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Abstract

Background: The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction,
development and behavior. The late steps of JH III biosynthesis in the mosquito Aedes aegypti involve the hydrolysis of
farnesyl pyrophosphate (FPP) to farnesol (FOL), which is then successively oxidized to farnesal and farnesoic acid,
methylated to form methyl farnesoate and finally transformed to JH III by a P450 epoxidase. The only recognized FPP
phosphatase (FPPase) expressed in the corpora allata (CA) of an insect was recently described in Drosophila melanogaster
(DmFPPase). In the present study we sought to molecularly and biochemically characterize the FPP phosphatase responsible
for the transformation of FPP into FOL in the CA of A. aegypti.

Methods: A search for orthologs of the DmFPPase in Aedes aegypti led to the identification of 3 putative FPPase paralogs
expressed in the CA of the mosquito (AaFPPases-1, -2, and -3). The activities of recombinant AaFPPases were tested against
general phosphatase substrates and isoprenoid pyrophosphates. Using a newly developed assay utilizing fluorescent tags,
we analyzed AaFPPase activities in CA of sugar and blood-fed females. Double-stranded RNA (dsRNA) was used to evaluate
the effect of reduction of AaFPPase mRNAs on JH biosynthesis.

Conclusions: AaFPPase-1 and AaFPPase-2 are members of the NagD family of the Class IIA C2 cap-containing haloalkanoic
acid dehalogenase (HAD) super family and efficiently hydrolyzed FPP into FOL. AaFPPase activities were different in CA of
sugar and blood-fed females. Injection of dsRNAs resulted in a significant reduction of AaFPPase-1 and AaFPPase-2 mRNAs,
but only reduction of AaFPPase-1 caused a significant decrease of JH biosynthesis. These results suggest that AaFPPase-1 is
predominantly involved in the catalysis of FPP into FOL in the CA of A. aegypti.
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Introduction

Juvenile hormone (JH) plays a central role in insect development

and reproduction [1]. JH is synthesized by the corpora allata (CA), a

pair of endocrine glands connected to the brain [2]. The late steps

of JH III biosynthesis in the mosquito Aedes aegypti involve the

hydrolysis of farnesyl pyrophosphate (FPP) to farnesol (FOL),

which is then successively oxidized to farnesal and farnesoic acid

(FA) by an alcohol dehydrogenase [3] and an aldehyde dehydro-

genase [4]. Farnesoic acid is methylated by a juvenile hormone

acid methyl transferase [5] to form methyl farnesoate. In the last

step, methyl farnesoate is transformed to JH III by a P450

epoxidase [6]. Characterization of CA enzymes has been hindered

by the minute size of the endocrine gland; recently, the first

description of an FPP phosphatase (FPPase) expressed in the CA of

an insect was described in Drosophila melanogaster [7]. It is a member

of the haloalkanoic acid dehalogenase (HAD) super family that

catalyzes phosphoryl transfer reactions on a remarkably diverse set

of substrates and includes enzymes such as: phosphoesterases,

ATPases, phosphonatases, dehalogenases and sugar phosphomu-

tases [8,9]. HAD phosphatases employ an aspartate residue as a

nucleophile in a magnesium-dependent phosphoaspartyl transfer-

ase reaction. The HAD superfamily is represented in the

proteomes of organisms from all three super-kingdoms. The

highly conserved structural core of the HAD enzymes consists of a

a/b domain that adopts the topology typical of the Rossmann a/b
folds housing the catalytic site and can be distinguished from all

other Rossmanoid folds by two unique structural motifs: 1) an

almost complete a-helical turn, named the ‘squiggle’, and 2) a b-

hairpin turn, termed the ‘flap’ [10,11]. The catalytic site is thus a

composite of the four loops of the core domain and loop 5 of the

cap domain. Whereas the core domain orchestrates the core

chemistry, the cap domain functions in adapting that chemistry to

a specific substrate (11).

The HAD superfamily can be divided into three generic classes

based on the existence and location of a cap domain involved in

substrate recognition. Class I possesses a small a-helical bundle

cap between motifs I and II; Class II displays a cap between the

second and third motifs; and Class III members present no cap

domain [11]. Members of the HAD phosphatase superfamily have
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four conserved amino acid signature motifs [12,9,13]. These 4

signature motifs are also well conserved in the FPPase described in

Drosophila (DmFPPase) [7]. Bioinformatics searches for orthologs of

the DmFPPase in A. aegypti led to the identification of 3 putative

FPPase paralogs expressed in the CA of the mosquito (AaFPPase-1,

-2, and -3). Recombinant AaFPPase-1 and AaFPPase-2 were found

to efficiently hydrolyze FPP into FOL. Different FPPase activities

were detected in CA extracts from adult female mosquitoes having

diverse JH biosynthetic rates. Injection of dsRNAs resulted in a

significant reduction of AaFPPase-1 and AaFPPase-2 mRNAs, but

only reduction of AaFPPase-1 caused a significant decrease on JH

biosynthesis. These results suggest that AaFPPase-1 is predomi-

nantly involved in the catalysis of FPP into FOL in the CA of A.

aegypti.

Materials and Methods

2.1. Chemicals
FPP, geranyl diphosphate (GPP) and isopentenyl diphosphate

(IPP) were purchased from Echelon Biosciences (Salt Lake City,

UT). p-nitrophenyl phosphate (p-NPP) was purchased from MP

Biomedicals (Santa Ana, CA). N-acetyl-S-geranylgeranyl-L-cyste-

ine (AGGC) and N-acetyl-S-farnesyl-L-cysteine (AFC) were

purchased from Cayman chemicals (Ann Arbor, MI). Taurolitho-

cholic acid 3-sulfate was purchased from Sigma-Aldrich (St. Louis,

MO).

2.2. Insects
A. aegypti of the Rockefeller strain were reared at 28uC and 80%

relative humidity under a photoperiod of 16 h light: 8 h dark. A

cotton pad soaked in 3% sucrose solution was provided to adults.

Four-day-old female mosquitoes were membrane-fed porcine

blood equilibrated to 37uC, and ATP was added to the blood

meal to a final concentration of 1 mM immediately before use.

2.3. Expression of recombinant AaFPPases
AaFPPase cDNAs were expressed in E. coli cells as described by

Mayoral et al. [5]. Recombinant His-tagged proteins were purified

using HiTrap chelating columns and PD-10 desalting columns

(Amersham Pharmacia, Piscataway, NJ). Glycerol was added to

the enzyme solution (final concentration 50%), and samples were

stored at 220uC until used. Protein concentrations were

determined using the bicinchoninic acid protein assay reagent

(BCA) (Pierce, Rockford, IL). Bovine serum albumin was used as a

standard.

2.4. Enzyme assays
2.4.1 Phosphatase assay. The catalytic activity of recombi-

nant AaFPPases towards p-NPP was measured in 96 well plates as

described by Cao et al. [7]. Phosphatase activities towards different

isoprenoid pyrophosphate substrates were determined using the

Malachite Green Phosphate Assay Kit (Bioassay Systems, Hay-

ward, CA); enzymatic activities were assayed using 40 mL reaction

mixtures containing 100 mM MES, pH 6.0, 2 mM MgCl2,

substrate (150 mM) and 75 ng of enzyme. After 20 min of

incubation at 37uC, the reaction was terminated by the addition

of the malachite green reagent (4:1 v/v), and 30 min later the

production of Pi was measured at 630 nm using a BioTek plate

reader (BioTek, Winooski, VT). Kinetic parameters were deter-

mined by non-linear curve fitting using the GraphPad Prism

software (San Diego, CA).

2.4.2 RP-HPLC analysis of FPPase catalytic

products. Production of FOL from FPP hydrolysis was

analyzed by reverse-phase HPLC. FPP (250 mM) was incubated

with recombinant AaFPPase for 60 min in buffer (100 mM MES,

pH 6.0, 2 mM MgCl2). Reactions were terminated by adding

500 ml of acetonitrile. Samples were centrifuged at 14,000 rpm for

5 min and the organic phase was recovered, filtered and analyzed

by reverse-phase HPLC on a Dionex Summit System (Dionex,

Sunnyvale, CA) equipped with a UVD 170U detector, 680 HPLC

pump, TCC 100 column oven and Chromeleon software. HPLC

was performed on an analytical column Acclaim 120 C18

(25062.1 mm ID, particle size 5 mm) (Dionex), using isocratic

elution from 0 to 20 min (acetonitrile/water, 1:1 v/v), followed by

a linear gradient from 20 to 50 min (acetonitrile-water (50 to 95%,

v/v) and another isocratic elution from 50 min (acetonitrile, 95%).

Flow rate was 0.2 ml/min and column temperature was 25uC.

The eluate was monitored with UV (214 nm). Water or/and

glycerol were used in place of recombinant enzymes in negative

controls.
2.4.3 Effect of inhibitors on AaFPPase activity. Re-

combinant AaFPPases were pre-incubated with different concen-

trations (0 to 40 mM) of putative inhibitors for 10 min and their

activities were measured using the p-NPP assay. The following

compounds were tested: N-acetyl-S-geranylgeranyl-L-cysteine

(AGGC), N-acetyl-S-farnesyl-L-cysteine (AFC) and taurolitho-

cholic acid 3-sulfate.

2.5. Quantitative real-time PCR (qPCR)
RNA isolation and qPCR were performed as described by

Nouzova et al. [6]. The primers and probes for the house keeping

gene 60S ribosomal protein rpL32 and AaFPPase transcripts are

included in Table S1.

2.6. RNAi experiments
Synthesis and microinjections of double-stranded RNA

(dsRNA) were performed as described by Perez-Hedo et al. [14].

AaFPPases and YFP (yellow fluorescent protein) target sequences

for dsRNA synthesis were amplified by PCR using the AaFPPase-i

and YFP-i primers (Table S1). The resulting amplicons were

diluted 50-fold, and 1 ml was used as template in PCR reactions

with primers containing T7 promoter sequences (Table S1). The

products from these PCR reactions were purified using a

QIAquick PCR purification kit (QIAquick sciences, Germantown,

MD), and 1–2 mg of the purified DNA templates were used to

synthesize dsRNAs with a Megascript RNAi kit (Ambion, Austin,

TX). dsRNAs were precipitated using ammonium acetate/

ethanol, and resuspended in ddH2O to a final concentration of

3–4 mg/ml. In each knockdown experiment, newly emerged female

mosquitoes were cold anesthetized and injected intrathoracically

with 1.6 mg of dsRNA using a Drummond Nanoject II micro-

injector and a micromanipulator. The effect of dsRNA was

evaluated 4 days after injection, a time selected based on the

analysis of dsRNA depletion experiments.

2.7. FPPase activity in CA extracts
FPPase activities in mosquito CA-CC (corpora allata-corpora

cardiaca complex) were measured by HPLC coupled to a

fluorescent detector (HPLC-FD) monitoring the production of

farnesol. Glands were dissected in buffer solution (100 mM MES

pH 6.0, 2 mM MgCl2). CA-CC were homogenized for 1 min,

sonicated 3 min and centrifuged at 10,000 g for 10 min at 4uC.

Supernatants were recovered and used as crude extract for activity

assays as previously described [4]. The reaction products were

labeled with DBD-COC1 for further quantification on HPLC-FD

[15]. Controls such as boiled crude extract and reactions without

enzyme were included. A standard curve was constructed for the

quantification of tagged farnesol.

FPPase in Mosquitoes
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2.8. JH biosynthesis assay
The amount of JH synthesized by CA-CC complexes in vitro was

quantified by high performance liquid chromatography coupled to

a fluorescent detector (HPLC-FD) [15]. The assay is based on the

derivatization of JH III with a fluorescent tag with subsequent

analysis by reverse phase HPLC-FD.

2.9. Secondary structure and phylogenetic analysis
The secondary structure for AaFPPase-1 was predicted using the

protein structure homology-modeling server Swiss v.8.05 [16,17]

and the Human pyridoxal phosphate phosphatase (2oycA), that

share a similarity of 29%, as template. A Maximum-Likelihood

tree was built using MEGA software version 5.1 [18], with a

bootstrapping of 1000. Pairwise deletion method was selected for

the gap/missing data.

2.10. Statistical analysis
Statistical analyses were performed using the GraphPad Prism

Software (San Diego, CA, USA). The results are expressed as

means 6 S.E.M. Significant differences (P,0.05) were determined

with a one-tailed student t-test or one-way ANOVA followed by a

pair-wise comparison of means (Tukey’s test).

Results

3.1. Identification of three A. aegypti FPPases expressed
in the CA

Using the sequence of a D. melanogaster FPPase (CG15739) that

converts FPP into FOL (DmFPPase) [7] we screened the A. aegypti

genome (Vectorbase) [19]. Eight HAD genes displaying over 48%

amino acid sequence similarity were identified (Genbank accession

numbers: AAEL012292, AAEL010099, AAEL010098,

AAEL007097, AAEL007094, AAEL007098, AAEL007090 and

AAEL009503). By examining the temporal and tissue dependent

expression of the 8 HAD genes by PCR we identified 3 HADs that

were expressed in the CA of adult female mosquito at appropriate

times (Genbank: AAEL010099, AAEL007090 and AAEL009503)

(Figure S1); we named them AaFPPase-1, AaFPPase-2 and

AaFPPase-3 respectively, and were further considered as putative

AaFPPases that could be involved in JH biosynthesis. Amino acid

sequence alignments of A. aegypti and D. melanogaster FPPases

revealed a number of well conserved residues typical of the HAD

phosphatases, including an aspartic acid (Asp36) that acts as the

catalytic nucleophile, a serine or threonine (Ser67) for binding the

phosphate group and two aspartic acid residues (Asp253, Asp258)

important for binding the Mg2+ cofactor [20,13] (Fig. 1). The

AaFPPase-1 structure obtained by homology modeling exhibited

the typical HAD core and cap regions, with the catalytic site as a

composite of the four conserved loops of the core region and the

loop 5 of the cap region (cap 2 domain) (Fig. 1).

A phylogram was generated using FPPase orthologs found in

insects and human (Fig. 2). HAD classes IA and IIA clearly

separated in two distinct clusters; the main cluster comprises

members of the NagD family included in the class IIA with a C2

cap domain (motif V or loop 5) located between the second and

third motif. Each of these amino acid sequences contains the

conserved four loops (Motif I–IV). Most of the insects phospha-

tases identified presented one functional HAD domain in the N-

terminal of the protein; with many displaying a second incomplete

HAD domain in the C-terminus. In addition, three D. melanogaster

phosphatases had a second functional HAD domain on the C-

terminal. We also identified three D. melanogaster sequences with a

single catalytic HAD domain in the C-terminus of the proteins.

Two Human HAD phosphatases (phosphoglycolate phosphatase

and pyridoxal phosphatase) were also grouped in the class IIA.

Finally, as outgroup we used the bi-functional human epoxy

hydrolase that belongs to the Class IA, having a C1 cap located

between the motif I and II; this enzyme possess both phosphatase

and epoxy hydrolase functional domains. We identified three A.

aegypti orthologs of the epoxy hydrolase, but they only possess the

epoxy hydrolase domain.

3.2. All AaFPPases hydrolyzed p-NPP, but only AaFPPase-
1 and -2 converted FPP into farnesol

The three putative AaFPPases were overexpressed in E. coli.

Recombinant His-tagged proteins (,35 kDa) were purified and

phosphatase activities were measured using para-nitrophenyl

phosphate (p-NPP), a chromogenic substrate for most phospha-

tases, including alkaline, acid, protein tyrosine and serine/

threonine phosphatases. AaFPPase-2 (Km = 315.5646.9 mM) had

higher affinity for p-NPP than AaFPPase-1 (Km =

3959.436126.78 mM). All AaFPPases increased their catalytic

activities in a dose-response manner when Mg2+ was used as a

cofactor (Fig. 3) reaching their maximum activity at pH 6.0 (Fig. 3),

which is consistent with previous findings in fruit flies [7].

The specific activities of AaFPPases toward isoprenoid phos-

phates were measured using the malachite green assay, in which

the amount of released inorganic phosphate is determined by

quantifying the formation of a complex between malachite green

molybdate and free orthophosphate that absorbs at 620–640 nm

[21]. Only AaFPPase-1 and AaFPPase-2 efficiently hydrolyzed FPP

into FOL (Km = ,222 mM) (Table 1). AaFPPase-1 (Km =

184.45614.16 mM) and AaFPPase-2 (Km = 273.9862.52 mM)

also efficiently hydrolyzed GPP. Both enzymes also demonstrated

a low affinity for IPP (Table 1). Both enzymes displayed higher

‘‘catalytic efficiencies’’ for GPP than for FPP with Kcat/Km

specificity constants for GPP 3–4 fold higher than those for FPP

(Table 1). Conversion of FPP into FOL by AaFPPase-1 and

AaFPPase-2 was confirmed by RP-HPLC analysis (Figure S2). For

the substrates used in this study we found no evidence that

pyrophosphate was released from AaFPPases catalyzed reactions.

The malachite green phosphate assay does not detect pyrophos-

phate, but only identifies free phosphate released in solution. In

addition, when we treated the products of the AaFPPases catalyzed

reaction with pyrophosphatase (an enzyme which cleaves a

pyrophosphate into two phosphate ions) we did not detect any

significant increase in the amount of free phosphate.

Two isoprenoid-derived compounds, AGGC, AFC and a lipid

sulfate were evaluated as potential inhibitors of the AaFPPase

catalytic activity. While AGGC was a potent inhibitor of

AaFPPase-1 and AaFPPase-2 (Figure S3), AFC and taurolitho-

cholic acid 3-sulfate had little effect.

3.3. The CA exhibited variable FPPase activity
Corpora allata extracts were able to convert FPP into FOL,

with the FPPase catalytic activity increasing more than 4 fold

when 2 mM MgCl2 was added (Fig. 4A). AaFPPase activities

were measured in CA extracts from adult female mosquitoes

having three distinct JH biosynthetic conditions: basal activity

(0 h or newly emerged adult), high activity (24 h sugar-fed)

and suppressed activity (24 h after blood feeding). In the

presence of an excess of FPP, highly active glands produced

92 fmol of FOL/CA/h, while suppressed glands produced

only 45 fmol of FOL/CA/h. The CA with basal activity from

newly emerged females, that produced only 12 fmol/h of JH,

had quite elevated FPPase activity (210 fmol of FOL/CA/h)

(Fig. 4B).

FPPase in Mosquitoes
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3.4. Tissue- and developmental-stage-specific expression
of AaFPPases

Quantitative real time PCR was used to analyze the tissue- and

developmental-stage-specific expression of AaFPPases. All three

AaFPPase genes were expressed in the CA, but highest transcript

levels were detected in other mosquito tissues. The highest level of

AaFPPase-1 mRNA was detected in midgut and Malphigian

tubules, while that of AaFPPase-2 mRNA in Malphigian tubules

and AaFPPase-3 transcripts were most abundant in brain and

ovaries (Fig. 5). A developmental time course of mRNA expression

in the CA showed that transcripts of AaFPPase-1 and AaFPPase-2

were low in late pupae, increased after emergence and peaked at

day one in sugar-fed mosquitoes (Fig. 6A). AaFPPase-3 transcripts

levels remained relatively constant for the same period. Transcript

levels for the three AaFPPase genes moderately increased after

blood-feeding (Fig. 6B).

3.5. Reduction of AaFPPase-1 by RNAi caused a
significant decrease on JH biosynthesis

Since AaFPPase-3 did not appear to catalyze FPP, it was not

further considered to have a major role in JH biosynthesis.

Therefore the effect of mRNA depletion using RNAi was only

studied with AaFPPase-1 and AaFPPase-2. Injection of dsRNA

resulted in a significant reduction of AaFPPase-1 and AaFPPase-2

mRNAs (,80%) (Fig. 7A). Reduction of AaFPPase-1 transcripts

resulted in a significant reduction in JH biosynthesis when

compared with CA of females treated with dsYFP or dsAaFP-

Pase-2 (Fig. 7B).

Discussion

4.1. Molecular and functional characterization of
AaFPPases expressed in the corpora allata of mosquitoes

In this study we had identified and characterized two corpora

allata mosquito NagD phosphatases that are able to convert FPP

into FOL. The homology model of AaFPPase-1 exhibited the

typical HAD core and cap regions [22,13]. The core region is

considered to be a modular phosphoryl-transfer unit with the

squiggle and flap motifs providing a solvent exclusion mechanism

that allows HAD enzymes to alternate between ‘‘open’’ and

‘‘closed’’ conformations. The enzyme in the ‘‘open’’ configuration

allows the substrate to enter the active site and interact with the

highly conserved catalytic residues in the 4 core motifs and the cap

Figure 1. Homology model of the overall fold of AaFPPase-1 and amino acid sequence alignment of HAD motifs and cap domains
from mosquito, fruit fly and human. (A) Homology model of the overall fold of AaFPPase-1. Core region is colored in green and cap region in
light blue. Motifs are indicated by colors: motif I (red), motif II (orange), motif III (pink), motif IV (yellow), cap domain (dark blue) and squiggle
(chocolate). B) Molecular surface diagram illustrating the active site pocket and the cap 2 region of AaFPPase-1. Core region is colored green and cap
region in light blue. Motifs are indicated by colors: Motif I (red), motif II (orange), motif III (pink), motif IV (yellow), cap domain (dark blue) and squigle
(chocolate). The two structures were constructed by PyMOL using the Human pyridoxal phosphate phosphatase (2oycA) as template. C) Amino acid
sequence alignment of HAD motifs and cap domains from mosquito (AaFPPase-1, -2 and -3), fruit fly (DmFPPase), human pyridoxal phosphatase (H.
sapiens_PLP) and human epoxy hydrolase (H. sapiens_sEH). The suggested functions for the motifs are: motif I is required for nucleophilic attack,
motif II is responsible for substrate binding, the motif III Lys is required for stabilizing the negative charge of the reaction intermediate together with
the Ser/Thr of motif II, motif IV is needed for Mg2+ ion binding and the cap domain is involved in substrate recognition. Bold letters indicate the
conserved residues in each motif. The numbers represent the amino acid positions in the sequences. ‘‘h’’ denotes a hydrophobic residue and ‘‘x’’ any
residue. Accession numbers: DmFPPase (CG15739), H. sapiens_PLP (NP_064711.1) and H. sapiens_sEH (NP_001243411.1).
doi:10.1371/journal.pone.0071967.g001
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[13,9]. Upon cap closure, some residues in the cap domain enter

the active site and engage in catalysis. Once the substrate is bound,

the enzyme assumes a ‘‘closed’’ configuration and the Mg2+ ion in

the active site interacts with the negatively charged phosphate,

preparing it for nucleophilic attack by the first conserved aspartate

on motif I [13] (Figure S4).

Figure 2. Phylogenetic analysis of HAD superfamily sequences from insects and human. Sequences are labeled with species names and
accession numbers in between brackets. The bifunctional human epoxy hydrolase (NP_001243411.1) was used as outgroup. Sequences grouped in
two clades. All sequences in Clade 1 are members of the NagD family included in the class IIA of HAD proteins. Sub-clades are separated by the
localization of the HAD domain and the presence of a Ser (S) or Thr (T) in motif II. The position of the functional domain is referred as N-terminus or C-
terminus. Insects with two potential HAD functional domains are shown with an asterisk. Bold labels represent the AaFPPase- 1, AaFPPase-2 and
AaFPPase-3. Human sequences are represented by dotted lines in the tree. All sequences in Clade 2 are epoxy hydrolases, which are members of the
class IA of HAD proteins.
doi:10.1371/journal.pone.0071967.g002
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AaFPPase-1 and the previously described DmFPPase (GC15739)

[7] are both expressed in the CA, process FPP into FOL and are

part of a cluster of NagD family members that contain one

functional active site (HAD domain) in the N-terminus of the core

unit. Additional close related NagD sequences in other insects

exhibited variability on the number and location of the HAD

domains; although the effect of these changes on activity and

substrate specificity remains to be studied. The study of FPPases

from additional insect species could help to improve our

understanding of the basis of isoprenoid phosphate binding

specificity in NagD insect proteins.

4.2. Expression of AaFPPases genes
Previous studies in Bombyx mori [23,24] and A. aegypti [6]

suggested that the transcripts for most of the JH biosynthetic

enzymes were highly enriched or exclusively expressed in the CA.

The last two metabolic reactions, the methylation of FA and the

epoxidation of MF, are most likely exclusive for JH biosynthesis

and therefore the enzymes involved (juvenile hormone acid methyl

transferase and epoxidase) should be highly expressed in the CA

[6]. In contrast, other enzymes in the late pathway, such as the

AaFPPases described in these studies, farnesol dehydrogenases [3]

and farnesal dehydrogenases [4] are broadly expressed in many

tissues. This is not surprising since farnesol and farnesal

homeostasis are vital for cells in all insect tissues. Farnesol acts

Figure 3. Metal dependence and optimum pH. Phosphatase
activity was measured using p-NPP. A) Magnesium dose-dependent
increases of activities. B) Optimum pH determinations. Three different
buffers were used: Sodium acetate at pH 4.5 to 5.5, MES at pH 5.5 to 7
and Tris at pH 7 to 9. Each value represents the means 6 S.E.M. of three
replicate assays. Relative activity is defined as a percentage of the
highest value recorded.
doi:10.1371/journal.pone.0071967.g003

Table 1. Substrate specificity for AaFPPase-1 and AaFPPase-2.

Substrate Km mM ±SE
Vmax mmol
min21mg21 ± SE Kcat s21 Kcat/Km M21s21 Recombinant Enzymes

FPP 222.36611.0 6.4560.76 3.33 1.56104 AaFPPase-1

GPP 184.45614.16 12.7160.37 7.92 4.36104 AaFPPase-1

IPP .900 ND ND ND AaFPPase-1

FPP 221.02615.62 5.7760.15 2.98 1.326104 AaFPPase-2

GPP 273.9862.52 28.360.95 17.49 6.36104 AaFPPase-2

IPP .900 ND ND ND AaFPPase-2

doi:10.1371/journal.pone.0071967.t001

Figure 4. FPPase activity in CA extracts. A) Effect of Mg2+ on
FPPase activity: Extracts of CA dissected from sugar-fed females 24 h
after emergence were incubated with or without 2 mM MgCl2. Bars
represent the means 6 S.E.M. of three replicates of extracts from
groups of 5 CA. Asterisks denote significant difference (unpaired t-test,
***P,0.001). B) The CA exhibited variable FPPase activity: Extracts of CA
dissected from newly emerged females (0), 24 h after emergence (24SF)
and 24 h after blood feeding (24BF) were incubated for 1 h in the
presence of an excess of FPP. Bars represent the means 6 S.E.M. of
three replicates of extracts from groups of 10 CA. Different letters above
the columns indicate significant differences among treatments (one
way ANOVA p,0.05, with Tukey’s test of multiple comparisons).
doi:10.1371/journal.pone.0071967.g004
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as a signaling molecule in cell proliferation and apoptosis

[25,26,27]. Posttranslational modifications by attachment of a

farnesyl group to C-terminal cysteine of target proteins by

farnesyl-transferases are essential for signal transduction and

vesicular transport [28]. Farnesal dehydrogenases play key roles

in the generation of fatty alcohols and fatty acids as well as in the

elimination of toxic biogenic and xenobiotic aldehydes, such as

those produced by oxidative damage of glycerolipids or during

protein deprenylation [29,30,31]. The presence of more than one

isozyme capable of catalyzing the hydrolysis of long chain

pyrophosphates in mosquitoes suggests that selection mechanism

caused duplication and diversification of members of the NagD

family and facilitated the evolution of more efficient substrate

specificities, as well as a better tissue and developmental

regulation; essential for the critical role that these phosphatases

play in every cell.

4.3. AaFPPase-1 and JH biosynthesis
JH levels must be modulated to enable the normal progress

of development and reproductive maturation in mosquitoes

[32]. Changes in JH titers in female adult A. aegypti

mosquitoes are very dynamic. The CA needs to adjust its

synthetic activity to generate these dynamic changes [33]. The

rate of JH biosynthesis is controlled by the rate of flux of

isoprenoids in the pathway, which is the outcome of a

complex interplay of changes in precursor pools, enzyme

levels and external regulators [6]. Changes in the nutritional

status in female mosquitoes [34], as well as the manipulation

of individual precursor pool concentrations (e.g. FOL, FAL

and FA) affect the rate of JH biosynthesis [6]. Dynamic

changes of JH biosynthesis are controlled in part by a

coordinated expression of the enzymes associated to the

pathway [6]. Using an HPLC-fluorescence approach, we were

able to measure the changes in the production of FOL by

AaFPPase from CA extracts dissected from newly emerged

mosquitoes, sugar-fed and blood-fed female mosquitoes. As

was shown with the recombinant proteins, the FPPase activity

of the CA extracts were Mg2+ dependent, and exhibited

remarkable differences among basal, highly active and

depressed glands. In sugar-fed females, we found a good

concordance between AaFPPase-1 and -2 mRNA expressions

in the CA and JH biosynthesis [33]. Although the highest

transcript levels of AaFPPases were found in highly active

glands, the maximum enzyme activity was found in basal

active glands, suggesting that the molecular basis for JH

regulation is quite unique at different times during the

reproductive cycle of an adult female mosquito.

We have previously described a 1000-fold difference in the

levels of mRNA expression in the CA among the JH biosynthetic

enzymes [6]. Four enzymes presented overall low levels of

expression, acetoacetyl-CoA thiolase, phosphomevalonate kinase,

farnesol dehydrogenase and farnesal dehydrogenase [6,4]; tran-

scripts numbers for AaFPPase-1 are also low and comparable to

the levels of those 4 genes. Under some conditions any of these

enzymes could become rate limiting or ‘‘bottleneck’’. We have

reported that the low enzymatic activity of farnesal dehydrogenase

could be a restrictive factor for JH biosynthesis in the CA of blood-

fed mosquitoes [4]; a similar condition might apply to AaFPPase-1,

the decrease in enzymatic activity detected after blood-feeding

might reduce the farnesol pool to levels that could limit the flux of

precursors and JH biosynthesis.

AaFPPase-1 and -2 efficiently hydrolyzed FPP into FOL.

Therefore, we selected these 2 genes for RNAi studies Although

the RNAi mediated silencing was efficient for both enzymes, we

found JH biosynthesis was significantly reduced only in AaFPPase-

1 silenced mosquitoes CA, suggesting that AaFPPase-1 is

predominantly involved in JH biosynthesis.

Figure 5. Tissue specific expression of AaFPPases. All tissues
were dissected from 3-day-old sugar-fed females, except for testis and
accessory glands dissected from 3-day-old sugar-fed males. BR: brain;
CA: corpora allata; SG: salivary gland; HT: heart; TG: thoracic ganglia; VG:
ventral ganglia; FB: fat body; MG: midgut; HG: hindgut; MT: Malpighian
tubules; OV: ovaries; TS: testis and AG: accessory gland. Each value
represents the means 6 S.E.M of two independent biological replicates
of 10–20 tissue samples evaluated in triplicate. AaFPPase mRNAs are
expressed as copy number of mRNA/10,000 copies of rpL32 mRNA.
doi:10.1371/journal.pone.0071967.g005

Figure 6. Developmental expression of AaFPPases. A) Expression
on pupae and sugar-fed females: mRNA was isolated from CA of pupae
24 h (224) and 6 h before adult eclosion, newly emerged adult female
(0 h), sugar-fed females 24, 48 and 72 h after eclosion. B) Expression
after blood feeding. Each data point is the means 6 S.E.M. of three
independent biological replicates of 20 CA evaluated in triplicate.
AaFPPase mRNAs are expressed as copy number of mRNA/10,000
copies of rpL32 mRNA.
doi:10.1371/journal.pone.0071967.g006
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Conclusions
A search for orthologs of a farnesyl phosphatase described in

D. melanogaster led to the identification of two NagD AaFPPases

that are expressed in the CA of A. aegypti and efficiently

hydrolyzed FPP into FOL. A combination of RNAi experiments

and biochemical studies using CA extracts and recombinant

proteins support the hypothesis that these HAD enzymes

convert FPP into FOL in the CA and might be involved in

JH biosynthesis in mosquitoes.
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