can be implemented, as

shown in Algorithm 1.

Algorithm 1: Quantitative causal inference
Input : d time series
Output : a DG G = (V, E), and IFs along edges
initialize G such that all vertexes are isolated;
set a significance level α;
for each (i, j) ∈ V ×V do

compute T̂i→j by (14);
if T̂i→j is significant at level α then

add i→ j to G;
record T̂i→j;

end
end
return G, together with the IFs T̂i→j
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4. Normalization of the Causality among Multivariate Time Series

In many problems, just an assertion whether a causality exists is not enough; we need
to know how important it is. This raises an issue of normalization. The normalization
of information flow is by no means as trivial as it seemingly looks. Quite different from
the case of covariance vs. correlation coefficient, no such relation as Cauchy–Schwartz
inequality exists. Liang [32] listed some difficulties in the problem, and so far this is still an
area of research. Hereafter, we follow [32] to propose the normalizer for (14).

The basic idea is that the normalizer for T2→1 should be related to dH1/dt, as the
former is by derivation a part of the contribution to the latter. However, dH1/dt itself
cannot be the normalizer, since many terms tend to cancel; sometimes dH1/dt may even
completely vanish, just as in the Hénon map case. We now write out the estimator of
dH1/dt and see how the problem can be fixed.

By [16], the time rate of change of the marginal entropy of X1 is

dH1

dt
= −E

(
F1

∂ log ρ1

∂x1

)
− 1

2
E

(
g11

∂2 log ρ1

∂x2
1

)
. (16)

In this linear case,

dH1

dt
= −E

(
d

∑
j=1

a1jXj
∂ log ρ1

∂x1

)
− 1

2
E

(
g11

∂2 log ρ1

∂x2
1

)

= E

(
X1 − µ1

σ11
∑

j
a1jXj

)
+

1
2

g11

σ11

= a11 +
d

∑
j=2

Tj→1 +
1
2

g11

σ11
. (17)

The first term is dH∗1 /dt, i.e., the contribution from itself, and the last term is the effect
of noise, written dHnoise

1 /dt. The remaining parts are the information flows to X1, just as
expected. We may hence propose a normalizer as follows:

Z ≡
∣∣∣∣dH∗1

dt

∣∣∣∣+ d

∑
j=2

∣∣Tj→1
∣∣+ ∣∣∣∣∣dHnoise

1
dt

∣∣∣∣∣. (18)

Hence, the normalized information flow from X2 to X1 is:

τ2→1 =
T2→1

Z
. (19)

Clearly, τ2→1 lies on [−1, 1]. So, when |τ2→1| is 100%, X2 has the maximal impact on X1.

Note that dH
dt

noise
1 = g11/(2σ11), where g11 = ∑d

j=1 b2
1j is always positive. That is to

say, noise always contributes to increase the marginal entropy of X1, agreeing with our
common sense. Obviously, this term is related to the noise-to-signal ratio.

By the results in Section 3, Z can be estimated as

Ẑ =

∣∣∣∣∣
(̂

dH∗1
dt

)∣∣∣∣∣+ d

∑
j=2

∣∣T̂j→1
∣∣+
∣∣∣∣∣∣

̂(
dHnoise

1
dt

)∣∣∣∣∣∣. (20)

where
̂( dHnoise

1
dt

)
= 1

2
ĝ11
C11

, and ĝ11,
(̂

dH∗1
dt

)
and T̂2→1 are evaluated using (10), (14) and

(15), respectively.
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5. Application to Causal Graph Reconstruction
5.1. A Noisy Causal Network from Autoregressive Processes

Consider the series generated from a d-dimensional vector autoregressive (VAR) process:

X(n + 1) = α + AX(n) + Be(n + 1) (21)

where X = (X1, . . . , Xd)
T , A = (aij)d×d, e = (e1, . . . , ed)

T , and B is a diagonal matrix with
diagonal entries bii, i = 1, . . . , d. Here, the errors ei ∼ N(0, 1) are independent, and bi are
the amplitudes of stochastic perturbation. Let

A =



0 0 −0.6 0 0 0
−0.5 0 0 0 0 0.8

0 0.7 0 0 0 0
0 0 0 0.7 0.4 0
0 0 0 0.2 0 0.7
0 0 0 0 0 −0.5

,

α = (0.1, 0.7, 0.5, 0.2, 0.8, 0.3)T ,

The formed network is as shown in Figure 1a. So, by design, we have two directed cycles
(X1,X2,X3) and (X4,X5). The former is of length 3, while the latter are parallel edges. These
cycles are driven by a common cause or confounder X6. Since no diagonal entries of A is 1,
all nodes are self loops (trivial cycles of length 1). The resulting autocorrelation is believed
to be a challenge in causal inferences for some techniques. This and the confoundingness
of X6, have been two major issues for many causal inference methods.

First, consider the case bii = 1. Accordingly, six series of 10,000 steps are generated
(randomly initialized).

By computation, the information flow rates are (only absolute values are shown), if
arranged in a matrix form such that the (i, j)th entry indicates |Ti→j|, then the absolute
information flow rates are

\ 0.01 0.00 0.00 0.00 0.00
0.00 \ 0.09 0.00 0.00 0.00
0.05 0.00 \ 0.00 0.00 0.00
0.00 0.00 0.00 \ 0.04 0.00
0.00 0.00 0.00 0.05 \ 0.00
0.00 0.19 0.00 0.00 0.18 \

,

So, the only significant information flows (numbers in bold) are T1→2, T2→3, T3→1, T4→5,
T5→4, T6→2, T6→5, as indicated in Figure 1b. (At a 90% confidence level, the maximal error
is 0.005, so all these values are significant.) This is precisely the same as designed. So,
the causal graph is accurately reconstructed. Also, by (15)

∣∣dH∗1 /dt
∣∣, . . . ,

∣∣dH∗6 /dt
∣∣ can be

computed. They are 1.00± 0.01, 1.01± 0.01, 1.01± 0.01, 0.30± 0.01, 1.00± 0.01, 1.49± 0.02,
where the errors at a 90% confidence level are shown. So, here all the nodes are self loops
(trivial cycles of length 1).

It should be particularly pointed out that the confoundingness of X6 does not make
an issue here. As shown in Figure 1, there is no significant information flow between X2
and X5; in other words, they are not directly causal to each other. Nor are X3 and X4. This
is actually not a surprise; it is a corollary of the principle of nil causality, as proved before
(see Theorem 2). Considering the difficulty of this problem, the performance of this concise
Formula (14) is remarkable.
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Figure 1. (a) A schematic of the directed network generated with the vector autoregressive processes
(21). (b) The directed graph reconstructed from the six time series. Overlaid numbers are the
respective significant information flows (in nats per time step); also overlaid are the inferred self
loops or trivial cycles of length 1 (in light blue).

The above information flows can be normalized to understand the impact of one unit
on another. For example, |τ6→2| = 13.2%, |τ6→5 = 12.5%. For another example, in the
cycle (X4, X5), the relative information flows are τ4→5 = 2.4%, τ5→4 = 8.8%, in contrast to
the almost identical absolute information flows. This is understandable: though T5→4 is
comparable to T4→5, the parts contributing to dH5/dt are different from that to dH4/dt,
and thus they may have different weights.

Now, consider an extreme case when the signals are buried within heavy noise. Let,
bii = 100, and repeat the above steps. The results are, remarkably, almost the same. So, the
Formula (14) is very robust in the presence of noise.

If the time series is short, the performance is still satisfactory. For example, if it has
only 500 data points, the above case with heavy noise (bii = 100) results in the following
matrix of information flow rates:

\ 0.02 0.00 0.00 0.00 0.00
0.00 \ 0.13 0.00 0.01 0.01
0.04 0.01 \ 0.00 0.00 0.00
0.00 0.00 0.00 \ 0.07 0.00
0.01 0.00 0.00 0.06 \ 0.00
0.00 0.17 0.00 0.00 0.19 \

,

with the corresponding errors at the 90% confidence level being:
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\ 0.00 0.00 0.00 0.00 0.01
0.00 \ 0.01 0.00 0.02 0.02
0.00 0.01 \ 0.00 0.01 0.01
0.00 0.00 0.01 \ 0.01 0.00
0.01 0.00 0.00 0.06 \ 0.02
0.01 0.01 0.01 0.00 0.02 \

.

So, the significant (at the 90% level) information flows are still those as shown in bold face.
Note we do not mean to compete with the classical method(s) in this application.

Granger causality testing, for example, works well here. Nonetheless, the simplicity of the
Formula (14) and the algorithm has greatly increased the performance of computation. On
MATLAB, (14) is by test more than 100 times faster than the embedded matlab function
gctest.

5.2. A Network of Nearly Synchronized Chaotic Series

Now, consider the following causal graph made of Rössler oscillators X, Y and Z,
where X is a confounder. A Rössler oscillator has three components, so the system actually
has a dimension of 9.

~X

~ ~Y Z

�
�

��	

@
@
@@R

We use for this purpose the coupled system investigated by Paluš et al. [33]. The 9
series are generated through the following Rössler systems

dx1/dt = −ω1x2(t)− x3(t),
dx2/dt = ω1x1(t) + 0.15x2(t),
dx3/dt = 0.2 + x3(t)[x1(t)− 10],
dy1/dt = −ω2y2(t)− y3(t) + ε[x1(t)− y1(t)],
dy2/dt = ω2y1(t) + 0.15y2(t),
dy3/dt = 0.2 + y3(t)[y1(t)− 10],
dz1/dt = −ω3z2(t)− z3(t) + ε[x1(t)− z1(t)],
dz2/dt = ω3z1(t) + 0.15z2(t),
dz3/dt = 0.2 + z3(t)[z1(t)− 10].

Clearly, the first is the driving or “master” system, while the latter two are slaves which are
not directly connected. We hence use them to define X, Y and Z. This system is exactly
the same as the one studied in [33], except for the addition of another subsystem, Z. The
parameters are also chosen to be the same as theirs, ω1 = 1.015 and ω2 = 0.985, but with
an additional one, ω3 = 0.95. As can be seen, X is coupled with Y and Z through the first
component, and the coupling is one-way, i.e., from X to Y and from X to Z. The coupling
parameter ε is left open for tuning.

The above equations are differenciated and the system is solved using the second-
order Runge–Kutta scheme with a time stepsize ∆t = 0.001. Initialized with random
numbers, the state is integrated forward for N = 50,000 steps (t = 50). Discard the initial
10,000 steps and form the 9 time series with 40,000 data points.
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The oscillators are highly chaotic. As ε increases, the three oscillators gradually
become in pace. They become almost synchronized after ε > 0.15. Shown in Figure 2d is
an episode of the synchronization for ε = 0.25.

We now apply (14) to compute the information flows among X, Y, and Z. Since
this is a deterministic chaos problem, choose k = 2 in (7) and (14). Following [33], the
series {x1(n)}, {y1(n)}, and {z1(n)} are used to represent the three oscillators. Shown in
Figure 2a–c are dependencies of the computed information flows on the coupling strength
ε. Clearly, among the six information flows, only TX→Y and TX→Z are significant, indicating
(1) that the causal relation between X and Y is unidirectionally from X to Y, (2) that the
causality between X and Z is also one-way, i.e., from X to Z, and, mostly importantly
(3) that no direct causality exists between Y and Z, although they are highly correlated
(c.f. Figure 2d). So, here the confoundingness is not at all an issue.

After ε exceeds 0.15, the systems begin to synchronize (see [33]), and it is impossible
to infer the causal relation using traditional methods. This is understandable, as the series
gradually approach toward one series. Here, however, even with ε > 0.15, i.e., even
after the series are almost synchronized, in this framework, the inference still performs
remarkably well, as clearly seen in Figure 2a–c. This attests to the power of the information
flow-based causal inference technique, which is concise and very easy to implement.
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Figure 2. The information flows among the oscillators X, Y, and Z (in nats/unit time) versus the
coupling strength ε: (a) |TX→Y | (blue) and |TY→X | (red); (b) |TX→Z| (blue) and |TZ→X | (red); (c)
|TY→Z| (blue) and |TY→Z| (red). (d) The series of X1, Y1, and Z1 on a time interval when the coupling
parameter ε = 0.25. (Note, in solving for (X, Y, Z), the initial conditions are randomly chosen, some
of which may happen to make a highly singular matrix and hence cause large errors. In that case,
simply re-run the program.)

6. Conclusions

Recent years have seen a surge of interest in causality analysis. This study introduced a
line of work starting some 16 years ago which has gone almost unnoticed, and implemented
the state-of-the-art theory [16] into an easy-to-use algorithm. Particularly, this study
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extended the bivariate time series analysis of [18] to the long-due multivariate time series
causal inference.

In a multivariate stochastic system, the information flow from one component to
another proves to be (2). When only time series are available, it can be estimated using
(14) under a linear assumption. Ideally if it is not zero, then there exists causality between
the components, but practically statistical significance needs to be tested. These have been
easily implemented as an algorithm for use.

More than just finding the information flows, hence the causalities, among the units (as
in [18]), we have also estimated the influence of a unit to itself. This results in autocorrela-
tion, which becomes an issue in some causal inferences. The consequence is that, in a causal
graph, those nodes which are self loops (cycles of length 1) can be easily identified. Also
different from previous studies, in a unified treatment, the role of noise has been quantified
along with the causality analysis. This quantity has an easy physical interpretation, namely,
the ratio of noise to signal. Besides, the obtained causalities can be normalized to measure
the importance of the respective parental nodes.

The above very concise and transparent formulas have been applied to examine
two problems in extreme situations: (1) a network of multivariate processes with heavy
noise (stochastic perturbation amplitude 100 times the signal amplitude); (2) a network
with nearly synchronized oscillators. Besides, confounding processes exist in both causal
graphs. Case (1) is made of vector autoregressive processes. By applying the algorithm,
the causal graph is accurately recovered in a very easy and efficient way. In particular, the
confounding processes have been accurately clarified.

Note Granger causality testing works well in case (1). Nonetheless, the simplicity of
the Formula (14) allows for an increase of performance by at least two orders.

In case (2), the network is formed with three chaotic Rössler oscillators. When the
coupling coefficient exceeds a threshold, synchronization occurs. However, even with the
almost completely synchronized time series, the information flow approach still performs
remarkably well, with the causalities accurately inferred, and the causal graph accurately
reconstructed. In particular, the one-way causalities between the master–slave systems
have been recovered. Moreover, it is accurately shown that the two highly correlated,
almost identical series due to the confounder are not causally linked.

It should be mentioned that, in arriving at the concise formula for causal inference, an
assumption of linearity has been invoked. For some nonlinear problems, the inference may
not be precisely as expected. For example, in Figure 2a,b, the red dashed lines are supposed
to be zero, but here they are not. However, qualitatively, the inference is still good, as the
one-way causality is clearly seen. Such success has already been evidenced in the bivariate
case of [18], where a highly nonlinear problem defying classical approaches is examined.
Nonetheless, the power of the information flow-based causality analysis will not be fully
realized until the linear assumption is relaxed. To generalize to the fully nonlinear case is
hence the goal of future work.
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