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Abstract: The structural and functional similarity of the larval zebrafish pronephros to the human
nephron, together with the recent development of easier and more precise techniques to manipulate
the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish.
Over the last few years, great advances have been made, not only in the modeling techniques of genetic
diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards
more informative explanations of disease pathophysiology and better designed therapeutic interventions
in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special
attention to the renal phenotype evaluation techniques. We further discuss the future applications of such
models, particularly their role in revealing new genetic diseases of the kidney and their potential use in
personalized medicine.

Keywords: pronephros; zebrafish; genetic renal diseases; CRISPR; morpholino; pathophysiology;
new therapies

1. Introduction

The zebrafish (Danio rerio) has gained much attention over the last few years. Slowly and steadily
it has become a highly successful lower vertebrate animal model to study developmental genetics
and disease pathophysiology and served as an in vivo system for the trial of novel therapeutic agents,
thus bridging the gap that previously separated invertebrates and mammals in animal research [1–3].
Zebrafish models of human disease retain many of the advantages of mammalian models and at
the same time overcome many of their limitations. Anatomically and histologically, zebrafish have
retained most of the mammalian organs, tissues, and cellular systems together with their associated
physiological functions. Furthermore, they have rapid ex utero development, transparent fertilized
embryos, much higher fecundity at a fraction of the maintenance cost of mammalian models, and most
importantly, a well-studied genome with the availability and ease of gene editing technologies [1,4–6].

The zebrafish embryonic kidney (pronephros) is of particular interest to researchers. It consists
of a pair of segmented pronephric tubules sharing a fused glomerulus and showing remarkable
histological and functional similarities to the mammalian adult nephron (Figure 1).
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and zebrafish pronephros at 48 h post fertilization (hpf) (B), shows major similarities between 

different segments of both nephrons [7–12]. All gene symbols are in accordance with the Hugo Gene 

Nomenclature Committee (HGNC) guidelines. Hematoxylin and eosin stained images of cut sections 

of the human metanephros (C) and zebrafish pronephros at the level of the glomerulus and proximal 

tubules in 4 days post fertilization (dpf) larvae (D) showing basic similar architecture. Abbreviations: 

C, cloaca; CD, collecting duct; DCT, distal convoluted tubule; DE, distal early tubule; DL, distal late 

tubule; DT, distal tubule; G, glomerulus; GIT, gastrointestinal tract; NC, notochord; PCT, proximal 

convoluted tubule; PD, pronephric duct; PST, proximal straight tubule; PT, proximal tubule; TAL, 

thick ascending limb of Henle; TL, thin limb of Henle. 

The pronephros is formed at 24 h post fertilization (hpf), and starts blood filtration at 

approximately 48 hpf [12]. At 10 days post fertilization (dpf), in order to cope with the increased 

osmoregulatory demands of the growing juvenile fish, mesonephric nephrons start forming from cell 

clusters of nephron progenitors embedded in stroma composed of hematopoietic tissue and 

expressing wt1b, pax2a, and lhx1a at the caudal end of the swim bladder. These mesonephrons fuse 

with the distal pronephric tubules to eventually form the mesonephric kidney, which remains during 

the whole adult life of the zebrafish [7]. This differs from mammals, which develop the ureteric bud 

from the nephric duct during embryonic life (at 5th week of gestation in humans), giving rise to the 

final metanephric kidney [13]. Another major difference in nephron structure between zebrafish and 

mammals is the absence of a loop of Henle in zebrafish, which acts in mammals as a countercurrent 

multiplier to produce the medullary osmotic gradient essential for water reabsorption [14]. 
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Figure 1. Anatomy, patterning, and histology of the mammalian adult nephron and zebrafish larval
pronephros. The segmented nephron distribution of genes expressed in the mammalian nephron
(A) and zebrafish pronephros at 48 h post fertilization (hpf) (B), shows major similarities between
different segments of both nephrons [7–12]. All gene symbols are in accordance with the Hugo Gene
Nomenclature Committee (HGNC) guidelines. Hematoxylin and eosin stained images of cut sections
of the human metanephros (C) and zebrafish pronephros at the level of the glomerulus and proximal
tubules in 4 days post fertilization (dpf) larvae (D) showing basic similar architecture. Abbreviations:
C, cloaca; CD, collecting duct; DCT, distal convoluted tubule; DE, distal early tubule; DL, distal late
tubule; DT, distal tubule; G, glomerulus; GIT, gastrointestinal tract; NC, notochord; PCT, proximal
convoluted tubule; PD, pronephric duct; PST, proximal straight tubule; PT, proximal tubule; TAL, thick
ascending limb of Henle; TL, thin limb of Henle.

The pronephros is formed at 24 h post fertilization (hpf), and starts blood filtration at
approximately 48 hpf [12]. At 10 days post fertilization (dpf), in order to cope with the increased
osmoregulatory demands of the growing juvenile fish, mesonephric nephrons start forming from cell
clusters of nephron progenitors embedded in stroma composed of hematopoietic tissue and expressing
wt1b, pax2a, and lhx1a at the caudal end of the swim bladder. These mesonephrons fuse with the distal
pronephric tubules to eventually form the mesonephric kidney, which remains during the whole adult
life of the zebrafish [7]. This differs from mammals, which develop the ureteric bud from the nephric
duct during embryonic life (at 5th week of gestation in humans), giving rise to the final metanephric
kidney [13]. Another major difference in nephron structure between zebrafish and mammals is the
absence of a loop of Henle in zebrafish, which acts in mammals as a countercurrent multiplier to
produce the medullary osmotic gradient essential for water reabsorption [14].

Although adult zebrafish models are more suited to certain types of studies, especially involving
the endocrine function of the kidney or the regenerative capacity of the adult zebrafish kidney [15–17],
zebrafish embryos and larvae are by far more commonly used to model genetic renal diseases. This is
mainly due to the large number of embryos and larvae that can be generated and studied per mating,
and also due to the anatomical simplicity and histological and functional similarity of the larval
pronephros to the human nephron [12].
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In the current review, we present the basic concepts behind the modeling of genetic renal diseases in the
zebrafish, outlining the advantages but also some of the limitations. We also discuss the techniques available
for functional analysis of the pronephros and the potential future applications of such genetic models.

2. Methods for Genetic Modeling

Although zebrafish models have been commonly used for the investigation of genetic
abnormalities implicated in human disease since the mid-1990s [18,19], the earliest attempt of a whole
zebrafish genome sequence was first made public by the Sanger Institute, UK in 2002 and the completed
reference genome was reported in 2013 [4]. The latest version of the zebrafish genome (GRCz11)
was released in May 2017 by the Genome Reference Consortium (http://genomereference.org).
Among 26,000 predicted zebrafish protein coding genes, over 18,000 genes (69%) have an orthologue in
the human genome. These include over 2600 genes with a human orthologue known to cause disease,
constituting over 80% of the total genes linked to disease in humans [4].

In general, there are two main approaches for studying the function of a gene in vivo; forward
genetics and reverse genetics. Table 1 provides a comparison of the commonly used methodologies for
assessing gene function and performing disease modeling in the zebrafish. Forward genetic screening
was the initial approach to identify genes associated with phenotypic changes, including those seen in
disease. The method involves inducing random DNA mutations in germ cells of adult males through
gamma irradiation [20] or more commonly by using chemical mutagens, such as N-ethyl-N-nitrosourea
(ENU) [21]. This is usually followed by mating with wild-type females, propagating their offspring
through inbreeding to obtain homozygous mutants, isolating offspring with the phenotype of interest,
then identifying the mutated genes through positional cloning, linkage mapping, or whole exome
and whole genome sequencing [22]. Another method of forward genetic screening is insertional
mutagenesis, during which transposable DNA elements (transposons) or more commonly retroviral
vectors are injected in late blastulae stage of zebrafish development (512–2048 cell embryos) [23].
These vectors insert foreign DNA randomly at different locations of the zebrafish genome; however,
the mutagenic rate is only about 10% of that of ENU mutagenesis [24]. During screening, foreign DNA
sequence can be used as a tag to identify the mutated genes, which is far easier than the screening
techniques developed for chemical mutagenesis [25].

Table 1. Attributes of key methods used to model genetic diseases in the zebrafish.

Forward Genetics Reverse Genetics

ENU Mutagenesis Retroviral Insertion MO CRISPR-Cas9

Technique first described
in zebrafish

Grunwald and
Streisinger (1992) [21] Lin et al. (1994) [23] Nasevicius and

Ekker (2000) [26] Hwang et al. (2013) [27]

Genetic target Genomic DNA Genomic DNA mRNA Genomic DNA

Stage of inducing
mutagenesis Adult males 512–2048 cell stage (blastulae) 1–4 cell stage 1 cell stage

Mutation site Random Random No DNA
mutations specific DNA sequence

Mutational effect Mainly deficiency Mainly deficiency Deficiency Deficiency/Gain

Difficulty of confirming
the mutant genotype Difficult Less difficult Easy Easy

Efficiency of mutagenesis Medium Low High High

Mutant model Permanent Permanent Transient Permanent

Time, effort and resources +++ ++++ + ++

Off-target effects + + +++ +

CRISPR, clustered regularly interspaced short palindromic repeats; ENU, N-ethyl-N-nitrosourea; MO, morpholino
antisense oligonucleotides.

http://genomereference.org
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In reverse genetics, the approach is to first identify genes of interest, and then target them
specifically either by knocking-down expression, editing the gene to create knock-out or knock-in
alleles, or in some cases over-expressing the gene product, followed by evaluation of the phenotype [28].
Among reverse genetics techniques, two techniques stand out. The morpholino (MO) antisense
oligonucleotide approach due to its simplicity and lower cost and the clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 system due to its high specificity and efficiency and the
permanent genetic model obtained [6].

2.1. Morpholino Antisense Oligonucleotides

MO are synthetic single stranded analogues of nucleic acids. They are usually injected into one to
four cell stage zebrafish embryos, and by binding to the complementary mRNA molecule, they can
either block the translation of a target gene, or disrupt splicing (if they bind to a region including a
splicing donor or acceptor site) [26]. Because MO are resistant to degradation by nucleases, their gene
silencing effects are very efficient. However, due to the proliferation of cells in the growing embryo
which results in dilution of the MO in morphant larvae, the effect of suppression is gradually lost over
time such that down-regulation typically only lasts for up to a few days [29] (Figure 2A). A potential
advantage of MOs is that because they acutely down regulate genes, they may produce more severe
phenotypes when compared to stable genetic knock-out models in which there is the possibility of
compensatory or adaptive responses [30]. The main disadvantage of MOs is their potential to produce
off-target genetic effects, most importantly the non-specific activation of the pro-apoptotic p53 pathway.
The simultaneous use of an anti-p53 MO is an important control measure to overcome this effect [31].
Even then, it is always important to control for off-target effects when using MO. Another major
concern, because of the transient nature of MOs, is the reproducibility of phenotypic effects, thus the
standardization of injection protocols needs to be emphasized [32]. The disease models solely based
on MO knockdown need to be validated in corresponding genetic models; however, MOs remain a
valuable tool for investigating gene function in zebrafish [32,33].
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Figure 2. Reverse genetics in zebrafish using morpholinos and CRISPR-Cas9. (A) Morpholino
antisense oligonucleotides (MOs): Morpholinos are synthetic single stranded nucleic acid analogues
with a methylenemorpholine ring backbone replacing the sugars normally present in nucleic acids.
The designed MO is injected at the 1-4 cell stage embryo, binds specifically to its target mRNA or
pre-mRNA. Depending on whether the MO binds to the translation start site or a splice donor or
acceptor site, it will either block protein translation or cause alternate splicing to produce a defective
message that is either degraded, resulting in loss of protein expression, or still present in which case it
will produce a defective protein. The resulting phenotype typically lasts for a few days. (B) Clustered
regularly interspaced short palindromic repeats (CRISPR)/Cas9: The bacterial endonuclease enzyme
is a large protein encoded by the cas9 gene. Specificity of the DNA strand cleavage is dependent
on the pairing between the single guide RNA (spacer domain) and the complementary DNA target
(protospacer domain). The Cas9 protein has also a domain that binds to a short sequence of target
DNA, named the protospacer adjacent motif (PAM), which is found directly downstream of the
target sequence in the genomic DNA, on the non-target strand. Because the spacer domain sequence
provides at least 20 nucleotides of specificity in addition to the specificity of the PAM sequence,
the CRISPR-Cas9 system can uniquely cleave DNA at a highly specific target site [6,34]. The cleaved
DNA is then left to the non-homologous end-joining repair machinery, which can result in random
deletions or insertions and loss of a functional allele. Alternatively, if a synthesized DNA template is
introduced, homology-directed repair results in the generation of an engineered mutant allele at the
break site [35].

2.2. CRISPR-Cas9

On the other hand, the recent CRISPR-Cas9 technology provides a mostly permanent and very specific
type of genetic manipulation. Cas9 is one of many RNA guided endonuclease enzymes derived from the
immune system of bacteria and archaea for natural defense against invading viruses [36]. Over the past
few years, the CRISPR-Cas9 system has been adapted successfully for use in editing the genomes of a
wide variety of multicellular and complex organisms, including zebrafish, mice, and humans [27,37–42].
Cas9 is attached to two RNA guide molecules: the trans-activating CRISPR RNA (tracrRNA) and
the CRISPR RNA (crRNA) to form a trimeric complex in bacteria named the Cas9 holoendonuclease
system. In an experimental setup, a specifically designed single guide RNA (sgRNA) usually replaces the
tracrRNA-crRNA complex [35] (Figure 2B). CRISPR-Cas9 technology can be used to produce transient
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knockdown larval models (crispants) [43], which are similar to morphant zebrafish larvae in many aspects
but lacking the non-specific toxicity of MOs [32]. However, CRISPR technology is more commonly used to
grow fish to adulthood and produce permanent genetic zebrafish models.

The advantages of CRISPR technology include its high efficiency, specificity and affordability,
the possibility of both knock-out and knock-in models, and the potential to study the phenotypes
associated with specific human mutations through generating the same mutations in the zebrafish.
Other techniques for genome editing include zinc finger nucleases (ZFNs) and transcription
activator-like effector nucleases (TALENs). However, both systems are less tractable than
CRISPR-Cas9, which uses a universal targeting mechanism [6,44]. Furthermore, CRISPR-Cas9 is
far more efficient than ZFNs and TALENs in achieving targeted mutagenesis in the zebrafish [45].
Recently, the CRISPR-Cas13 system was adapted for both RNA knockdown and RNA editing in human
cells [46]. The system is extremely precise and has many potential applications including splicing
modifications, targeted localization of transcripts, epitranscriptomic modifications, and the ability to
correct certain disease relevant mutations at the RNA level. Another recent alternative adaptation to
the traditional CRISPR-Cas9 approach is the engineered Cas9-cytidine deaminase fusion, which was
recently implemented in human cells [47]. This technique is capable of substituting single base pairs
with high efficiency by using a specifically designed inactive Cas9 protein coupled with a cytidine
deaminase enzyme and an inhibitor of base excision repair. Although these systems are yet to be tried
in zebrafish, they can definitely expand the toolkit for genome editing.

3. Assessment of the Renal Phenotype

A number of histopathological lesions seen in diseases affecting the mammalian kidney can be
recapitulated in the zebrafish [12,48,49]. Nevertheless, for the larval zebrafish to be a valid model to
study renal disease and potential new therapies, the availability of methods for the assessment of
renal function in this organism is necessary. The evaluation of renal function in murine models is not
much different from humans. In mice, blood and urine samples can be easily obtained to measure
various aspects of renal function, such as serum creatinine levels and urinary protein/creatinine ratios
to evaluate glomerular function, and serum electrolytes and urinary low molecular weight proteins
and other solutes concentrations to evaluate renal tubular function. However, in zebrafish larvae these
methods are not currently feasible. A new panel of methodologies therefore had to be developed to
accurately evaluate different aspects of renal function in the larval zebrafish.

3.1. Evaluation of Zebrafish Survival, Development, and Morphology

Because of the available numbers, zebrafish embryos are extremely useful for the accurate
evaluation of the phenotypic picture based on survival, development, and morphological
characteristics in genetic disease models. This is particularly important in genetic renal diseases as
many of them are characterized by increased mortality rates, delayed development, or morphological
aberrations in the zebrafish [12,48,50,51]. The zebrafish pronephros becomes functionally active at
40–48 hpf [12]. Thus, depending upon the gene involved, impairment of renal function can result in
systemic phenotypes at early stages, which can be seen as fluid retention and edema, which ultimately
can affect viability [12]. Hence, survival and developmental and morphological changes can be
important in determining the systemic effects of gene disruption. Common morphological defects
seen upon severe renal impairment include pericardial edema and total body edema although such
phenotypes are not exclusive to renal disorders. Other body deformities, such as hydrocephalus,
microphthalmia, curved body, and left-right axis asymmetry are more frequently associated with
ciliopathies, which often also result in renal cysts [52–54].

3.2. Evaluation of Glomerular Function

The filtration of various molecules has been used to assess the functionality of the glomerular filtration
barrier in the zebrafish. Of particular importance are the dextran based compounds, as they are very
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commonly used for this purpose [12]. Dextran is a complex polysaccharide formed of branched glucose
moieties. Dextran has many advantages as a measure of the integrity of the glomerulus including its
variable size, as it can be obtained between 3 and 2000 kilodaltons (kDa). Furthermore, it is inert, with no
induced immune reaction when given intravenously, and it can be labelled with fluorescent tags for visual
detection in the vasculature and tissues of the transparent zebrafish larva [12,55].

Below 10 kDa, dextran is promptly filtered by the glomerulus, whereas at higher molecular weights the
filtration is less efficient (70 kDa) or does not occur at all (500 kDa) [56]. Thus, both the glomerular filtration
rate and the integrity of the glomerular barrier can be evaluated using the injection of low molecular
weight (3–10 kDa) and high molecular weight (70–500 kDa) fluorescent dextran, respectively [12,57–60].
Furthermore, both tracers can be simultaneously evaluated using different fluorophores [61]. The main
advantage of such a technique is the ability to perform live imaging of fish larvae at different time points
to evaluate fluorescence intensity loss in the retinal vascular bed [62] (Figure 3A), the heart [57], or over
a major vessel, such as the cardinal vein, as a readout of clearance by glomerular filtration [61]. Of note,
the size selectivity of the glomerular barrier is not well established in the zebrafish during the first 3 dpf [55],
so it is important to test for glomerular proteinuria starting from 4 dpf. Another way to evaluate clearance
is through the evaluation of fluorescence intensity in fixed sections at the tubular level, which allows for
the simultaneous evaluation of glomerular and tubular functions [48,55,56].

Another polysaccharide that can be used for the evaluation of glomerular function in the zebrafish
is inulin (Figure 3B). Inulin clearance measured after the intravascular injection of FITC-inulin is a
good alternative to dextran in determining the glomerular filtration rate, especially because inulin
is freely passing through the glomerular barrier and not reabsorbed or secreted from the proximal
tubules, making it an ideal molecule to assess the glomerular filtration rate [63,64]. Inulin clearance is
the current gold standard to assess the glomerular filtration rate (GFR) in humans [65]; however for
this purpose, it has to be measured in the plasma and urine of patients.

A major drawback for the practical application of such techniques is the need for injection of the
fluorescently tagged reporter into the vasculature, which is a labor intensive and time-consuming
procedure, especially when applied to large numbers of larvae. New transgenic zebrafish
lines expressing fluorescently-tagged plasma proteins have been developed to overcome such a
hurdle [66–68]. In humans, the most commonly used plasma protein to evaluate glomerular
permeability is albumin, as it constitutes approximately 50% of the total plasma protein, which
is why the assessment of the urinary albumin/creatinine ratio is a common practice for the evaluation
of the glomerular barrier integrity of the human kidney. However, a gene encoding albumin is absent
from the zebrafish genome [69]. The likely zebrafish equivalent of albumin is vitamin D binding
protein (VDBP), which belongs to the same family of carrier proteins as albumin, and, like albumin,
is produced in the liver and secreted in the bloodstream [70]. When fused to GFP, VDBP has a molecular
weight and electric charge approximate to that for human albumin (79.6 kDa vs. 66.5 kDa, and an
isoelectric point 5.97 vs. 5.67, for VDBP-GFP vs. human albumin, respectively), so they should behave
in a similar way at the glomerular filtration barrier [68]. In a transgenic zebrafish line expressing
VDBP-GFP, the integrity of the glomerular barrier can be evaluated in a very similar way to that
for high molecular weight fluorescent dextran by assessing fluorescence in the retinal vascular bed
(Figure 3C), the cardinal vein or over the heart, or in the case of a defective glomerular barrier, in the
proximal tubules [64]. Recently, 4D in vivo imaging using two-photon microscopy allowed for the
simultaneous assessment of fluorescence intensity of the VDBP-GFP fusion protein in the vasculature
and proximal tubules of live zebrafish larvae, which gives the opportunity for dynamic monitoring of
the glomerular filtration barrier [71].

A transgenic zebrafish line co-expressing VDBP-GFP from the liver and a nitroreductase enzyme
within podocytes has also been generated [68]. Due to the ability of nitroreductase to convert
metronidazole to a cytotoxin, this transgenic line allows for the inducible and acute damage of
podocytes and the analysis of glomerular integrity following such treatment. It may also be used to
study podocyte regeneration following metronidazole washout [12].
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at the 14th, 15th, and 16th somites (yellow lines). The average is determined for each fish and for each 
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Figure 3. Evaluation of glomerular function in the zebrafish. (A) 70-kDa rhodamine labelled dextran
is injected in zebrafish larvae at 72 hpf (hours post fertilization). Immediately after injection (0 hpi,
hours post injection), the success of intravascular injection is confirmed through observing the fluorescent
dye in all capillaries including those situated in the retinal vascular bed (white arrows). At 24 hpi,
the fluorescence signal intensity is quantified in fixed diameter circles in the retinal vascular bed using
image-processing software, such as ImageJ. In wild type larvae, glomerular function is preserved and
fluorescence accumulates in the retinal vascular bed as expected, while in the cystinosis mutant (ctns−/−)
larvae, the glomerular barrier is defective [48] and the 70-kDa dextran is lost in urine, thus the fluorescence
intensity is significantly reduced (bars from left to right = 500 µm, 200 µm, and 200 µm). (B) FITC labelled
inulin is injected at 96 hpf. Initial images are obtained immediately after injection (0 hpi) and 4 h later (4 hpi).
The intensity of fluorescence is quantified over the cardinal vein at the 14th, 15th, and 16th somites (yellow
lines). The average is determined for each fish and for each time point, then glomerular filtration rate (GFR)
is expressed as the percentage decline of fluorescence over the 4 h incubation period (bars = 500 µm), white
arrows refer to the site of the cloaca. (C) The VDBP-GFP transgenic zebrafish line at 72, 96, 120, and 144 hpf.
The fluorescence intensity naturally accumulates in the retinal vascular bed over time with the increased
production of the vitamin D binding protein (bars = 200 µm).

3.3. Evaluation of Tubular Function

3.3.1. Tubular Endocytosis

Receptor mediated endocytosis by proximal tubular epithelial cells (PTECs) is an important
process by which the kidney can minimize the urinary losses of important proteins, vitamins, hormones,
and other solutes through their uptake from the tubular lumen. Megalin and cubilin are major
multi-ligand transmembrane receptors that are mainly expressed at the luminal brush border of
PTECs and are largely responsible for this endocytic uptake [72]. Loss of megalin in humans causes
Donnai–Barrow syndrome, which is characterized by low molecular weight proteinuria amongst other
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symptoms [73]. Both receptors are highly evolutionary conserved between different species, and the
zebrafish is no exception [74].

Megalin, encoded by lrp2a gene, is important for proximal tubular function in the zebrafish [75].
Loss of megalin protein in zebrafish (bugeye mutant), or its depletion induced by lrp2a MO, abrogates
endocytosis and results in loss of apical endosomes in the proximal pronephric duct epithelium [75,76].
This is similar to what is seen in megalin knockout mice [77], indicating the conservation of the megalin
retrieval pathway between the larval zebrafish pronephros and the mammalian kidney. Many proximal
tubular diseases modeled in zebrafish alter megalin expression and function resulting in defective
tubular reabsorption similar to the lrp2a mutant, such as observed in the cystinosis (ctns) and Lowe
syndrome (ocrl) models [48,49] (Figure 4A,B). A good way to monitor endocytosis in the pronephros
is performed through using low molecular weight fluorescent dextran (10 kDa or less). This fluid
phase tracer is efficiently filtered and taken up by endocytosis into the pronephros [75]. Another tracer
that can be used to more directly assess megalin-dependent endocytosis is fluorescently conjugated
receptor-associated protein (RAP), which is a physiologic chaperon for megalin [78]. Loss of megalin
abrogates endocytosis of both tracers.
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Figure 4. Evaluation of proximal tubular endocytosis. (A) Evaluation of megalin localization:
Transverse confocal fluorescence images of the proximal pronephric region of wild type (wt) and
cystinosis mutant larvae (5 dpf) showing endogenous megalin distribution with an anti-megalin
antibody. In the wild type zebrafish, megalin is localized predominantly at the luminal brush
border of the pronephric tubules, while in the cystinosis zebrafish, megalin abundance is significantly
reduced in the brush border and it is mainly trapped in multiple subapical and cytoplasmic vacuoles,
demonstrating defective endosomal trafficking in the cystinosis zebrafish (bars = 5 µm). (B) Transverse
fluorescent images of the proximal pronephric region in wt and ocrl mutant zebrafish larvae after 2.5 h
of 10-kDa Alexa488-conjugated dextran injection at 72 hpf. In wild type dextran is normally reabsorbed
at the proximal tubular level, while in the Lowe syndrome model dextran reabsorption is almost
completely absent (bars = 5 µm). White dashed lines represent the outline of the proximal tubule.

Similarly, plasma proteins such as VDBP, can also be reabsorbed by megalin-dependent
endocytosis upon disruption of the glomerular filtration barrier [68,79]. The quantitation of the
fluorescence signal of different tagged molecules over the pronephric tubules, especially around the
brush border is a very good way of testing the efficiency of the PTECs endocytic machinery, provided
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that proper control groups are used. Recently, a fluorescent low molecular weight probe (PT-yellow)
has been developed that is selectively taken up into the zebrafish proximal tubules simply by soaking
larvae in the compound, with no need for injection [80]. This non-toxic molecule accumulates in
endocytic organelles, but whether the mechanism of uptake is endocytosis dependent, remains to be
determined. Interestingly, the strength of PT-yellow accumulation was significantly reduced upon
exposure to gentamicin [80], which has been shown previously to ablate PTECs in the zebrafish [62].
Several transgenic zebrafish lines have been developed to mark the proximal tubules with fluorescent
reporters. Some of these reporters are expressed only in the proximal part of pronephric tubule, such
as those for gtshβ [81] and the tg(PT:EGFP) transgenic line, which was isolated serendipitously during
the generation of sox10:EGFP fish [82], while other reporters mark the entire pronephric tubules, such
as enpep [83].

3.3.2. Ion and Small Solute Transport

Zebrafish are hyperionic and hyperosmotic in comparison to their aquatic environment.
This results in the passive loss of ions and uptake of water along their electrochemical and osmotic
gradients, respectively [84]. To maintain physiological balance, compensatory transport systems to
reabsorb ions and control water balance must exist. The cells responsible for maintaining this delicate
balance are specialized ionocytes that are mainly located in the skin of embryos/larvae and gills of
adult zebrafish. However, both pronephric and mesonephric renal tubular cells also express many of
the ion channels present in the skin or gills, and together, the kidney and skin/gills of zebrafish work
cooperatively to regulate the balance of different electrolytes [85]. Similarly, the transport of small
molecules such as glucose also occurs in the kidney as the major zebrafish glucose transporter (slc2a2),
which is an orthologue of the human glucose transporter (GLUT2), is expressed in the zebrafish
pronephros [86]. Few studies have tested ion homeostasis in the zebrafish. A potential functional assay
challenges zebrafish embryos with water supplemented with different concentrations of ions to monitor
the physiological response of zebrafish to changes in ionic composition of the environment. This is
usually followed by the quantitation of target ions in larval homogenates. Recently, the importance of
casr and arl15b genes for the maintenance of calcium [87] and magnesium [88] homeostasis, respectively,
was reported using this evaluation method.

3.4. Evaluation of Renal Cysts

Forward genetic screens in the zebrafish confirmed the connection between pathogenic mutations
in genes controlling the formation and function of cilia and the development of cystic kidney
diseases [50,89]. The proper visualization of renal cysts early during the first few days of zebrafish
embryonic development is essential to categorize the disease phenotype and to evaluate the response
to potential therapy. Although it is relatively easy to visualize renal cysts in the transparent larvae
simply by monitoring the pronephros using light microscopy, detecting smaller cysts or monitoring
the rate of cyst development might pose a challenge. A transgenic line Tg (wt1b::GFP), showing
fluorescence associated with the Wilms tumor 1b protein, which is mainly expressed in the glomerulus
and proximal tubules of the developing embryo [90], can facilitate the identification and monitoring of
small renal cysts in vivo [51,91,92]. The model can be also used to test new therapeutic approaches,
and their effects upon cyst formation [93]. Another transgenic zebrafish line Tg (Arl13b::GFP) marks
the ciliary membrane and thus can facilitate the study of tubular cilia morphology and abundance [94].

4. Characterized Zebrafish Models of Genetic Renal Diseases

The number of zebrafish models generated to study genetic renal diseases has grown exponentially
over the last decade. Table 2 provides a list of the main characterized embryonic and larval models of
genetic renal diseases in the zebrafish, with phenotypic features and the methods used to create the
models. The majority of zebrafish models are created by MO injection, thus validation in permanent
mutant genetic models is still needed for most disorders. The main disease categories studied in
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zebrafish are genetic glomerular and tubular disorders, renal ciliopathies, and congenital anomalies of
the kidney and urinary tract (CAKUT).

In most cases, disease phenotypes appear to be recapitulated in the zebrafish, although this is not
true in all cases. For instance, in an Alport syndrome model due to loss of col4a5 (dragnet mutant), only
ocular but no glomerular defects have been observed [95]. Another example is the Branchio-oto-renal
syndrome caused by EYA1 gene deficiency. Both craniofacial and ear malformations were evident in the
eya1 MO zebrafish model similar to those of the human disease. However, abnormal renal development
was not observed because the gene is expressed relatively late at the mammalian metanephric stage,
and is completely absent during early renal development in the zebrafish [96].

Although, human genes responsible for hereditary nephrolithiasis syndromes, such as cystinuria
(SLC3A1, SLC7A9), primary hyperoxaluria (AGXT, GRHPR, HOGA1), Dent’s disease (CLCN5),
and xanthinuria (XDH), have counterpart genes in the zebrafish genome, and some of them are
reported to be expressed in the zebrafish pronephric tubules [97,98], no zebrafish models have been
created for these disorders. This is probably due to the different physiological aspects concerning
urine formation in the zebrafish, particularly their lack of need to concentrate urine in the fresh water
environment [14]. However, it is worth noting that adult zebrafish are capable of developing kidney
stones as evident by the mutant model for trpm7 gene, which codes for a transient receptor potential
cation channel, that is expressed in the mesonephric tubules [99].
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Table 2. Characterized embryonic and larval models of genetic renal diseases in zebrafish.

Disease OMIM Heredity Gene Methodology Phenotype Ref.

Tubular disorders

Cystinosis 219800 AR ctns MO, ENU
Cystine accumulation, increased embryonic mortality, delayed development,
apoptosis, defective glomerular permeability, altered tubular reabsorption,
and megalin expression

[48]

Donnai–Barrow syndrome 222448 AR lrp2a,b MO, ENU Defective endocytosis in larvae and bug eyes in adults [75,76]

Lowe syndrome 300555 AR ocrl MO, Retroviral insertion Increased embryonic mortality, delayed development, impaired pronephric
endocytosis, altered megalin subcellular localization in proximal tubules [49]

ADTKD 617056 AD sec61a1 MO, CRISPR Convolution defects of the pronephric tubules, pronephric tubular atrophy [100]

Hypermanganesemia with dystonia type 1 613280 AR slc30a10 CRISPR Hypermanganesemia and fatty liver in larvae and dystonia, cirrhosis,
and neurological deficits in adults [101]

SeSAME syndrome 612780 AR kcnj10a MO Dilated pronephric duct, pericardial edema, neurological manifestation [102]

Proximal RTA with ocular anomalies 604278 AR slc4a4 MO Impaired renal electrolyte balance, edema, altered brain and eye development [103]

Familial Hypocalciuric Hypercalcemia type I 145980 AD casr MO Increased calcium content, impaired regulation of calcium metabolism [87]

Hypomagnesemia * ———— ———— arl15b MO Pronephric magnesium wasting, cardiovascular impairments, poorly
metabolized yolk [88]

Glomerular disorders

SRNS1 (Finish type) 256300 AR nphs1 MO Ultrastructural glomerular damage, proteinuria, edema, increased
embryonic mortality [55]

SRNS2 600995 AR nphs2 MO Ultrastructural glomerular damage, proteinuria, edema, increased
embryonic mortality [55]

SRNS3 610725 AR plce1 MO Ultrastructural glomerular damage, proteinuria, edema [104]

SRNS4 607832 AR, AD cd2ap MO Ultrastructural glomerular damage, proteinuria, edema [105]

Denys–Drash syndrome 194080 AD wt1a,b MO Ultrastructural glomerular damage, proteinuria, edema, deformity, high
embryonic mortality [106]

Nail-patella syndrome 161200 AD lmx1b MO Ultrastructural glomerular damage, proteinuria, edema [107]

Schimke Immuno-Osseous Dysplasia 242900 AR smarcal1 MO Increased embryonic mortality, delayed development, increased apoptosis,
edema, deformity [108]

FSGS4 612551 AR apol1 MO Ultrastructural glomerular damage, proteinuria, edema [109]

FSGS5 613237 AD inf2 MO Ultrastructural glomerular damage, proteinuria, edema [110]

FSGS6 614131 AR myo1e MO Pericardial edema, pronephric cysts [111]

FSGS8 616032 AD anln MO Ultrastructural glomerular damage, proteinuria, edema [112]

FSGS9 616220 AR crb2b MO Ultrastructural glomerular damage, proteinuria, edema [113]

Von Hippel–Lindau disease 193300 AD vhl MO, ENU Ultrastructural glomerular damage, proteinuria, edema, proximal tubular
damage, increased angiogenesis [114,115]
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Table 2. Cont.

Disease OMIM Heredity Gene Methodology Phenotype Ref.

Glomerulopathy * ———— ———— shroom3 MO Ultrastructural glomerular damage, proteinuria, edema, gastrulation defects [116]

Glomerulopathy * ———— ———— fat1 MO Impaired podocyte migration, glomerular defects, pronephric cysts [92]

Renal ciliopathies

ADPKD 173900 AD pkd1a,b MO, TALENs Dorsal axis curvature in morphants and hydrocephalus, craniofacial defects,
and pronephric cysts in both [117,118]

613095 AD pkd2 MO, ENU Dorsal axis curvature, hydrocephalus, pronephric cysts in morphants,
and organ laterality defects in both [117,119]

ARPKD 617610 AR dzip1l MO, CRISPR Pronephric cysts, curved body, hydrocephalus, otolith defects [51]

NPHP1 256100 AR nphp1 MO Pronephric cysts, duct dilatations, deformity [120]

NPHP2 602088 AR invs MO Pronephric cysts, ventral axis curvature, randomization of heart looping [121]

NPHP3 604837 AR nphp3 MO Pronephric cysts, curved body, hydrocephalus, left right asymmetry [122]

NPHP4 606966 AR nphp4 MO Pronephric cysts, curved body, hydrocephalus, pericardial edema [120]

NPHP5 609254 AR iqcb1 MO Pronephric cysts, curved body, hydrocephalus, pericardial edema [123]

NPHP6 610188 AR cep290 MO Pronephric cysts, curved body, hydrocephalus, retinitis pigmentosa,
cerebellar defects [124]

NPHP7 611498 AR glis2 MO Pronephric cysts, convergent extension defects, curved body, hydrocephalus,
abnormal cardiac looping [125]

NPHP9 613824 AR nek8 MO Pronephric cysts, developmental delay, curved body, abnormal
cardiac looping [126]

NPHP10 613615 AR sdccag8 MO Pronephric cysts, developmental delay, curved body, hydrocephalus [127]

NPHP13 614377 AR wdr19 MO Pronephric cysts, hydrocephalus, microphthalmia, body curvature [128]

NPHP15 614845 AR cep164 MO
Ventral body axis curvature, abnormal heart looping, pronephric tubule cysts,
hydrocephalus
heart looping

[129]

SLNS9 616629 AR traf3ip1 MO Pronephric cysts, microphthalmia, retinitis pigmentosa [53]

JBTS 1 213300 AR inpp5e MO, CRISPR
Left–right body axis asymmetry, microphthalmia and disruption of
apicobasal polarity in morphants and pronephric cysts, pericardial effusion
and body curvature in both morphants and mutants

[54,130]

JBTS 2 608091 AR tmem216 MO Pronephric cysts, body axis asymmetry, gastrulation defects [131]

JBTS 3 608629 AR ahi1 MO Pronephric cysts, cardiac asymmetry, brain, eye and ear abnormalities [132]

JBTS 6 610688 AR tmem67 MO Pronephric cysts, pronephric duct dilatation, notochord anomalies, abnormal
eye formation [133]
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Table 2. Cont.

Disease OMIM Heredity Gene Methodology Phenotype Ref.

JBTS 7 611560 AR rpgrip1l MO
Gastrulation defects, shortened body axis, thin somites with broad lateral
extensions, minor kinking of the notochord, underdeveloped anterior
structures

[134]

JBTS 8 612291 AR arl13b Retroviral insertion Pronephric cysts, curved body [135]

JBTS 9 612285 AR cc2d2a ENU Pronephric cysts, pericardial edema, curved body [136]

JBTS 10 300804 XLR ofd1 MO Curved body, hydrocephalus, pericardial edema, randomized laterality of
brain and heart [137]

JBTS 11 613820 AD, AR ttc21b MO Gastrulation defects, shortened body axis, kinking of the notochord,
broadening of somites [138]

BBS 1 209900 AR, DR bbs1 MO Pronephric cysts, convergent extension defects, curved body, hydrocephalus,
abnormal heart looping [125]

TSC 1 191100 AD tsc1a MO Pronephric cysts, asymmetry defects, curved body [139]

TSC 2 613254 AD tsc2 ENU Abnormal brain development, increased embryonic mortality, enlarged liver,
abnormal cilia [140]

Short-rib thoracic dysplasia with or
without polydactyly

615630 AR ift172 MO, Retroviral insertion Ventral body-axis curvature, formation of renal cysts, cartilage defects
with hypoplasia [141,142]

611263 AR ift80 MO Abnormal brain development, increased embryonic mortality, enlarged liver,
abnormal cilia [141]

———— AR tekt1 MO Ventral body-axis curvature, formation of renal cysts, cartilage defects
with hypoplasia [128]

Renal-hepatic ciliopathy 616217 AR dcdc2 MO Pronephric cysts, hydrocephalus, ventralized body axis, pericardial edema [143]

Jeune thoracic dystrophy 616300 AR cep120 MO Abnormal body curvature, hydrocephalus, otolith defects, abnormal renal
and craniofacial development [144]

Ciliopathy * ———— ———— pik3r4 MO Pronephric cysts, hydrocephalus, curved body [145]

CAKUT

Papillorenal syndrome 616002 AD pax2a ENU Abnormal pronephros development, defective tubular differentiation
and patterning [146]

DiGeorge syndrome 188400 AD
crkl,

aifm3,
snap29

MO, CRISPR Major convolution defects, reduced length of pronephric tubules [147]
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Table 2. Cont.

Disease OMIM Heredity Gene Methodology Phenotype Ref.

Denys–Drash syndrome 194080 AD wt1a MO Disruption of glomerular morphogenesis and differentiation [148]

Renal cysts and diabetes syndrome 137920 AD hnf1ba,b MO, Retroviral insertion Abnormal nephron segmentation, tubular dysfunction [149]

Renal hypodysplasia 604994 AD six2 MO Altered renal morphology, dorsalization of the embryo [150]

Renal hypodysplasia
Bilateral renal agenesis *

112262 AD bmp4 MO Altered renal morphology, ventralization of the embryo [150]

———— AD greb1l ENU, MO, CRISPR Dilated tubules, deformed junction between proximal convoluted tubules and
the neck, pronephric cysts, pericardial edema, early mortality [151]

Classic bladder exstrophy 600057 XLR isl1 MO Abnormal urinary tract development [152]

CAKUT1 612666 AD dstyk MO Cloacal deformities, growth retardation, pericardial edema, small fins,
abnormal jaw development [153]

* For some recently reported genes, pathogenic mutations have been associated with a human renal phenotype but syndrome names and OMIM numbers have not been identified
yet. AD, autosomal dominant; ADPKD, autosomal dominant polycystic kidney disease; ADTKD, autosomal dominant tubulo-interstitial kidney disease; AR, autosomal recessive;
ARPKD, autosomal recessive polycystic kidney disease; BBS, Bardet–Biedl syndrome; CAKUT, congenital anomalies of the kidney and urinary tract; CRISPR, clustered regularly
interspaced short palindromic repeats; ENU, N-ethyl-N-nitrosourea; FSGS, focal segmental glomerulosclerosis; JBTS, Joubert syndrome; MO, morpholino antisense oligonucleotides; NPHP,
nephronophthisis; OMIM, Online Mendelian Inheritance in Man; RTA, renal tubular acidosis; SeSAME syndrome, seizures, sensorineural deafness, ataxia, mental retardation, electrolyte
imbalance; SLNS, Senior–Loken syndrome; SRNS, steroid resistant nephrotic syndrome; TALENs, Transcription activator-like effector nucleases; TSC, tuberous sclerosis; XL, X-linked.
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5. Drug Discovery and Validation

The rapid development of zebrafish allows drug screening to be performed at embryonic and
larval stages, prior to the stage at which the animals become protected by ethical regulations, which
is normally at 6 days post fertilization in most countries [154]. Furthermore, their abundance,
small size, ease of handling, transparency, low cost, and most importantly, the availability of clear
phenotypic assays, makes zebrafish an extremely powerful model organism for in vivo therapeutic
drug screening and discovery [2]. Furthermore, major drug classes affecting human cell physiology,
such as prostaglandins, hematopoietic factors, and drugs affecting glucose homeostasis, perform in
the zebrafish in a very similar manner to humans [155–157]. Since the pioneering work of Cao et
al., through chemical modifier drug screens to unravel the beneficiary effects of histone deacetylase
inhibitors in the treatment of polycystic kidney disease zebrafish models [158], multiple studies have
tested novel therapeutic agents in renal zebrafish models [93,130,159,160].

Recently, PI3-kinase inhibitors were reported to rescue the cellular, phenotypic, and renal
functional defects of the Joubert syndrome associated inpp5e mutant zebrafish larvae by decreasing
3-phosphoinositide levels [130]. On the other hand, nek8 mutants, associated with syndromic renal
cystic dysplasia showed increased signaling of the transcriptional factor YAP, which is involved in the
Hippo signaling pathway controlling organ size, cell proliferation, and apoptosis. The treatment with
verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the abnormalities seen in
zebrafish mutant embryos [159].

Zebrafish is also an excellent in vivo model to study drug toxicity and drug–drug interactions,
especially since zebrafish larvae at 72 hpf have a fully functional liver, expressing 94 different Cytochrome
P450 enzyme genes, many of them having human orthologues [161]. Moreover, zebrafish can be used for
the high throughput drug–drug interaction screening for diseases requiring multiple drug therapy [162].

6. Limitations of Zebrafish Models

In spite of the many advantages of zebrafish, they still have some limitations that must be taken into
account when considering generating a disease model. General limitations applying to zebrafish models
include the presence of many duplicated genes, caused by a whole genome duplication event in early
teleost evolution 320–350 million years ago, followed by the retention of many duplicated genes in different
species [163]. Due to this phenomenon, many mammalian protein coding genes (over 3000 mammalian
genes), have two or more zebrafish counterparts, which may code for similar proteins with similar
functions [4]. In such cases, biallelic mutations in a single gene may not be enough to produce the desired
phenotype. Furthermore, inbreeding of mutants can encourage adaptive or compensatory responses [30].

As mentioned previously, some larval zebrafish models do not recapitulate the expected disease
phenotype, which could be due to functional redundancy with duplicated paralogues, or other
genes from the same family, or the lack of expression of the gene of interest at the larval stage.
Also, zebrafish models are probably unsuitable to study genetic diseases affecting water homeostasis,
such as hereditary nephrogenic diabetes insipidus, which is caused by either AVPR2 or AQP2 defects
in humans [164]. A true orthologue of AQP2 (aquaporin 2) is lacking in the zebrafish [165]. This could
be due to the different aquatic environment and different controlling mechanisms of water and ionic
balance in the zebrafish [84]. Furthermore, some genes may be completely lacking in the zebrafish,
such as the ENaC (epithelial Na channel) subunits (SCNN1A, SCNN1B, SCNN1G, and SCNN1D) [166],
mutations in which cause Liddle syndrome and pseudohypoaldosteronism type 1 in humans.

Although there appears to be a high degree of conservation between zebrafish and mammals
regarding drug sensitivity and toxicity, it is always difficult to correlate therapeutic doses in
zebrafish to mammalian doses, especially when considering that zebrafish physiology, mode of
drug administration, and hemodynamics are different. Furthermore, the exact amount of the drug
taken up by the larvae is usually hard to determine [167]. Another general disadvantage concerning
drug therapy in zebrafish models is the lack of a complete picture of drug handling by certain organs,
such as the lungs and mammary glands, as they are absent in the zebrafish [168].
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7. Future Perspectives

Zebrafish models have been advancing our knowledge of renal development and disease at an
ever-increasing rate. One of the most important research targets of zebrafish is to understand the
functions of genes involved in renal regeneration. Zebrafish has significantly lower number of nephrons
in their adult mesonephric kidney (150–300) [67], compared to approximately 12,000 nephrons in the
mouse and one million nephrons in the human adult metanephros [11]. However, zebrafish retain the
ability to add new nephrons to their mesonephric kidney in the juvenile and adult stages in a process
called neonephrogenesis [17,67,169]. In this respect, zebrafish genetic models can help understanding
the role of key mechanisms of these processes, which may guide the discovery of similar mechanisms
that are dormant and can be rejuvenated in mammals upon renal injury.

Although many genes have been identified recently, in the era of wide scale whole exome and whole
genome sequencing, as the cause of monogenic hereditary renal disorders [151,170–172], it is conceivable
that many genes affecting the kidney are still waiting to be attributed to human syndromes. Zebrafish could
be uniquely useful in this regard. Through the ease of both genetic manipulation and renal phenotypic
validation, novel genes identified in the zebrafish can be linked to a renal phenotype, and if the gene is
sufficiently conserved between zebrafish and mammals, it is highly likely to be attributed later to a human
disease [173,174]. Furthermore, the confirmation of such potential genetic candidates can be investigated
by comparing the ability of injected wild type human gene mRNA, or mRNA with a pathogenic human
mutation (e.g., a single nucleotide polymorphism) to rescue the zebrafish phenotype [175].

Another future application of zebrafish research is its potential for developing strategies for
personalized medicine. Patients of a single monogenic disease vary in both clinical severity and
response to therapeutic interventions. This could be explained by either the variability of the causative
mutations or the presence of unknown genetic modifiers within the patient genome [176]. Due to
the recent availability of extensive sequencing techniques, it has become easier than ever to identify
associated mutations in potential modifier genes, while diagnosing the causative mutations in the
responsible gene. The availability of reverse gene editing techniques, such as CRISPR-Cas9, that can
introduce specific mutations in the zebrafish genome, makes studies of personalized medicine much
more feasible. There are hurdles yet to overcome in this regard, especially the still reported off-target
effects of CRISPR, which can be up to five mismatched bases in the recognized sequence [177].
However, there are multiple recent advances in the CRISPR technology aiming at minimizing its
off-target effects without losing much of its on-target efficiency. These include the structure-guided
protein engineering approach to create Cas9 variants that have less off-target effects [178,179], and new
computational algorithms for predicting potential off-target effects for optimal design of guide
RNAs [180–182]. Moreover, there are validated biochemical methods to screen for the off-target
cleavage sites using various sequencing techniques, such as the high-throughput, genome-wide,
translocation sequencing (HTGTS) [183], GUIDE-seq [184], Digenome-seq [185], and SITE-seq [186].
Although these technologies are not developed specifically for zebrafish, they and other future
advances will soon allow the routine creation of specialized zebrafish models, accurately and
individually mimicking human mutations in both causative and modifier genes. In addition, since
zebrafish is an excellent target model for drug experimentation, this will allow the search for novel
therapeutic agents to be also personalized.

8. Conclusions

The zebrafish has proved its significance as a valuable vertebrate model to study renal
development and disease. Zebrafish are particularly amenable to genetic manipulation by novel
technologies. Their phenotype in the majority of cases is faithful to the human phenotype. It is
foreseeable that new genetic zebrafish models of many human hereditary renal diseases will be
developed during the next few years. This, combined with better assays for evaluating renal function
and the generation of new transgenic reporter lines, means that studying kidney disease and finding
new therapies in these models will become even more powerful.
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