Senescence-based Colorectal Cancer Subtyping Reveals Distinct Molecular Characteristics and Therapeutic Strategies

Min-Yi Lv^{1,2,3#}, Du Cai^{1,2,3#}, Cheng-Hang Li^{1,2,3#}, Junguo Chen^{1,2,3#}, Guanman Li^{1,2,3}, Chuling Hu^{1,2,3}, Baowen Gai^{1,2,3}, Jiaxin Lei^{1,2,3}, Ping Lan^{1,2,3*}, Xiaojian Wu^{1,2,3*}, Xiaosheng He^{1,2,3*}, Feng Gao^{1,2,3*}

¹Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

² Guangdong Institute of Gastroenterology, Guangzhou, China

³ Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

These authors contributed equally to this article.

Corresponding Authors: Ping Lan, lanping@mail.sysu.edu.cn; Xiaojian Wu, wuxjian@mail.sysu.edu.cn; Xiaosheng He, hexsheng@mail.sysu.edu.cn; Feng Gao, gaof57@mail.sysu.edu.cn.

Supplementary Fig.S1 Identification of the senescence feature in colorectal cancer (CRC). (A) Heatmap showed significant enrichment of senescence-related pathways in CRC compared to normal tissue in the ICGC-ARGO cohort. ES: enrichment scores. (B) The UMAP plot showed that senescence-related pathways could distinguish CRC from normal tissue in the ICGC-ARGO cohort. (C) Venn diagram showed that the core senescent genes (CSGs) were established by overlapping among the DEGs, senescence genes and survival genes. (D) The dot plot showed the correlation between CSGs and their *P*-values in relation to disease-free survival (DFS).

Supplementary Fig.S2 Validation of the senescence subtypes in the TCGA-CRC cohort. (A) Heatmap showed the enrichment of senescence-related pathways of three senescence subtypes in the TCGA-CRC cohort. Age, sex, tumor location, TNM stage and microsatellite status were shown above the heatmap. The asterisks represented the statistical *P* value (ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.001). (B) Survival analyses for the three senescence subtypes in the TCGA-CRC cohort. Kaplan–Meier curves showed a significant disease-free survival

difference among three senescence subtypes. (C) Difference of senescent biomarkers among three senescence subtypes in the TCGA-CRC cohort. (D) Survival analyses for the three senescence subtypes in the ICGC-ARGO cohort. Kaplan–Meier curves showed a significant overall survival difference among three senescence subtypes. (E) Survival analyses for the three senescence subtypes in the TCGA-CRC cohort. Kaplan–Meier curves showed a significant overall survival difference among three senescence subtypes.

Supplementary Fig.S3 The Hallmark of colorectal cancer. (A, B) Heatmap showed the enrichment of hallmarks of three senescence subtypes in the ICGC-ARGO cohort **(A)** and TCGA-CRC cohort **(B)**. ES: enrichment scores.

Supplementary Fig.S4 Validation of oncogenic pathways in three senescence subtypes. (A) Heatmap showed the enrichment of ten important oncogenic pathways among the three senescence subtypes in the TCGA-CRC cohort. ES: enrichment scores. (B) Boxplot showed score variations in ten important oncogenic pathways among the three senescence subtypes in TCGA- CRC cohort. (C, D) Sankey plot showed the correlation between senescence subtypes and consensus molecular subtypes (CMS) in the ICGC-ARGO cohort (C) and TCGA-CRC cohort (D).

Supplementary Fig.S5 Nine tissues distribution of three Clusters. The violin plot showed the results of the nine tissue classes algorithm in predicting the number of cells in the three senescence subtypes (TCGA Pathology Slide).

Supplementary Fig.S6 Statistically significant drugs in three senescence subtypes. The violin plot showed all the drugs in the GDSC database with statistical significance among the three senescence subtypes.

Supplementary Fig.S7 Construction of the senescence score with clinical utility. (A) Identification of the 7 CSGs by LASSO algorithm and construction of the senescence score model. (**B-E**) Kaplan–Meier curves comparing disease-free survival (DFS) of patients with the low and high senescence scores in the ICGC-ARGO (**B**), TCGA-CRC (**C**), GSE39582 (**D**) and Meta-GEO (**E**) cohorts. (**F**) The Forest plot showed the univariate and multivariate Cox regression analyses of senescence scores and other clinical features in the ICGC-ARGO cohort. (**G**) Nomogram was developed in the ICGC-ARGO cohort based on the senescence score, age and TNM stage to predict 2-year, 3-year, and 5-year outcomes. (**H**) Calibration curves of 3-year and 5-year DFS for patients with CRC in the ICGC-ARGO cohort. (**I**) Time-dependent ROC of DFS for patients with CRC in the ICGC-ARGO cohort.

Supplementary Fig.S8 Validation of the senescence score group in the TCGA-CRC cohort. (A) Difference of senescent biomarkers between high and low senescence score groups (TCGA-CRC cohort). (B) Sankey plot showed the correlation between senescent subtypes, senescence score groups and consensus molecular subtypes (CMS) (TCGA-CRC cohort). (C-F) The correlation between senescence subtypes and senescence scores in the ICGC-ARGO cohort (C), TCGA-CRC cohort (D), GSE39582 (E) and Meta-GEO cohort (F). (G) Boxplot showed the differences in

immune exclusion and immune exhaustion between high and low senescence score groups in the TCGA-CRC cohort. (H, I) The correlation between CMS and senescence scores in the ICGC-ARGO cohort (I) and TCGA-CRC cohort (I). (J) The correlation between stromal score and senescence score in the ICGC-ARGO cohort.

Supplementary Table 1. The summary of senescence pathways

Senescence Pathways
CHICAS_RB1_TARGETS_SENESCENT
COURTOIS_SENESCENCE_TRIGGERS
DEMAGALHAES_AGING_DN
DEMAGALHAES_AGING_UP
FRIDMAN_SENESCENCE_DN
FRIDMAN_SENESCENCE_UP
GO_AGING
GO_CELL_AGING
GO_CELLULAR_SENESCENCE
GO_DNA_PACKAGING
GO_DNA_PACKAGING_COMPLEX
GO_MULTICELLULAR_ORGANISM_AGING
GO_NEGATIVE_REGULATION_OF_CELL_AGING
GO_NEGATIVE_REGULATION_OF_CELLULAR_SENESCENCE
GO_POSITIVE_REGULATION_OF_CELL_AGING
GO_REGULATION_OF_CELL_AGING
GO_REPLICATIVE_CELL_AGING
GO_REPLICATIVE_SENESCENCE
GO_STRESS_INDUCED_PREMATURE_SENESCENCE
JIANG_AGING_CEREBRAL_CORTEX_DN
JIANG_AGING_CEREBRAL_CORTEX_UP
JIANG_AGING_HYPOTHALAMUS_DN
JIANG_AGING_HYPOTHALAMUS_UP
JU_AGING_TERC_TARGETS_DN
JU_AGING_TERC_TARGETS_UP
KAMMINGA_SENESCENCE
KAYO_AGING_MUSCLE_DN
KAYO_AGING_MUSCLE_UP
KYNG_NORMAL_AGING_DN
KYNG_NORMAL_AGING_UP

KYNG_WERNER_SYNDROM_AND_NORMAL_AGING_DN
KYNG_WERNER_SYNDROM_AND_NORMAL_AGING_UP
LEE_AGING_CEREBELLUM_DN
LEE_AGING_CEREBELLUM_UP
LEE_AGING_MUSCLE_DN
LEE_AGING_MUSCLE_UP
LEE_AGING_NEOCORTEX_DN
LEE_AGING_NEOCORTEX_UP
LU_AGING_BRAIN_DN
LU_AGING_BRAIN_UP
LY_AGING_MIDDLE_DN
LY_AGING_MIDDLE_UP
LY_AGING_OLD_DN
LY_AGING_OLD_UP
LY_AGING_PREMATURE_DN
REACTOME_CELLULAR_SENESCENCE
REACTOME_DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENESCENCE
REACTOME_FORMATION_OF_SENESCENCE_ASSOCIATED_HETEROCHROMATIN_FOCI_SAHF
REACTOME_NICOTINAMIDE_SALVAGING
REACTOME_ONCOGENE_INDUCED_SENESCENCE
REACTOME_OXIDATIVE_STRESS_INDUCED_SENESCENCE
REACTOME_SENESCENCE_ASSOCIATED_SECRETORY_PHENOTYPE_SASP
RODWELL_AGING_KIDNEY_DN
RODWELL_AGING_KIDNEY_NO_BLOOD_DN
RODWELL_AGING_KIDNEY_NO_BLOOD_UP
RODWELL_AGING_KIDNEY_UP
TANG_SENESCENCE_TP53_TARGETS_DN
TANG_SENESCENCE_TP53_TARGETS_UP
VISALA_AGING_LYMPHOCYTE_DN
VISALA_AGING_LYMPHOCYTE_UP
VISALA_RESPONSE_TO_HEAT_SHOCK_AND_AGING_DN

Supplementary Table 2. Details of statistically significant drugs in the three

senescence subtypes.

Drug	Synonyms	Targot	Target	Sensetive
Diug	Synonyms	Target	pathways	senescence subtypes
	INCB-18424,		Other	
Ruxolitinib	Ruxolitinib	JAK1, JAK2	kinasos	Cluster1,Cluster2
	Phosphate, Jakafi		KIIId3C3	
Sepantronium	YM155, YM-155,		Apoptosis	Clustor?
bromide	YM 155	BINCS	regulation	Clusters

Alisertib	MLN8237	AURKA	Mitosis	Cluster1,Cluster2	
Docetaxel	RP-56976,	Microtubule	Mitosis	Cluster1 Cluster2	
Docetaker	Taxotere	stabiliser	141100315		
MK-1775	AZD1775	WEE1, PLK1	Cell cycle	Cluster1,Cluster2	
EPZ004777	EPZ-004777	DOT1L	Chromatin histone methylation	Cluster1,Cluster2	
IAP_5620	SN1043546339	IAP	Other	Cluster1,Cluster2	
IWP-2	Wnt Inhibitor IWP-2	PORCN	WNT signaling	Cluster1,Cluster2	
VE-822	VE 822, VE822, Berzosertib	ATR	Genome integrity	Cluster1	
CZC24832	GTPL6653	PI3Kgamma	PI3K/MTOR signaling	Cluster1,Cluster2	
PFI3	PFI-3, PFI 3, AOB2221	Polybromo 1, SMARCA4, SMARCA2	Chromatin other	Cluster1,Cluster2	
Picolinici-acid	Picolinate	Inflammatory related	Other	Cluster1,Cluster2	
Eg5_9814	SN1047613775, Eg5_9814	KSP11	Other	Cluster1,Cluster2	
JAK1_8709	SN1049200060, JAK1_8709	JAK1	Other, kinases	Cluster1,Cluster2	
AZD5991	SN1049446612, AZD5991	MCL1	Apoptosis regulation	Cluster1,Cluster2	
JAK_8517	SN1066590414, JAK_8517	JAK1, JAK2	Other, kinases	Cluster1,Cluster2	
Zoledronate	Zoledronic acid, Zometa, Reclast		Unclassified	Cluster1,Cluster2	
Carmustine			DNA replication	Cluster1,Cluster2	
LY2109761	5XE	TGFB1	Other	Cluster1,Cluster2	
MN-64		TNKS1, TNKS2	WNT signaling	Cluster1,Cluster2	
AGI-5198	IDH-C35	IDH1 (R132H)	Metabolism	Cluster1,Cluster2	
MIRA-1	MIRA 1, MIRA1, NSC19630, NSC- 19630, NSC 19630	ТР53	p53 pathway	Cluster1,Cluster2	
BIBR-1532		TERT	Genome integrity	Cluster1,Cluster2	
MK-8776	SCH900776	CHEK1, CHEK2, CDK2	Cell cycle	Cluster1,Cluster2	

VE821	VE 821, VE-821	ATR	Genome integrity	Cluster1,Cluster2
-------	----------------	-----	---------------------	-------------------

Supplementary Table 3. Univariate Cox analysis of clinical factors related to

DFS of patients in ICGC-ARGO cohort

Variable	HR	95CI% (low)	95CI% (high)	adjusted P
Senescence scores	2.65	1.94	3.61	<0.0001
Sex	1.32	1.01	1.72	0.043
Age	1.36	1.05	1.76	0.019
Tumor location	1.28	0.96	1.73	0.096
Microsatellite status	0.48	0.27	0.86	0.012
TNM stage	3.3	2.78	3.92	<0.0001

Supplementary Table 3. Multivariate Cox analysis of clinical factors related

to DFS of patients in ICGC-ARGO cohort

Variable	HR	95CI% (low)	95CI% (high)	adjusted P
Senescence scores	1.86	1.34	2.58	0.00019
Sex	1.29	0.98	1.71	0.073
Age	1.7	1.3	2.23	0.00013
Tumor location	NA	NA	NA	NA
Microsatellite status	0.83	0.46	1.5	0.53
TNM stage	3.16	2.63	3.78	<0.0001

Supplementary Table 4. The signatures of ten oncogenic pathways

Symbol	Pathway
CCND1	Cell.Cycle_activated
CCND2	Cell.Cycle_activated
CCND3	Cell.Cycle_activated
CCNE1	Cell.Cycle_activated
CDK2	Cell.Cycle_activated
CDK4	Cell.Cycle_activated
CDK6	Cell.Cycle_activated
E2F1	Cell.Cycle_activated
E2F3	Cell.Cycle_activated
YAP1	Hippo_activated
TEAD1	Hippo_activated

TEAD2	Hippo_activated
TEAD3	Hippo_activated
TEAD4	Hippo_activated
WWTR1	Hippo_activated
MYC	MYC_activated
MYCL1	MYC_activated
MYCN	MYC_activated
CREBBP	NOTCH_activated
EP300	NOTCH_activated
HES1	NOTCH_activated
HES2	NOTCH_activated
HES3	NOTCH_activated
HES4	NOTCH_activated
HES5	NOTCH_activated
HEY1	NOTCH_activated
HEY2	NOTCH_activated
HEYL	NOTCH_activated
KAT2B	NOTCH_activated
NOTCH1	NOTCH_activated
NOTCH2	NOTCH_activated
NOTCH3	NOTCH_activated
NOTCH4	NOTCH_activated
PSEN2	NOTCH_activated
LFNG	NOTCH_activated
NCSTN	NOTCH_activated
JAG1	NOTCH_activated
APH1A	NOTCH_activated
FHL1	NOTCH_activated
THBS2	NOTCH_activated
MFAP2	NOTCH_activated
RFNG	NOTCH_activated
MFAP5	NOTCH_activated
JAG2	NOTCH_activated
MAML3	NOTCH_activated
MFNG	NOTCH_activated
CNTN1	NOTCH_activated
MAML1	NOTCH_activated
MAML2	NOTCH_activated
PSEN1	NOTCH_activated
PSENEN	NOTCH_activated
RBPJ	NOTCH_activated
RBPJL	NOTCH_activated

SNW1	NOTCH_activated
ADAM10	NOTCH_activated
APH1B	NOTCH_activated
ADAM17	NOTCH_activated
DLK1	NOTCH_activated
DLL1	NOTCH_activated
DLL3	NOTCH_activated
DLL4	NOTCH_activated
DNER	NOTCH_activated
DTX1	NOTCH_activated
DTX2	NOTCH_activated
DTX3	NOTCH_activated
DTX3L	NOTCH_activated
DTX4	NOTCH_activated
EGFL7	NOTCH_activated
NFE2L2	NRF2_activated
EIF4EBP1	PI3K_activated
AKT1	PI3K_activated
AKT2	PI3K_activated
АКТЗ	PI3K_activated
AKT1S1	PI3K_activated
INPP4B	PI3K_activated
МАРКАР1	PI3K_activated
MLST8	PI3K_activated
MTOR	PI3K_activated
PDK1	PI3K_activated
PIK3CA	PI3K_activated
РІКЗСВ	PI3K_activated
PIK3R2	PI3K_activated
RHEB	PI3K_activated
RICTOR	PI3K_activated
RPTOR	PI3K_activated
RPS6	PI3K_activated
RPS6KB1	PI3K_activated
STK11	PI3K_activated
TGFBR1	TGF-B_activated
TGFBR2	TGF-B_activated
ACVR2A	TGF-B_activated
ACVR1B	TGF-B activated
SMAD2	TGF-B_activated
SMAD2 SMAD3	TGF-B_activated TGF-B_activated

TP53	TP53_activated
ATM	TP53_activated
CHEK2	TP53_activated
RPS6KA3	TP53_activated
LEF1	Wnt_activated
LGR4	Wnt_activated
LGR5	Wnt_activated
LZTR1	Wnt_activated
NDP	Wnt_activated
PORCN	Wnt_activated
SFRP1	Wnt_activated
SFRP2	Wnt_activated
SFRP4	Wnt_activated
SFRP5	Wnt_activated
SOST	Wnt_activated
TCF7L1	Wnt_activated
WIF1	Wnt_activated
ZNRF3	Wnt_activated
CTNNB1	Wnt_activated
DVL1	Wnt_activated
DVL2	Wnt_activated
DVL3	Wnt_activated
FRAT1	Wnt_activated
FRAT2	Wnt_activated
DKK1	Wnt_activated
DKK2	Wnt_activated
DKK3	Wnt_activated
DKK4	Wnt_activated
RNF43	Wnt_activated
TCF7	Wnt_activated
TCF7L2	Wnt_activated
ABL1	RAS_activated
EGFR	RAS_activated
ERBB2	RAS_activated
ERBB3	RAS_activated
ERBB4	RAS_activated
PDGFRA	RAS_activated
PDGFRB	RAS_activated
MET	RAS_activated
FGFR1	RAS_activated
FGFR2	RAS_activated
FGFR3	RAS_activated

FGFR4	RAS_activated
FLT3	RAS_activated
ALK	RAS_activated
RET	RAS_activated
ROS1	RAS_activated
КІТ	RAS_activated
IGF1R	RAS_activated
NTRK1	RAS_activated
NTRK2	RAS_activated
NTRK3	RAS_activated
SOS1	RAS_activated
GRB2	RAS_activated
PTPN11	RAS_activated
KRAS	RAS_activated
HRAS	RAS_activated
NRAS	RAS_activated
RIT1	RAS_activated
ARAF	RAS_activated
BRAF	RAS_activated
RAF1	RAS_activated
RAC1	RAS_activated
MAP2K1	RAS_activated
MAP2K2	RAS_activated
MAPK1	RAS_activated
INSR	RAS_activated
INSRR	RAS_activated
IRS1	RAS_activated
SOS2	RAS_activated
SHC1	RAS_activated
SHC2	RAS_activated
SHC3	RAS_activated
SHC4	RAS_activated
RASGRP1	RAS_activated
RASGRP2	RAS_activated
RASGRP3	RAS_activated
RASGRP4	RAS_activated
RAPGEF1	RAS_activated
RAPGEF2	RAS_activated
RASGRF1	RAS_activated
RASGRF2	RAS_activated
FNTA	RAS_activated
FNTB	RAS_activated

SPRED1	RAS_activated	
SPRED2	RAS_activated	
SPRED3	RAS_activated	
SHOC2	RAS_activated	
KSR1	RAS_activated	
KSR2	RAS_activated	
JAK2	 RAS_activated	
IRS2	RAS_activated	
CDKN1A	Cell.Cycle_repressed	
CDKN1B	Cell.Cycle_repressed	
CDKN2A	Cell.Cycle_repressed	
CDKN2B	Cell.Cycle_repressed	
CDKN2C	Cell.Cycle_repressed	
RB1	Cell.Cycle_repressed	
STK4	Hippo_repressed	
STK3	Hippo_repressed	
SAV1	Hippo_repressed	
LATS1	Hippo_repressed	
LATS2	Hippo_repressed	
MOB1A	Hippo_repressed	
MOB1B	Hippo_repressed	
PTPN14	Hippo_repressed	
NF2	Hippo_repressed	
WWC1	Hippo_repressed	
TAOK1	Hippo_repressed	
TAOK2	Hippo_repressed	
ТАОКЗ	Hippo_repressed	
CRB1	Hippo_repressed	
CRB2	Hippo_repressed	
CRB3	Hippo_repressed	
LLGL1	Hippo_repressed	
LLGL2	Hippo_repressed	
HMCN1	Hippo_repressed	
SCRIB	Hippo_repressed	
НІРК2	Hippo_repressed	
FAT1	Hippo_repressed	
FAT2	Hippo_repressed	
FAT3	Hippo_repressed	
FAT4	Hippo_repressed	
DCHS1	Hippo_repressed	
DCHS2	Hippo_repressed	
CSNK1E	Hippo_repressed	

CSNK1D	Hippo_repressed	
AJUBA	Hippo_repressed	
LIMD1	Hippo_repressed	
WTIP	Hippo_repressed	
MGA	MYC_repressed	
MNT	MYC_repressed	
MXD1	MYC_repressed	
MXD3	MYC_repressed	
MXD4	MYC_repressed	
MXI1	MYC_repressed	
ARRDC1	NOTCH_repressed	
CNTN6	NOTCH_repressed	
KDM5A	NOTCH_repressed	
NOV	NOTCH_repressed	
NRARP	NOTCH_repressed	
ІТСН	NOTCH_repressed	
SPEN	NOTCH_repressed	
FBXW7	NOTCH_repressed	
HDAC2	NOTCH_repressed	
CUL1	NOTCH_repressed	
NCOR1	NOTCH_repressed	
NCOR2	NOTCH_repressed	
HDAC1	NOTCH_repressed	
NUMB	NOTCH_repressed	
CIR1	NOTCH_repressed	
NUMBL	NOTCH_repressed	
RBX1	NOTCH_repressed	
SAP30	NOTCH_repressed	
SKP1	NOTCH_repressed	
CTBP1	NOTCH_repressed	
СТВР2	NOTCH_repressed	
KEAP1	NRF2_repressed	
CUL3	NRF2_repressed	
DEPDC5	PI3K_repressed	
DEPTOR	PI3K_repressed	
NPRL2	PI3K_repressed	
NPRL3	PI3K_repressed	
PIK3R1	PI3K_repressed	
PIK3R3	PI3K_repressed	
PPP2R1A	PI3K_repressed	
PTEN	PI3K_repressed	
TSC1	PI3K_repressed	

TSC2	PI3K_repressed	
NF1	RAS_repressed	
RASA1	RAS_repressed	
CBL	RAS_repressed	
ERRFI1	RAS_repressed	
CBLB	RAS_repressed	
CBLC	RAS_repressed	
RCE1	RAS_repressed	
ICMT	RAS_repressed	
MRAS	RAS_repressed	
PLXNB1	RAS_repressed	
МАРКЗ	RAS_repressed	
ARHGAP35	RAS_repressed	
RASA2	RAS_repressed	
RASA3	RAS_repressed	
RASAL1	RAS_repressed	
RASAL2	RAS_repressed	
RASAL3	RAS_repressed	
DAB2IP	RAS_repressed	
PPP1CA	RAS_repressed	
SCRIB	RAS_repressed	
PIN1	RAS_repressed	
PEBP1	RAS_repressed	
ERF	RAS_repressed	
PEA15	RAS_repressed	
MDM2	TP53_repressed	
MDM4	TP53_repressed	
CHD8	Wnt_repressed	
LRP5	Wnt_repressed	
LRP6	Wnt_repressed	
RSPO1	Wnt_repressed	
TLE1	Wnt_repressed	
TLE2	Wnt_repressed	
TLE3	Wnt_repressed	
TLE4	Wnt_repressed	
FZD1	Wnt_repressed	
FZD10	Wnt_repressed	
FZD2	Wnt_repressed	
FZD3	Wnt_repressed	
FZD4	Wnt_repressed	
FZD5	Wnt_repressed	
FZD6	Wnt_repressed	

FZD7	Wnt_repressed	
FZD8	Wnt_repressed	
FZD9	Wnt_repressed	
WNT1	Wnt_repressed	
WNT10A	Wnt_repressed	
WNT10B	Wnt_repressed	
WNT11	Wnt_repressed	
WNT16	Wnt_repressed	
WNT2	Wnt_repressed	
WNT3A	Wnt_repressed	
WNT4	Wnt_repressed	
WNT5A	Wnt_repressed	
WNT5B	Wnt_repressed	
WNT6	Wnt_repressed	
WNT7A	Wnt_repressed	
WNT7B	Wnt_repressed	
WNT8A	Wnt_repressed	
WNT8B	Wnt_repressed	
WNT9A	Wnt_repressed	
WNT9B	Wnt_repressed	
AMER1	Wnt_repressed	
APC	Wnt_repressed	
AXIN1	Wnt_repressed	
AXIN2	Wnt_repressed	
GSK3B	Wnt_repressed	
CHD4	Wnt_repressed	

Supplementary Table 5. Information of utilized antibodies.

Antibody	Catalogue Numbers	Dilution	Manufacturer
CDKN2A	10883-1-AP	1:1000	Proteintech (Wuhan, China)
CDKN1A	10355-1-AP	1:200	Proteintech (Wuhan, China)
SIRT1	8469S	1:200	Cell Signaling Technology
			(Danvers, MA, US)
CBX7	ab21873	1:1000	Abcam (Cambridge, MA, US)