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A signal-piloted linear phase filtering tactic for removing baseline wander and power-line interference from the electrocardiogram (ECG)
signals is suggested. The system is capable of adjusting its parameters by following the incoming signal variations. It renders the
processing of lesser samples by inferior order filters. The applicability is demonstrated by using the MIT-BIH ECG database. The
precision of the approach is also studied regarding the signal-to-noise ratio (SNR). Results showed that the proposed method achieves a
2.18-fold compression gain and notable computational efficiency over conventional counterpart while securing an analogous output SNR.
A comparison of the designed solution is made with the contemporary empirical mode decomposition with Kalman filtering and
eigenvalue decomposition based tactics. Results show that the suggested method performs better in terms of output SNR for the studied cases.
1. Introduction: Power-line interference (PLI) and baseline wander
(BW) are the major noise elements, present in the electrocardiogram
(ECG) signals [1, 2]. The BW artefacts are introduced by respiration.
These are of very low-frequency and mainly occurs between [0; 0.7]
Hz [2]. The PLI is introduced because of the electromagnetic inter-
ference of the alternating supply. Depending on the power supply,
the frequency of PLI is 50 Hz or 60 Hz. The involvement of these
noise signals diminishes the diagnosis accuracy [3]. Therefore,
removal of BW and PLI is obligatory for a precise diagnosis of
the cardiac diseases [4, 5]. In this framework, numerous techniques
have been presented, such as extended Kalman filter (EKF) [6],
Hilbert vibration decomposition (HVD) [7], adaptive-filtering [8],
and eigenvalue decomposition (EVD) [4].

Effective cardiac failure treatment can be realised with a real-time
ECG signal monitoring by using the ECG wearables. The
Nyquist-based signal processing governs the operation of these
systems. They are time-invariant, which results in a worst-case par-
ameterisation [9, 10]. The system computational load and process-
ing plus transmission activities remain fixed irrespective of the ECG
signal intermittence and time-variations. Therefore, it can augment
the computational complexity and power consumption. The signal-
piloted ECG acquisition approaches have been suggested to
compensate for these shortfalls. These are based on level-crossing
sampling (LCS) [11, 12].

2. Proposed method: This work aims to contribute to the
development of novel computationally efficient ECG diagnosis
systems in a wireless sensing and cloud-based analysis environ-
ment. The realisation is achieved by using an intelligent assembly
of the level-crossing A/D converters (LCADCs), the enhanced
activity selection algorithm (EASA), and adaptive-rate filtering. It
significantly lessens the activity of the post BW and PLI denoising
module by only treating the pertinent information with adjustable
order FIR filters [9, 10]. The designed system principle is shown
in Fig. 1.

The MIT-BIH Arrhythmia database is employed to study the
system performance [13]. Each channel is acquired with an 11-bit
resolution ADC at an acquisition frequency of 360 Hz. A set of
5, 30.1-min duration recordings are used. A BW signal of
30.1-min duration recording is also employed from the MIT-BIH
noise stress test database [13]. The PLI is modelled as sinusoid of
60 Hz frequency. The intended ECG recordings are denoised by a
digital filter to diminish the impact of BW and PLI [4]. The noisy
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signal x t( ) is generated by adding BW noise nBW and PLI noise
nPLI in a clean ECG signal y t( ). The process can be expressed as

x t( ) = y t( ) + nBW + nPLI (1)

The band-limited, Fcmin = 0.5; Fcmax = 60
[ ]

Hz, ECG signal x t( )
is acquired with an LCADC. It employs 21 thresholds, symmetric-
ally and uniformly placed within the LCADC dynamics DV = 2V.
It results in M= 4.39-bit and q= 0.0952 V [11]. The choice of the
number of thresholds is made based on the intended application.
For LCADC, the sampling is triggered only when x t( ) traverse
one of the prefixed thresholds. Samples are irregularly spaced in
time and the sampling density is piloted by the x t( ) variations.
Equation (2) represents the sampling instants of the level-crossing
samples. Where tn is the current instant, tn−1 is the precedent one
and dtn−1 is the time step among them

tn = tn−1 + dtn−1 (2)

The conversion process of an LCADC is dual as compared to the
classical counterparts. The sample amplitudes are ideally known
for an ideal LCADC, and the sampling instants are quantified
according to the resolution of the timer circuit and its frequency
of operation FTimer. Unlike the traditional approach, the signal-
to-noise ratio (SNR) of LCADC does not base on resolution M
and quantum q. However, it is a function of the TTimer =
1/FTimer

( )
[11].

In practice, digital signal processing is conducted on the finite-
length segments. Therefore, the EASA is used to segment the
LCADC output. It segments the pertinent signal information by
using the sampling process non-uniformity. The principle is clear
from the following algorithm (see Fig. 2).

Here T0 is the fundamental period of x t( ). T0 with dtn identifies
the activity [10]. The condition on dtn allows to respect the
Nyquist criterion for the lowest frequency component Fcmin of
x t( ). Li is the length of the ith selected segment Wi. Ni is the
number of samples exists in Wi. Nref is the superior bound on Ni

and its selection depends on the system parameters. In this case,
Nref = 2048 is selected. At the beginning of each iteration, ‘i’ is
incremented and Ni and Li are initialised to zero.

The traditional windowing functions [10] do not give any inter-
esting features of the EASA. Only the appropriate signal informa-
tion is chosen, and the length of each segment is modified by
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Fig. 2 Enhanced activity selection algorithm

Fig. 4 Algorithm for online choosing the resampling frequency and the
denoising filter for Wi

Fig. 1 Block diagram of the proposed system
following local characteristics of the segmented signal. The sam-
pling frequency for Wi can be measured as Fsi = Ni/Li

( )
. The

Wi is uniformly resampled using the simplified linear interpolator
(SLI) [10] to take advantage of the existing classical processing
techniques. Compared to the resampled signal modifies compared
to the non-uniform signal. This variation is a function of M, q
and the interpolator [14]. The superior error limit per resampled ob-
servation is q/2

( )
for SLI [14].

A finite impulse response (FIR) filters bank is offline designed
for the proficiently online diminishing of the BW and the PLI
from the ECG signals. The useful frequency range of the ECG
signal is between [0.5; 45] Hz [4]. A band-pass filters bank is
offline designed for the cut-off frequencies of FcL = 0.5; FcH =[
45]Hz. It allows focusing on the ECG band of interest while attenu-
ating the BW and PLI noise [4]. The filters bank is designed for a set
of sampling frequencies, Fref, between Fsmin = 135Hz . 2,
Fcmax toFr = 360Hz. In this case, Δ = 15 Hz is chosen. It realises
a bank of Q= 16 band-pass FIR filters. Here, D =
Fr − Fsmin/Q− 1
( )

. The sampling frequencies and orders of the
reference filters are summarised in Fig. 3. It shows that for the
selected specification, the lowest 44th-order filter in the bank is
obtained for Fref1 = Fsmin = 135Hz, and the highest 117th-order
filter in the bank is obtained for Fref32 = Fr = 360Hz.
The EASA analyses properties of Wi and uses it for modifying

the post modules parameters like the resampling frequency, Frsi,
and the filter order, KC . An effective filter is selected online from
Fig. 3 Summary of filters bank parameters
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the reference set for each Wi. Let hck be the selected filter for Wi

and is sampled at FrefC . This selection is made on the basis of
Fref and Fsi. For a proper filtering, the Frsi = FrefC is chosen
[10]. The method of choosing Frsi and keeping it aligned with
FrefC is described in Fig. 4.

3. Performance evaluation: The designed system performance is
evaluated in terms of compression gain, online processing
efficiency, and output quality.

In the classical case, x t( ) is acquired at a fixed frequency Fr.
Therefore, the count of samples, N, for a considered time length
LT is straightforward to compute as N = Fr × LT . For LCADC,
the sampling frequency is not unique and is piloted by variations
in x t( ). If NED is the number of samples obtained at the output of
LCADC for LT . Then the compression gain can be calculated as

GCOMP = N

NED

(3)

The computational complexity of a classical K order FIR filter is
known. It performs K additions and K multiplications while calcu-
lating an output sample. For N samples, the computational cost CFIR

can be computed as

CFIR = K · N︸�︷︷�︸
Additions

+ K · N︸�︷︷�︸
Multiplications

(4)

For the suggested solution, the online filter selection and the
selected segment resampling processes necessitate additional opera-
tions. The filter selection for Wi is resolved by using the successive
approximation algorithm. Therefore, it requires log2 Q

( )
compari-

sons for the worst case [10]. Here, Q is the length of the set Fref.
The resampling is realised by using the SLI. ForWi, the complexity
of SLI is Nri additions and Nri binary-weighted right shifts. The
complexity of the binary-weighted right shift is negligible com-
pared to the addition and multiplication processes [15]. Therefore,
the complexity of proposed adaptive-rate FIR (ARFIR) method
for Wi can be calculated as

Ci
ARFIR = Ki · Nri + Nri + log2 Q

( )
︸������������︷︷������������︸

Additions

+ Ki · Nri︸��︷︷��︸
Multiplications

(5)

Accuracy of the proposed solution is evaluated in terms of the SNR.
The noisy signal xn is the input and the filtered signal yfn ≃ yn is the
system output. Here, xn and yn are the digital versions of x t( ) and
y t( ). The SNRi for Wi is calculated as

SNRi
dB = 10 · log10

1

Nri

∑Nri

l=1
yn
( )2

1

Nri

∑Nri

l=1
en
( )2

⎛
⎜⎝

⎞
⎟⎠. (6)

In (6), en is the error per observation and it is calculated as the
absolute difference between yn and yfn. After calculating SNRi

the overall SNR for an intended ECG recording of 30.1-min, the
duration is calculated as the average SNRi s of all selected
segments.
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The designed solution performance is compared with the trad-
itional one in terms of compression gain and processing efficiency.
The system precision is compared with the vital contemporary
counterparts, based on the EVD [4] and the empirical mode decom-
position (EMD), the wavelet transform (WT) [16] with the EKF [6].
Techniques of [6, 16] are merged as EMD-WT-EKF [4].
4. Simulation results: An example of the noise-free signal, y t( ),
is shown in Fig. 5a. It is a segment of record number 100.
Its magnitude spectra are shown in Fig. 5b. The noisy signal x t( )
with 0 dB SNR is shown in Fig. 5c. The magnitude spectrum
of the noisy signal is shown in Fig. 5d. The presence of BW and
PLI noise is observable by comparing the time-domain plots of
Figs. 5a and c. In Fig. 5d, additional spikes exist compared to
Fig. 5b. These spikes occur at the low-frequency region and at
60 Hz and, respectively, confirm the presence of BW and PLI noise.

The first 40 s of record number 100, digitised with a 4.39-bit
LCADC and afterwards segmented with the EASA is shown in
Fig. 6. For employed parameters, the EASA delivers six selected
segments.

The selected segments’ parameters are outlined in Table 1. It
describes the attractive characteristics of the proposed approach,
which are adapting Li, Fsi, Frsi, Nri, and KC for Wi. Li demon-
strates that how for a chosen Nref = 2048, the time-length of each
Wi is adjusted according to the temporal disparities of the incoming
signal. Contrary, in the classical counterpart for Nref = 2048 and
Fr = 360Hz the length of each segment is unique and equal to
5.68 s regardless of the incoming signal sporadic nature. Nri and
KC demonstrate that how the tuning of Frsi contributes to the
Fig. 5 Examples of clean and noisy ECG signals and their spectrum
a Clean ECG signal yn
b Magnitude spectra of yn
c Noisy ECG signal xn
d Magnitude spectra of xn

Fig. 6 EASA output odd segments in blue colour and even segments in black
colour
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proposed method processing gain by reducing the superfluous
interpolations and denoising operations.

These outcomes are compared with the traditional method.
The complete x t( ) span, 30.1-min, is sampled at Fr = 360Hz in
the conventional case. It results in 650k samples to denoise with
a 117th-order FIR filter. Nevertheless, with the suggested strategy,
the entire collection of acquired information points is smaller.
Additionally, local filter orders, for most of the selected segments,
are reduced than 117th. Compared to the classical method, it gives
impressive compression gain and processing efficacy of the
suggested approach.

The compression gains of the suggested method over the
classical counterpart are also calculated for each intended recording
of 30-min duration. The findings are summarised in Fig. 7. For
proper plotting, the record numbers are incremented sequentially
in Fig. 7. Each record is presenting a real one from the MIT-BIH
dataset. It is clear from Table 2.

Fig. 7 shows that the minimum compression gain of 1.61-fold
is attained for the MIT-BIH record number 116. The maximum
compression ratio of 2.78-fold is attained for the MIT-BIH record
number 117. The overall mean compression gain for all intended
5-records is 2.18-fold.

For considered 5-ECG records, the processing gains of the
ARFIR over the classical counterpart are also computed. Firstly,
the processing gains in terms of additions and multiplications are
calculated for each selected segment. It resulted in the minimum
and the maximum gains in additions of 1.43-fold and 8.8-fold for
all selected segments of the record number 100. The average gain
in additions for all selected segments of record number 100 is
2.42-fold. The minimum and the maximum gains in additions are
of 1.44-fold and 7.98-fold for all selected segments of the record
number 101. The average gain in additions for all selected segments
Table 1 Summary of the selected segments parameters

Wi Li, s Fsi, Hz FrefC , Hz Frsi, Hz Nri (samples) KC

1st 8.75 234.06 225 225 1968 73
2nd 8.72 234.86 225 225 1968 73
3rd 6.89 297.24 285 285 1963 93
4th 6.85 298.98 285 285 1952 93
5th 7.82 261.89 255 255 1994 83
6th 0.98 218.41 210 210 0206 68

Fig. 7 Mean compression gains for intended records

Table 2 Look-up table for plotted and MIT-BIH records

record no. (plotted) 1 2 3 4 5
record no. (MIT-BIH) 100 101 115 116 117
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Fig. 9 Summary of gains in multiplications for intended records

Table 3 Values of output SNR for BW+PLI noise at 0 dB SNRin

record number 100 101 115 116 117
SNR, dB, proposed 15.62 13.39 16.20 13.38 14.80
SNR, dB, classical approach 15.85 13.45 16.59 13.64 15.08

Table 4 Values of output SNR for BW+PLI noise at 0 dB SNRin

record number 100 101 115 116 117
SNR, dB, proposed 15.62 13.39 16.20 13.38 14.80
SNR, dB, EVD [4] 11.52 10.78 12.11 9.56 10.85
SNR, dB, EMD-WT-EKF [6, 16] 8.30 8.85 8.86 9.15 9.15
of record number 101 is 2.7-fold. The minimum and the maximum
gains in additions are of 1.53-fold and 9.66-fold for all selected
segments of the record number 115. The average gain in additions
for all selected segments of record number 115 is 3.14-fold. The
minimum and the maximum gains in additions are of 1.42-fold
and 7.06-fold for all selected segments of the record number 116.
The average gain in additions for all selected segments of record
number 116 is 2.24-fold. The minimum and the maximum gains
in additions are of 2.04-fold and 10.91-fold for all selected seg-
ments of the record number 117. The average gain in additions
for all selected segments of record number 117 is 3.64-fold. A
summary of these findings is plotted in Fig. 8. Each record in the
plot is presenting a real one from the MIT-BIH dataset. It is clear
from Table 2.
The minimum and the maximum gains in multiplications are

of 1.45-fold and 9.01-fold for all selected segments of the record
number 100. The average gain in multiplications for all selected
segments of record number 100 is 2.45-fold. The minimum
and the maximum gains in multiplications are of 1.46-fold and
8.15-fold for all selected segments of the record number 101. The
average gain in multiplications for all selected segments of record
number 101 is 2.75-fold. The minimum and the maximum gains
in multiplications are of 1.65-fold and 9.97-fold for all selected
segments of the record number 115. The average gain in multi-
plications for all selected segments of record number 115 is
3.20-fold. The minimum and the maximum gains in multiplications
are of 1.44-fold and 7.20-fold for all selected segments of the
record number 116. The average gain in multiplications for all
selected segments of record number 116 is 2.30-fold. The
minimum and the maximum gains in multiplications are of
2.16-fold and 11.19-fold for all selected segments of the record
number 117. The average gain in multiplications for all selected
segments of record number 117 is 3.70-fold. A summary of these
findings is plotted in Fig. 9. Each record in the plot is presenting
a real one from the MIT-BIH dataset. It is clear from Table 2.
The efficiency of the suggested approach is also compared to

the traditional counterpart in terms of output SNR, and results are
outlined in Table 3. It shows that the output SNR of the filtered
signal obtained using the suggested signal-piloted adaptive-rate
denoising is similar to the output SNR of the filtered ECG signals
obtained using the traditional filtering tactic.
The performance of the suggested method in terms of output

SNR is compared with the existing state-of-the-art tactics. In this
study, EVD [4] and EMD-WT-EKF approaches are considered
[6, 16]. The findings are outlined in Table 4. It shows that for
record number 100, the suggested method secures, respectively,
4.1 and 7.32 dB superior output SNR compared to the EVD and
the EMD-WT-EKF tactics. For record number 101, the suggested
Fig. 8 Summary of gains in additions for intended records
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method secures, respectively, 1.28 and 4.54 dB superior output
SNR compared to the EVD and the EMD-WT-EKF tactics. For
record number 115, the suggested method secures, respectively,
4.09 and 7.34 dB superior output SNR compared to the EVD and
the EMD-WT-EKF tactics. For record number 116, the suggested
method secures, respectively, 3.82 and 4.23 dB superior output
SNR compared to the EVD and the EMD-WT-EKF tactics. For
record number 117, the suggested method secures, respectively,
3.95 and 5.65 dB superior output SNR compared to the EVD and
the EMD-WT-EKF tactics.

5. Discussion: For the case of studied 5-ECG 30.1-min records, the
performance of the designed solution is studied. Results have
shown a notable compression and processing effectiveness of the
suggested method compared to the conventional counterpart. The
average processing gains of 2.83 times and 2.88 times, respectively,
in terms of additions and multiplications compared to the con-
ventional equivalent. It is attained by automatically organising the
parameters of acquisition, segmentation, resampling and denoising
by following the incoming signal variations. Compared to tradition-
al counterparts, it results in a substantial computational gain of the
suggested framework.

Table 3 shows that the system also secures an analogous per-
formance in terms of the output SNR in comparison with the
conventional counterpart. Additionally, Table 4 confirms that the
devised method attains the higher values of output SNR, for all con-
sidered ECG recordings at 0-dB SNRin, compared to EVD and
EMD-WT-EKF based solutions [4, 6, 16].

Another ability of the designed method compared to the previous
ones is to introduce a real-time signal-piloted compression gain.
The proposed architecture has reached an average compression
gain of 2.18-fold for the studied 5-ECG records. It brings notable
processing efficiency during the post-processing modules, which
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is clear from Figs. 8 and 9. It promises a similar factor of gain
in terms of transmission and post-analysis module activities
[10, 12]. The idea of embedding the signal-piloted acquisition
and processing in the automatic cardiovascular diagnostic is quite
novel [9, 12, 17]. The above results assure that a wise integration
of this approach can also introduce a significant processing
efficiency in other ECG denoising tactics such as the EVD [4],
and the EKF-EMD-WT [6, 16].

6. Conclusion: To denoise BW and PLI from the ECG signals,
novel signal-piloted acquisition and FIR filtering concepts are
devised. The signal-piloted tactic allows real-time self-organisation
of the system parameters. It resulted in a 2.18-fold compression
gain and more than 2.8-folds gains in additions and multiplications
compared to the classical counterpart. It is shown that the designed
solution indeed secures comparable output SNR efficiency com-
pared to the conventional counterpart. In addition, the under-
performance of the developed approach is also demonstrated in
terms of the output of the SNR over the state-of-the-art strategies.
It is demonstrated that the proposed solution also secures analogous
output SNR performance in comparison with the traditional coun-
terpart. Moreover, the outperformance of the designed solution is
also demonstrated over the state-of-the-art strategies in terms of
the SNR performance. This ensures the advantage of incorporating
the designed solution within the concurrent wireless and low power
ECG implants.
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