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Drug-induced liver injury (DILI) is a common reason for the withdrawal of a drug from the
market. Early assessment of DILI risk is an essential part of drug development, but it is
rendered challenging prior to clinical trials by the complex factors that give rise to liver
damage. Artificial intelligence (AI) approaches, particularly those building on machine
learning, range from random forests to more recent techniques such as deep learning,
and provide tools that can analyze chemical compounds and accurately predict some of
their properties based purely on their structure. This article reviews existing AI
approaches to predicting DILI and elaborates on the challenges that arise from the
as yet limited availability of data. Future directions are discussed focusing on rich data
modalities, such as 3D spheroids, and the slow but steady increase in drugs annotated
with DILI risk labels.
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1 INTRODUCTION

DILI is a common cause of acute liver failure and one of the main reasons for failed clinical trials and for
the withdrawal of drugs (Kaplowitz, 2004; Senior, 2007). Hepatotoxicity can be anticipated in some cases.
For example, acetaminophen (also known as paracetamol) is known to damage the liver when used
beyond the recommended dose (Lancaster et al., 2015). However, other DILI events are considered
idiosyncratic; that is, they are rare and difficult to predict (Hoofnagle and Björnsson, 2019). Research
directions such as the investigation of reliable biomarkers (Wang et al., 2009) and the development of AI
methods (Przybylak and Cronin, 2012; Chen et al., 2014) aim to improve the understanding of DILI
mechanisms and to anticipate hepatotoxicity early in the drug development process.

We elaborate on the latter by providing a review of the state of the art in AI for DILI prediction,
focusing particularly on approaches based on machine learning (ML). From anML perspective, DILI
prediction is generally cast as a supervised learning problem (Murphy, 2012, Section 1.1.1). Let us
consider a chemical compound c, the hepatotoxicity risk of which can be represented by a scalar yc.
Let us further assume that relevant properties of the compound can be characterized by a vector xc.
Generally, ML approaches to predicting DILI model the relationship between yc and xc by means of
an approximating function f such that yc ≈ f (xc) holds for the largest possible domain of
compounds. This approach is generally termed “in silico” due to its computer-based nature.

The remainder of this review article is divided into four sections. Section 2 presents the main
datasets that list compounds and their hepatotoxicity risk (yc); Section 3 discusses various data
modalities used to describe the chemical characteristics of compounds (xc); Section 4 examines the
ML methods proposed in the literature to model the relationship between yc and xc (f). Some studies
reviewed here feature in more than one of these three sections. Section 5 concludes this contribution
with a discussion. For quick reference, we provide an index of the studies reviewed with a summary of
their main characteristics (Table 1, Supplementary Material).
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2 DRUG-INDUCED LIVER INJURY
ANNOTATIONS

We describe the main DILI annotation datasets that are publicly
available, more specifically, categorizations of drugs based on
their DILI risk in humans under medication (Chen et al., 2016).
DILI annotations are necessary not only to train supervised
machine learning models, but also to evaluate the performance
of any predictive model (even of simple models such as structural
alerts).

2.1 Dataset by Xu et al. (2008)
Xu et al. (2008) assembled a dataset of DILI annotations to
validate a proposed cellular-imaging-based testing strategy. The
dataset contained 344 drugs and chemicals with annotations
derived from verified clinical hepatotoxicity data, drug labels,
reports, and preclinical animal toxicology data. The annotation
scheme distinguished between DILI “positive” and DILI
“negative.” Ekins et al. (2010) used the dataset by Xu et al.
(2008) to train naive Bayes classifiers. These were then tested
on an additional dataset of 237 compounds which had already
been curated by Xu et al. together with the initial dataset, but had
not been available for in vitro testing at that time. Greene et al.
(2010) extended the dataset by Xu et al. (2008) to a total of 626
compounds in total. Furthermore, they modified the annotation
scheme, splitting the negative cases into “no evidence” and “weak
evidence” of hepatotoxicity.1 The dataset was used to evaluate the
performance of a structural-alert-based DILI prediction model.

2.2 Dataset by Suzuki et al. (2010)
Suzuki et al. (2010) collected a dataset of 319 drugs associated
with hepatotoxicity. The sources of information were DILI
registries from Spain, Sweden, and the US, studies of acute
liver failure in these countries, and other published literature.
The collection was supplemented with the frequency of liver
adverse events reported in the World Health Organization
VigiBase database (Lindquist, 2008). Zhu and Kruhlak (2014)
took a subset of 177 drugs from this dataset and extended it with
105 drugs presumed to be DILI negatives based on the absence of
warnings on PubMed2 and the US Food and Drug
Administration (FDA) MedWatch (Kessler et al., 1993) after
more than five years on the market. This dataset was used as
a calibration set to develop a simple DILI prediction model. Zhu
and Kruhlak also constructed another dataset of DILI annotations
by querying the FDA Adverse Event Reporting System (FAERS)
database.3

2.3 LiverTox Dataset
The LiverTox dataset provides information on drug, dietary
supplement and herbal-induced liver injury (Hoofnagle et al.,

2013). The main body of the dataset is a collection of drug
hepatotoxicity records, but additional resources are provided to
support the critical study of DILI. Importantly, causality
assessment instruments, such as the Roussel Uclaf Causality
Assessment Method (RUCAM) (Danan and Teschke, 2019)
and the Drug Induced-Liver Injury Network Causality Process
(Fontana et al., 2009), are presented and discussed.

Björnsson and Hoofnagle (2016) conducted a critical analysis
of 671 distinct drugs reported in the LiverTox dataset, and
categorized them according to the number of published
reports of idiosyncratic liver injury. Case reports in specific
categories were reanalyzed using RUCAM. Chen et al. (2016)
built on this categorization to improve the accuracy of drug-label-
based annotations by incorporating evidence of causality.
Thakkar et al. (2020) also used it but to increase the size of
their dataset.

2.4 Food and Drug Administration Datasets
Chen et al. (2011) compiled the so-called “LTKB” dataset, which
was based exclusively on drug labels retrieved from DailyMed.4

The rationale behind this approach was that drug labels implicitly
integrate information on causality, incidence, and severity from
trials, existing literature, and reports. Furthermore, drug labels
must be reviewed regularly, and thus the annotations can be kept
up to date. A classification by concern level was developed using
three labels: “most-DILI,” “less-DILI,” and “no-DILI” concern.

The LTKB dataset, which consisted of 287 drugs, was later
extended by refining the classification scheme and including
additional drugs (Chen et al., 2016). The new classification
scheme included whether drugs had been verified as the
cause of DILI in humans, and assigned four risk levels: three
corresponded to those of the LTKB dataset, but with
verification, while the fourth one covered drugs for which the
DILI annotation was ambiguous. The verification relied on
published studies which had focused on causality assessment
(Suzuki et al., 2010; Hoofnagle et al., 2013; Chalasani et al.,
2015). More drugs were included in the dataset by considering
drugs approved by the FDA over a longer time frame. This new
version of the dataset, dubbed “DILIrank,” included 1,036
marketed drugs, 254 of which were annotated as being
ambiguous.

Thakkar et al. (2020) further extended the DILIrank dataset by
carefully incorporating drug annotations from previously
published datasets (Greene et al., 2010; Suzuki et al., 2010;
Zhu and Kruhlak, 2014; Björnsson and Hoofnagle, 2016). The
authors took the DILIrank dataset as a basis, and drugs from the
other datasets were incorporated when sufficient agreement
between annotations was found. The extended dataset, named
“DILIst,” contains 1,279 drugs classified according to a binary
scheme.

2.5 Other Datasets
Other DILI annotation datasets exist, but have not been used as
routinely in subsequent studies. Cruz-Monteagudo et al. (2008)

1Greene et al. (2010) considered a fourth category for animal hepatotoxicity not
tested in humans, but we omit it here.
2https://pubmed.ncbi.nlm.nih.gov [accessed on January 18, 2021].
3https://www.fda.gov/drugs/surveillance/questions-and-answers-fdas-adverse-
event-reporting-system-faers [accessed on January 18, 2021]. 4https://dailymed.nlm.nih.gov/dailymed [accessed on January 18, 2021].
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curated a dataset of 74 drugs by combining DILI positives from a
previously published collection (Li, 2002) with drugs manually
selected as not having an association with hepatotoxicity
according to a drug compendium. Liew et al. (2011) assembled
a list of 1,274 drugs from the FDA Orange Book5 with DILI
annotations derived from the Micromedex Health Care Series
and with additional compounds from literature reports. Other
studies compiled custom datasets with a few hundred datapoints
and annotations based on the existence or absence of
hepatotoxicity reports, on previous literature, and on expert
opinion (Sakatis et al., 2012; Garside et al., 2014; Proctor
et al., 2017; Vorrink et al., 2018).

3 DATA MODALITIES

Chemical compounds can be described using various data
modalities, such as chemical structure, gene expression
profiles, and cell and tissue images. ML methods are generally
not limited to a specific modality when producing a DILI
prediction model. For this reason, we provide an overview of
the most common data modalities used in DILI prediction,
regardless of the specific ML method considered.

3.1 Chemical Structure
Analysis of the chemical structure of compounds is frequently
used and has the notable advantage of naturally always being
available. This approach, generally referred to as quantitative
structure–activity relationship (QSAR) modeling, is widely
applied in chemoinformatics, also beyond the prediction of
DILI risk. A well-established pipeline first computes feature
vectors, typically called “molecular descriptors,” which encode
structural properties of the compounds. These descriptors are
then passed to aMLmodel of choice. Various kinds of descriptors
have been proposed, ranging from simple characteristics, such as
molecular weight and number of carbon atoms, to more
sophisticated encodings, which are typically called “molecular
fingerprints” (Morgan, 1965; Quist, 2006; Rogers and Hahn,
2010).

A number of software implementations exist to compute
standard molecular descriptors. In many cases, authors
specify their set of descriptors by referring to the software
implementation employed. Cruz-Monteagudo et al. (2008)
computed radial-distribution-function descriptors with the
DRAGON software (Mauri et al., 2006). Liu et al. (2011)
employed functional class fingerprints (FCFP_6) provided by
the Pipeline Pilot 8.0 software. Chen et al. (2013a) also
employed Pipeline Pilot 8.0, but in this case to estimate
drug lipophilicity. Liew et al. (2011), Ai et al. (2018) and
Wang et al. (2019) used descriptors provided by the PaDel-
Descriptor software (Yap, 2011). Chen et al. (2013b) and
Hong et al. (2017) used Mold2 descriptors (Hong et al.,

2008). He et al. (2019) computed descriptors with the
Marvin software.6

Some ML methods can directly process the chemical structure
of compounds. Xu et al. (2015) followed the approach proposed
by Lusci et al. (2013), where molecular graphs are passed directly
to a recursive neural network. For general (not DILI-specific)
target prediction tasks, Mayr et al. (2018) used two such ML
methods: one processed SMILES strings (Weininger, 1988) by
using long short-term memory recurrent neural networks
(Hochreiter and Schmidhuber, 1997), and the other processed
molecular graphs with graph convolutional neural networks
(Duvenaud et al., 2015).

3.2 Gene Expression
To complement and improve chemical-structure-based models,
additional information in the form of gene expression data can be
useful (Martin et al., 2002; Klambauer et al., 2015). In this context,
there has been notable work investigating the advantage of
considering genomic biomarkers for DILI prediction. Huang
et al. (2010) successfully used genomic indicators to predict
acetaminophen-induced liver injury. Clevert et al. (2012)
proposed a pipeline with suitable pre-processing steps for DILI
prediction using data from the Japanese Toxicogenomics Project
(TGP) (Uehara et al., 2010). Feng et al. (2019) also used data from
the TGP and proposed a DILI prediction model based on a feed-
forward neural network. Kohonen et al. (2017) predicted DILI
using a model which leveraged both the CMap dataset and the
NCI60 cell line screen (Shoemaker, 2006). Chierici et al. (2020)
utilized a subset of the CMap dataset of two specific cell lines, as
provided in the CMap Drug Safety Challenge 2018,7 although the
authors found that these data were insufficient for DILI
prediction. Li et al. (2020a) proposed a DILI prediction model
based on a deep neural network, which takes as input
transcriptomic profiles of human cell lines derived from the
LINCS L1000 dataset (Subramanian et al., 2017).

3.3 In vitro and Imaging Assays
Xu et al. (2008) developed an in vitro testing strategy for DILI
prediction based on features measured by high-content cellular
imaging in primary human hepatocyte cultures. Of a total of eight
features extracted using standard computer vision algorithms, the
features “mitochondrial damage,” “oxidative stress,” and
“intracellular glutathione” were found to be the most
important for DILI prediction. Zhu et al. (2014) further
investigated the predictive power of this imaging data and
compared it to using molecular descriptors alone, or a
combination of imaging data and molecular descriptors.

Garside et al. (2014) investigated a number of previously
proposed hepatotoxicity prediction assays, which utilized
either HepG2 cells, HepG2 cells in the presence of rat S9
fraction, or isolated human hepatocytes. Images were acquired
by means of high-content fluorescence microscopy.

5https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm [accessed on January
18, 2021].

6https://chemaxon.com/products/marvin [accessed on January 18, 2021].
7http://camda2018.bioinf.jku.at/doku.php/contest_dataset\#cmap_drug_safety_
challenge [accessed on January 18, 2021].
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Puri (2020) used histopathology whole-slide images to train a
computer vision system with automatedML. The system was able
to predict whether images corresponded to 1 of 10 drugs, and this
was interpreted as an ability to discriminate between DILI injury
patterns. However, the usefulness of this system is limited due to
the absence of DILI risk predictions and the reduced chemical
space considered.

3D cell cultures have gained attention over 2D cell cultures
(Huh et al., 2011): they grow longer, are more stable and reflect
actual liver responses more accurately, therefore having higher
predictive power (Messner et al., 2013; Proctor et al., 2017;
Vorrink et al., 2018). Combining these with physicochemical
and exposure variables, and with data from other in vitro assays,
Williams et al. (2020) considered the outcome of an HepG2/C3A
spheroid cytotoxicity assay for their DILI prediction model. 3D
cultures can not only be employed as purely biological assays;
they are also compatible with imaging technologies.8

To our knowledge, neither 2D nor 3D imaging technologies
have to date been used in combination with advanced computer
vision techniques based on deep learning.

4 PREDICTIVE MODELS

We review the main DILI prediction models proposed to date.
For the sake of clarity, we categorize them into three main
categories: rules and knowledge-based systems, shallow ML
methods, and deep learning methods. Rules and knowledge-
based systems rely on explicitly coded decision rules. This is in
contrast to MLmethods, the decision mechanisms of which are
implicitly defined and obtained by means of optimization
techniques. Examples of shallow ML methods are naive
Bayes classifiers and random forests. Deep learning methods
are ML methods based on the so-called “deep” neural
networks, which are considered to be those with at least
two hidden layers (Delalleau and Bengio, 2011; Maas et al.,
2012).

4.1 Rules and Knowledge-Based Systems
DILI risk can be predicted from in vitro assays and simple
decision rules. Garside et al. (2014) and Vorrink et al. (2018)
considered that an in vitro assay yielded a positive prediction
when its outcome differed significantly from the control value,
going on to evaluate the predictive power of this decision rule by
means of the usual classification metrics. Similarly, Proctor et al.
(2017) built a classifier by selecting a threshold for each assay such
that the resulting ROC curves were optimized.

Greene et al. (2010) proposed a predictive model based on
structural alerts, that is, a system based on expert knowledge of
which chemical substructures are related to hepatotoxicity. Chen
et al. (2013a) analyzed the effect of daily dose and lipophilicity on
hepatotoxicity. They found the “rule-of-two,” by which drugs
with daily doses ≥100 mg and logP≥ 3 were likely to be hepatoxic.

Zhu and Kruhlak (2014) developed classifiers based on thresholds
for signals derived from counts in the FAERS database,
optimizing the ROC curve on a calibration set.

4.2 Shallow Machine Learning Methods
Xu et al. (2008) explored rule-based systems but achieved the best
predictive performance by processing their proposed imaging
features with a random forests model (Ho, 1995; Breiman, 2001).
Subsequent work by Zhu et al. (2014) also used random forests, in
this case within a 5-fold cross-validation model selection scheme.
Chen et al. (2013b) built predictive models for DILI using
decision forests (Tong et al., 2003) with 2,000 repetitions of
10-fold cross-validation for model selection. Decision forests
differ from random forests in that each tree uses the whole
training set and an explicit selection of features. This work
was based on the LTKB dataset, but Hong et al. (2017)
extended it to the DILIrank dataset.

Ekins et al. (2010) used a naive Bayes classifier with various
types of molecular fingerprints. Similarly, Liu et al. (2011) used
naive Bayes classifiers with molecular fingerprints, but in this case
an independent classifier was trained for each of 13 hepatotoxic
side effects. A final classifier was derived by means of a consensus
strategy. Kohonen et al. (2017) introduced an ad hoc probabilistic
model for the toxicogenomic space based on the latent Dirichlet
allocation model (Blei et al., 2003). Williams et al. (2020)
proposed a probabilistic ordered logit model that distinguishes
between three increasing levels of DILI risk.

Cruz-Monteagudo et al. (2008) provided an evaluation of DILI
prediction models that are based on various MLmethods, namely
a classifier based on a single attribute (Holte, 1993), linear
discriminant analysis, and neural networks. Liew et al. (2011)
proposed a DILI prediction model that consists of an ensemble of
617 base classifiers. These base classifiers were numerous
instances of k-nearest neighbors classifiers, naive Bayes
classifiers, and support vector machines (Cortes and Vapnik,
1995), each of which trained with a different subset of molecular
descriptors. The final ensemble model was selected using 5-fold
cross-validation.

4.3 Deep Learning Methods
Despite the rise of deep learning over the last decade, only few
approaches to DILI prediction are based on this technology. Lusci
et al. (2013) introduced undirected graph recursive neural
networks (UG-RNNs) to predict the aqueous solubility of
drug-like molecules. UG-RNNs bridge the gap between
molecules (described as undirected cyclic graphs) and
recursive neural networks (expecting directed acyclic graphs).
In hindsight, this method can be regarded as a precursor of the
now successful family of convolutional neural networks for graph
structures (Duvenaud et al., 2015). Xu et al. (2015) employed UG-
RNNs for DILI prediction. They also evaluated feed-forward
neural networks of various depths, using PaDEL or Mold2

descriptors as input. UG-RNNs were found to perform best,
followed by deep feed-forward neural networks and then by
shallow feed-forward neural networks.

He et al. (2019) proposed an ensemble DILI prediction model
which included deep neural networks. However, the only

8https://www.cyprotex.com/toxicology/3d-microtissue-models/3d-imaging-of-
microtissues [accessed on January 18, 2021].

Frontiers in Artificial Intelligence | www.frontiersin.org April 2021 | Volume 4 | Article 6384104

Vall et al. AI for DILI Prediction

https://www.cyprotex.com/toxicology/3d-microtissue-models/3d-imaging-of-microtissues
https://www.cyprotex.com/toxicology/3d-microtissue-models/3d-imaging-of-microtissues
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


information provided about the deep neural network component
was that it was implemented within the Deeplearning4j9

framework. Chierici et al. (2020) investigated deep learning
architectures for DILI prediction using toxicogenomics data.
They compared deep and shallow neural networks and
random forests classifiers in terms of performance. The
conclusion of this work was ambiguous. The authors claimed
that the dataset used, published in the context of the CMap Drug
Safety Challenge 2018, was not rich enough to build predictive
models for DILI.

Li et al. (2020a) proposed a DILI prediction model consisting
of a deep neural network which leveraged transcriptomic profiles
of human cell lines. It outperformed other shallow ML methods,
namely k-nearest neighbors, support vector machines and
random forests. In another study, the same authors proposed
an ensemble prediction model where a deep neural network
aggregated the DILI risk probabilities predicted by roughly 500
base classifiers (Li et al., 2020b). The base classifiers were
numerous instances of logistic regression, k-nearest neighbors,
support vector machines and random forests, and each used
Mold2 descriptors as input. The ensemble model outperformed
the individual base classifiers, and it also outperformed a deep
neural network which directly used Mold2 descriptors as input.

5 DISCUSSION

DILI is a common cause of liver failure, failed clinical trials, and
withdrawal of drugs from the market. This work has reviewed the
state of the art of AI approaches to predicting DILI, focusing on
the approaches that are based on ML methods. Below, we discuss
open challenges and future research directions.

ML approaches to DILI prediction are limited by the
availability of DILI annotations. As mentioned in Section 2,
the DILIst dataset, which is one of the largest and most
comprehensive DILI annotation dataset, comprises only 1,279
drugs (Thakkar et al., 2020). The DILIst dataset is orders of
magnitude smaller than benchmarking datasets in drug discovery
(Mayr et al., 2018), and even smaller compared to benchmarking
datasets in other AI application domains such as computer vision
(Deng et al., 2009) and natural language processing (Vaswani
et al., 2017), which can contain millions of data points. From an
ML perspective this is critical, especially for deep learning
methods, the remarkable success of which is presumably due
to the access to large amounts of data (Goodfellow et al., 2016,
Section 1.2.2). However, this limitation is a consequence of the
also limited number of available drugs overall. Indeed, the latest
release of DrugBank (version 5.1.8) lists a total of 14,331 drugs,
only 2,677 of which are approved small molecule drugs.10

Despite the efforts of the research community to better
understand its causes, DILI cannot yet be fully explained.
Particularly for the cases considered idiosyncratic, which are very
infrequent and lack a clear dose-response relationship (Björnsson

andHoofnagle, 2016), it can be challenging to annotate the DILI risk
unambiguously. ML methods, and especially deep learning, excel at
uncovering salient patterns from data. However, even if they exist,
patterns obscured by noisy annotations can be difficult to reveal.
Some of the reviewed studies carried out permutation tests, mostly
y-randomization (Rücker et al., 2007), to verify that the proposed
models were indeed superior to random ones (Liew et al., 2011; Zhu
et al., 2014; He et al., 2019). Research in the domain of aleatoric
uncertainty estimation (Brando et al., 2019) may provide further
help in identifying such effects.

Another consequence of the complexity of DILI is the variety
of published risk classification schemes. These are generally
ordered from less to more DILI risk, and are divided into two
or more severity levels. The existence of different classification
schemes is not problematic in itself, because it is possible to
employ binary and multi-class prediction models depending on
the classification scheme under consideration. Even various
classification schemes can be leveraged simultaneously by
means of multitask learning (Mayr et al., 2018). However,
DILI annotations reported in various datasets are not always
reconcilable with each other (Thakkar et al., 2020), which is
clearly problematic for model development. An effort towards
standardization of classification schemes and annotations will be
essential to the development of ML methods for DILI prediction.

The standardization of training and test splits is also necessary.
Consider the following example. Li et al. (2020a) and Li et al. (2020b)
both used theDILIst dataset (Thakkar et al., 2020) to build predictive
models. However, Li et al. (2020a) split the dataset according to the
availability of transcriptomic profiles, while Li et al. (2020b) split it
according to the initial year when the FDA approved the drugs. The
predictive performance results obtained on these different splits
cannot be compared. Consider another example. Li et al. (2020b)
provided further predictive performance results using other datasets
as the independent test set. Among others, they used the dataset
published by Greene et al. (2010), but subtracted the drugs that also
occurred in their training set in order to obtain a truly independent
test set. This operation reduced the dataset originally published by
Greene et al. (2010) from 209 DILI positives and 111 DILI negatives
to only 52 DILI positives and 28 DILI negatives. The performance
results obtained on the reduced version of the dataset cannot be
compared to other results obtained on the original dataset.

Taken together, a fair comparison of the numerous DILI
prediction models proposed to date requires the
standardization of datasets, also in terms of fixed training and
test splits. The FDA is leading this endeavor, with a continuous
line of studies consolidating DILI classification schemes and
extending the list of annotated drugs available (Chen et al.,
2011; Chen et al., 2016; Thakkar et al., 2020).

Several of the DILI prediction models reviewed are based
exclusively on exploiting the chemical structure of compounds.
While the natural availability of structural informationmakes this
approach very flexible, it can also fall short. Some of the adverse
reactions considered idiosyncratic may be undetectable from the
chemical structure alone, but might be predictable if genomic
data is also considered. In this context, the reviewed studies
focusing on the exploitation of gene expression data (Huang et al.,
2010; Clevert et al., 2012; Kohonen et al., 2017; Chierici et al.,

9https://deeplearning4j.org [accessed on January 18, 2021].
10https://go.drugbank.com/about [accessed on January 18, 2021].
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TABLE 1 | Scientific studies considered in this review ordered alphabetically by author name (disregarding the year of publication).

Study Topic DILI annotations Data modalities Predictive models

Ai et al. (2018) ML Training dataset derived from Liew et al.
(2011) and Zhu and Kruhlak (2014). LTKB
dataset (Chen et al., 2011) as
validation set.

PaDEL-Descriptor v2.21 molecular
descriptors.

Random forests; Support vector
machines; XGBoost.

Björnsson and
Hoofnagle (2016)

Dataset Derived from the LiverTox website
(Hoofnagle et al., 2013).

— —

Chalasani et al. (2015) Dataset Collected in the US as part of the efforts of
the drug-induced liver injury network
(DILIN). Includes causality assessments.

— —

Chen et al. (2011) Dataset Derived from FDA-approved drug labels. — —

Chen et al. (2013a) ML LTKB dataset (Chen et al., 2011) and
dataset published by Greene et al. (2010).

Daily dose and lipophilicity provided by
Pipeline Pilot 8.0.

Rules.

Chen et al. (2013b) ML Training dataset is an extension of the
LTKB dataset (Chen et al., 2011). Test on
the datasets published by Greene et al.
(2010) and Xu et al. (2008).

Mold2 molecular descriptors. Decision forests (Tong et al., 2003).

Chen et al. (2014) ML review — — —

Chen et al. (2016) Dataset Extension of Chen et al. (2011) with
additional drugs and a subsequent
verification step. Verification relying on
Suzuki et al. (2010), Hoofnagle et al. (2013)
and Chalasani et al. (2015).

— —

Chierici et al. (2020) ML Binary labels provided by the CMap Drug
Safety Challenge 2018.

Gene expression data provided by the
CMap Drug Safety Challenge 2018.

Random forests; Shallow neural
networks; Deep neural networks.

Clevert et al. (2012) ML LTKB dataset (Chen et al., 2011). Gene expression data from the Japanese
Toxicogenomics Project.

Support vector machines.

Cruz-Monteagudo
et al. (2008)

ML Custom selection of positives previously
reported by Li (2002) and negatives
selected from a drug compendium.

RDF and other molecular descriptors
computed with Dragon.

Linear discriminant analysis; Neural
networks; One-rule classifiers.

Ekins et al. (2010) ML Extension of Xu et al. (2008). Extended connectivity fingerprints. Naive Bayes classifiers.
Feng et al. (2019) ML In vivo assays on rats. Gene expression data corresponding to

diverse hepatotoxicity categories.
Support vector machines; Shallow
neural networks.

Garside et al. (2014) In vitro Derived from drug labels and literature. Measurements from high content
fluorescence microscopy.

Rules; Hierarchical cluster analysis.

Greene et al. (2010) Dataset; ML Own training dataset derived from
literature. Test dataset overlapping with Xu
et al. (2008).

Chemical structures exported as an SD file. Structural alerts.

He et al. (2019) Dataset; ML Training on a dataset comprising the LTKB
(Chen et al., 2011), Livertox (Björnsson
and Hoofnagle, 2016), and DILIrank (Chen
et al., 2016) datasets, extended with
additional compounds. Test on a dataset
comprising the datasets used by Ai et al.
(2018), Zhang et al. (2016),
Kotsampasakou et al. (2017).

Marvin molecular descriptors. Ensemble of classifiers, including naive
Bayes, k-nearest neighbors, random
forest, and an off-the-shelf deep
learning solution.

Hong et al. (2017) ML Subset of the DILIrank dataset (Chen et al.,
2016).

Mold2 molecular descriptors. Decision forests (Tong et al., 2003).

Hoofnagle and
Björnsson (2019)

Review — — —

Huang et al. (2010) ML In vivo assays on rats. Genomic indicators from the blood. Random forests; Support vector
machines; k-nearest neighbors;
Nearest centroid.

Kaplowitz (2004) Review — — —

Khadka et al. (2019) ML; AOP DILIrank dataset (Chen et al., 2016). AOP-supported selection and integration
of various high throughput predictors.

Logistic regression.

Kohonen et al. (2017) ML Derived from the NCI-60 DTP human
tumor cell line (Shoemaker, 2006).

Gene expression data from the CMap
dataset (Lamb et al., 2006).

Ad hoc probabilistic model.

Lamb et al. (2006) Dataset — Gene expression data. —

Li et al. (2020a) ML DILIst dataset (Thakkar et al., 2020). Drug-induced transcriptome profiles
curated from the NIH LINCS L1000 dataset
(Subramanian et al., 2017).

Deep neural networks.

(Continued on following page)
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TABLE 1 | (Continued) Scientific studies considered in this review ordered alphabetically by author name (disregarding the year of publication).

Study Topic DILI annotations Data modalities Predictive models

Li et al. (2020b) ML DILIst dataset (Thakkar et al., 2020). Mold2 molecular descriptors. Deep neural network ensembling
classifiers, including logistic regression,
k-nearest neighbors, support vector
machine, random forest, and XGBoost.

Liew et al. (2011) Dataset; ML Drugs collected from the FDA Orange
Book. Annotations derived from drug
compendia and literature.

PaDEL-Descriptor v2.0 molecular
descriptors.

Ensemble of many instances of
k-nearest neighbors, support vector
machines, and naive Bayes classifiers.

Liu et al. (2011) ML LTKB dataset (Chen et al., 2011) and
datasets published by Greene et al. (2010)
and O’Brien et al. (2006).

Functional class fingerprints (FCFP_6)
provided by Pipeline Pilot 8.0.

Naive Bayes classifiers.

Minerali et al. (2020) ML DILIrank (Chen et al., 2016), BDDCS
(Benet et al., 2011) and “Withdrawn”
datasets (Siramshetty et al., 2016), and
also from literature (Hong et al., 2017; Aleo
et al., 2020; Williams et al., 2020).

Extended-connectivity fingerprints
(ECFP_6).

Random forests; k-nearest neighbors;
Support vector machines; Naive Bayes
classifiers; AdaBoosted decision trees;
Deep learning.

Proctor et al. (2017) In vitro Derived from drug labels and literature
following the classification proposed by
Garside et al. (2014).

3D human liver microtissues; Plated 2D
primary human hepatocytes.

Rules based on thresholds optimizing
the ROC curve.

Przybylak and Cronin
(2012)

ML review — — —

Puri (2020) ML Japanese Toxicogenomics Project. Histopathology whole slide images. Standard computer vision; Computer
vision built with automated ML.

Sakatis et al. (2012) Dataset; ML Derived from drug labels and reports. Clinical dose, GSH adduct formation, and
P450 MDI.

Decision trees.

Suzuki et al. (2010) Dataset From DILI regulatory agencies and
literature. Includes frequency of reports.

— —

Thakkar et al. (2020) Dataset Derived from Chen et al. (2016), Björnsson
and Hoofnagle (2016), Suzuki et al. (2010),
Greene et al. (2010), and Zhu and Kruhlak
(2014).

— —

Uehara et al. (2010) Dataset In vivo assays on rats. Genomic biomarkers predictive of the
toxicity of chemicals.

—

Vorrink et al. (2018) In vitro Derived from regulatory classifications and
literature.

3D spheroid cultures. Rules.

Wang et al. (2009) Biological
study

— — —

Wang et al. (2019) ML Subset of the DILIrank dataset (Chen et al.,
2016).

PaDEL-Descriptor v2.21 molecular
descriptors.

Ensemble of classifiers, including
logistic regression, support vector
machines, random forests, andmultiple
gradient boosting decision tree
approaches.

Williams et al. (2020) ML Derived from the LTKB (Chen et al., 2011)
and DILIrank (Chen et al., 2016) datasets,
derived from the literature, and in-house
annotation as described by Proctor et al.
(2017).

Cmax, cLogP, bioactivation, HepG2/C3A
spheroid cytotoxicity, mitochondrial
toxicity, BSEP inhibition, THP-1
cytotoxicity, cytotoxicity EC50 values.

Bayesian ordered logit model.

Xu et al. (2008) Dataset; In
vitro; ML

Derived from clinical data, drug labels,
reports, and preclinical animal toxicology
data.

Descriptors derived from human
hepatocyte 2D images.

Standard computer vision; Rules;
Random forests.

Xu et al. (2015) ML Datasets by Xu et al. (2008), Greene et al.
(2010), Liew et al. (2011), and Chen et al.
(2013b), and a combined dataset
integrating the datasets by Xu et al. (2008),
Greene et al. (2010), and Chen et al.
(2013b).

Molecular structure directly. Undirected graph recursive neural
networks proposed by Lusci et al.
(2013).

Zhu and Kruhlak
(2014)

Dataset Dataset derived from FAERS, including
frequency of reports. Additional calibration
dataset extending Suzuki et al. (2010).

— Rules based on setting a threshold that
optimizes the calibration ROC curve.

(Continued on following page)
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2020) are particularly relevant to increase the understanding of
the possible dependence of idiosyncratic DILI on genetic host
factors (Stephens and Andrade, 2020). Complementarily, Khadka
et al. (2019) investigated the potential of the adverse outcome
pathway (AOP) framework to improve the selection and
integration of various high throughput predictors relevant to
DILI prediction. The authors focused on DILI risk assessment,
but the AOP framework can address other types of chemical
safety assessment (Wittwehr et al., 2017).

We also see an opportunity for improvement in the
exploitation of in vitro 2D and 3D imaging data, namely by
using advanced deep-learning-based computer vision methods.
Computer vision has progressed remarkably fast in recent years,
also in the domain of biomedical imaging (Esteva et al., 2017).
However, the image-based predictive models for DILI proposed
thus far generally rely on standard computer vision techniques
(Xu et al., 2008; Zhu et al., 2014). Puri (2020) used an automated
ML engine to train a deep learning classifier for histopathology
images, but no details of the model architecture were shared. The
number of drugs with 2D, and especially 3D, imaging data
available is as yet limited. The acquisition of imaging data will
be necessary to enable progress in this area.

Returning toDILI predictionmodels that are based on the chemical
structure of compounds, while we find that deep learning methods
have beenproposed, they neither showanoutstanding improvement in
predictive performance (He et al., 2019; Minerali et al., 2020), nor have
they been able to replace in vitro or in vivo tests. Generally, the
proposed deep learning methods were based on processing pre-
calculated molecular descriptors. Only Xu et al. (2015) considered
and end-to-end approach, building on the UG-RNN method (Lusci
et al., 2013), whichwas able to directly process the chemical structure of
compounds and implicitly derive suitablemolecular representations. In
this regard, recent advances in graph convolutional neural networks
(Gilmer et al., 2017; Li et al., 2019)—which are also end-to-
end—should be investigated for DILI prediction.

Overall, we envision that new, more powerful deep learning
methods for DILI prediction will be proposed in the near future,
both in the domains of imaging and graph convolutional neural
networks. Predictive models with high predictive performance
may become not only screening tools, but potentially “virtual

assays” (Mayr et al., 2018) able to replace in vitro and in
vivo tests.
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TABLE 1 | (Continued) Scientific studies considered in this review ordered alphabetically by author name (disregarding the year of publication).

Study Topic DILI annotations Data modalities Predictive models

Zhu et al. (2014) ML Dataset by Xu et al. (2008). Molecular descriptors computed with
Chemistry Development Kit (v.1.4.13),
Dragon (v.5.5), Molecular Operating
Environment (v.2009.10), and
MayaChemTools; Descriptors derived from
human hepatocyte 2D images
(Xu et al., 2008); Combination of both.

Random forests.

The second column lists one or several keywords identifying the general topic of the study. Columns three, four and five summarize the relation (if any) of each study toSections 2, 3, and 4,
respectively.
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