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Introduction: Acute kidney injury (AKI) is a frequent complication of cardiac surgery, but only a fraction of

cardiac surgery patients that experience postoperative AKI have progression to more severe stages.

Biomarkers that can distinguish patients that will experience progression of AKI are potentially useful for

clinical care and/or the development of therapies.

Methods: Data come from a prospective cohort study of cardiac surgery patients; the analytic dataset

contained data from 354 cardiac surgery patients meeting criteria for AKI following surgery. Candidate

predictors were 38 biomarkers of kidney function, insult, or injury measured at the time of AKI diagnosis.

The outcome was AKI progression, defined as worsening of AKI Network stage. We investigated

combining biomarkers with Bayesian model averaging (BMA) and random forests of classification trees,

with and without center transformation. For both approaches, we used resampling-based methods to

avoid optimistic bias in our assessment of model performance.

Results: BMA yielded a combination of 3 biomarkers and an optimism-corrected estimated area

under the receiver operating characteristic curve (AUC) of 0.75 (95% confidence interval [CI]: 0.68,

0.82). The random forests approach, which nominally uses all biomarkers, had an estimated AUC of

0.74 (95% CI: 0.66, 0.82). A second application of random forests applied to biomarker values after a

center-specific transformation had an estimated AUC of 0.80 (95% CI: 0.72, 0.88).

Conclusion: These findings suggest that the application of advanced statistical techniques to combine

biomarkers offers only modest improvements over use of single biomarkers alone. This exemplifies a

common experience in biomarker research: combinations of modestly performing biomarkers often also

have modest performance.
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A
KI is common after cardiac surgery and is asso-
ciated with adverse outcomes.1 However, only a

fraction of cardiac surgery patients who experience
postoperative AKI have progression to more severe
stages. Identifying cardiac surgery patients who are
at high risk of AKI progression could potentially
improve patient care or aid in the development of novel
treatment strategies.
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Numerous biomarkers of injury, inflammation,
repair, and fibrosis have been associated with the
development of AKI following cardiac surgery.2–7 Few
studies have investigated biomarkers that can be used
to predict AKI progression.8 We used data from a large
multicenter cohort of cardiac surgery patients to seek
out prognostic biomarkers of AKI progression. We
also investigated whether the prognostic capacity of
individual biomarkers could be leveraged to produce a
biomarker panel with improved prognostic capacity.
METHODS

Study Population

This is a secondary analysis of the Translational
Research Investigating Biomarker Endpoints in AKI
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CLINICAL RESEARCH KF Kerr et al.: Biomarker Panels for AKI Progression
(TRIBE-AKI study). Briefly, this study prospectively
enrolled 1219 adults undergoing coronary artery
bypass graft (CABG) and/or valve surgery at 6 aca-
demic medical centers in North America between July
2007 and December 2009. Study details have been
described previously.3 Patients who developed at least
AKI Network stage 1 were included in this analysis.
Sample Collection

Urine and ethylenediamine tetraacetic acid (EDTA)
plasma specimens were collected preoperatively and
daily for up to 5 postoperative days. The first post-
operative samples were collected soon after patients were
admitted to the intensive care unit (0–6 hours after
surgery). Details regarding sample collection and storage
were provided in earlier reports.3
Biomarkers

The present investigation considers biomarkers
measured closest to the time of AKI diagnosis. For each
patient, we defined the biomarker value as the most
recent nonmissing postoperative value up to and
including the day of that patient’s AKI diagnosis. For
example, suppose a patient is diagnosed with AKI 2
days after surgery but has missing biomarker values on
that day. If the patient had nonmissing biomarker
values 1 day after surgery, then those values were used
as the biomarker measurements. On the other hand, if
the patient had no biomarker measurement at any time
between cardiac surgery through the day of AKI pro-
gression, then the patient’s biomarker value was coded
as missing. Supplementary Table S1 summarizes the
timing of biomarker measurements used in analysis
relative to the first day of clinical AKI. Use of the most-
recent-carried-forward measurements reduced the
number of patients with missing data for one or more
biomarkers from 156 to 84 (of 354).

Supplementary Table S2 lists biomarker assays; pro-
cedures are detailed in prior publications.3,4,6,9–11 Our
study included 31 blood plasma biomarkers, 7 urine
biomarkers, and the change in serum creatinine level
(day of AKI diagnosis vs. pre-surgery). Preoperative
serum creatinine level, collected about 3 days prior to
surgery (interquartile range: 1–11 days), served as a
baseline measurement of kidney function. Pre- and post-
operative creatinine values were measured by the same
laboratory for each patient at all centers. Supplementary
Table S1 provides details of the plasma and urine
biomarker measurements.
Outcome

The primary outcome was AKI progression, defined as
an increase in AKI Network stage from 1 to 2 or 3.
1678
Statistical Methods

We summarized the association of individual bio-
markers and AKI progression using odds ratios
comparing patients 1 SD apart in the biomarker. We
summarized the prognostic capacity of individual
biomarkers using the area under the receiver oper-
ating characteristic curve (AUC). AUC is a general
measure of how well a combination discriminates
between patients who progress and those who do not,
and we acknowledge that AUC is an incomplete
assessment.12,13

We considered 40 candidates (31 plasma biomarkers,
7 urine biomarkers, change in serum creatinine level,
and cardiopulmonary bypass surgery time) in devel-
oping biomarker combinations. Cardiopulmonary
bypass surgery time was included as a binary variable
indicating a time >120 minutes. Urine biomarkers were
not normalized to urine creatinine level, although urine
creatinine level was included as a candidate predictor.
All biomarkers were log-transformed, except for serum
creatinine level.
Biomarker Combination Methods (BMA and

Random Forests)

We used 2 complementary methods to seek biomarker
combinations. First, we used methods based on BMA14

to identify combinations of biomarkers and cardio-
pulmonary bypass surgery time. Briefly, BMA assigns a
prior probability to each candidate predictor that re-
flects the chance that the predictor is useful for pre-
diction. These prior probabilities induce a prior
probability for each biomarker combination. The
method uses these prior probabilities and the data to
calculate a posterior probability for each candidate
predictor. This posterior variable probability reflects
the support in the data for the variable as a predictor of
the outcome. The BMA methods use a “leaps and
bounds” algorithm to strategically search the large
space of all possible biomarker combinations to identify
the most-promising combinations for further consid-
eration. With 40 candidate predictors, there are >1
trillion possible combinations; the search algorithm
makes exploring this space computationally feasible.

In our implementation of BMA, we assigned each
candidate predictor a prior probability of one-half,
implying that each candidate was a priori as likely to
be in the model as not. These prior probabilities induce
a prior probability for each combination of (0.5)40 ¼
9.1 � 10–13, because there are 40 candidate predictors.
In our application of BMA, we selected the combina-
tion of all biomarkers with posterior probability
exceeding 0.5, which is sometimes called the median
probability combination.
Kidney International Reports (2019) 4, 1677–1688
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Note that BMA seeks linear combinations of bio-
markers. In particular, it does not easily handle in-
teractions among biomarkers. As a complementary
approach, we also used the random forests method of
aggregating classification trees. In this ensemble
approach, we took 1000 bootstrap samples of our data
and fit a classification decision tree to each sample us-
ing a randomly selected set of 6 biomarkers. In each
bootstrap sample, we used Gini impurity as the split-
ting criterion. Predicted risks of AKI progression from
a single tree can be obtained as the frequency of the
outcome in the nodes of the tree.15 To obtain predicted
risks for individual patients from a collection of trees,
we averaged these predicted risks using only the trees
that, due to the random bootstrap sampling, did not
include that patient (“out-of-bag” trees). Obtaining
predictions by averaging across out-of-bag trees should
protect against overfitting and avoid optimistic bias in
assessment of performance.

It is difficult to understand the role of individual
predictors in a random forest, which is sometimes
referred to as a “black box” prediction instrument. As
a first-pass measure of the importance of individual
predictors, we repeated the entire random forest pro-
cedure 40 times, once for each candidate predictor,
excluding one candidate predictor each time. We
measured the decrease in estimated AUC when an in-
dividual biomarker was excluded. We caution against
overinterpretation of this measure of variable impor-
tance. For example, suppose there are 2 biomarkers that
Table 1. Demographics and clinical variables of study population as a w

Patient characteristic Overall (n [ 354

Demographics

Age (yr), mean (SD) 72 (9.7)

Male sex 255 (72)

White race 333 (94)

Clinical variables

Preoperative eGFR (ml/min per 1.73 m2), mean (SD) 63.3 (19.8)

Diabetes 161 (46)

Hypertension 297 (84)

Congestive heart failure 120 (34)

Type of surgery

CABG or valve 267 (75)

CABG and valve 87 (25)

Status of procedure

Elective 255 (72)

Emergent or urgent 99 (28)

Cardiac catheterization <48 h prior to surgery 16 (4.5)

Preoperative myocardial infarction 94 (27)

Reoperation 47 (13)

CPB > 120 (min) 172 (64)

CABG, coronary artery bypass grafting, CBP, cardiopulmonary bypass; eGFR, estimated glome
Values are n (%), unless otherwise indicated.
There were 2 missing data values for cardiac catheterization, 5 for preoperative myocardial in
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are each highly predictive but are also highly corre-
lated with each other. Excluding one of the biomarkers
as a candidate predictor will have little effect on the
performance of the random forest, but this will un-
derstate the importance of the marker.

Optimism Correction

For both BMA and random forests, we used methods
to correct for optimistic bias that arises when the
same data are used to both fit a model and then
evaluate the model’s performance. For BMA, we used
a bootstrapping procedure to estimate and correct for
optimism in estimates of combination performance
due to resubstitution bias and model-selection bias
(more details follow).16 For random forests, we used
out-of-bag trees to obtain predicted risks for pa-
tients, in order to estimate model performance. That
is, for a given observation, we used all trees that did
not use that observation to grow the tree to make a
prediction for that observation, and averaged those
predictions.

Multiple Imputations of Missing Biomarker Data

There was a non-negligible amount of missing
biomarker data, which was a particular consider-
ation for our investigation of biomarker combina-
tions. Among the 83 individuals with at least one
missing biomarker measurement, 14.5% experienced
progression. Among the 271 patients with no
missing data, 10.0% experienced AKI progression.
hole and stratified on acute kidney injury (AKI) progression status

)

AKI progression

Event (n [ 39) Non-event (n [ 315)

72 (9.6) 72 (9.7)

26 (67) 229 (73)

36 (92) 297 (94)

57.1 (23.6) 64.1 (19.0)

21 (54) 140 (44)

35 (90) 262 (83)

18 (46) 102 (32)

30 (77) 237 (75)

9 (23) 78 (25)

25 (64) 230 (73)

14 (36) 85 (27)

2 (5.1) 14 (4.5)

12 (31) 82 (27)

8 (21) 39 (12)

23 (59) 149 (48)

rular filtration rate.

farction, and 5 for CPB surgery time.

1679



CLINICAL RESEARCH KF Kerr et al.: Biomarker Panels for AKI Progression
We used a multiple imputation approach to retain
the 83 patients with missing biomarker data in our
search for biomarker combinations. Next, we pro-
vide an overview of our approach for BMA analysis
and provide details in the online Supplementary
Methods.

First, we created 10 versions of our dataset into
which missing biomarker data were imputed.
Table 2. Summary of biomarkers included in this investigation

Biomarker Overall (N

Postoperative serum creatinine level (mg/dl) 1.3 (1.1,

Change in serum creatinine level (mg/dl) 0.4 (0.3,

Urine markers (most recent measurement up to AKI diagnosis)

Creatinine (mg/dl) 67 (36.1

IL-18 (pg/dl) 49.5 (13.6

NGAL (ng/dl) 27.9 (12.7

Albumin (mg/dl) 31 (13.5

KIM-1 (ng/dl) 3.1 (1.1,

L-FABP (ng/ml) 15.5 (3.4,

Cystatin C (mg/l) 0.2 (0.1,

Plasma markers (most recent measurement up to AKI diagnosis)

Pro BNP (pmol/l) 255 (106,

IL-6 60.5 (34.6

TNI (ug/l) 2.2 (1.1,

TNTHS (ug/l) 564 (332,

CKMB (ug/l) 20.5 (10,

hFABP 30.8 (19.8

MCP-1 292 (203,

EGF 0.9 (0.9,

VEGF 76.6 (25.1

bFGF 6.1 (3, 1

PIGF 32.7 (22,

Tie-2 3688 (3125

VEGF R1 255 (122,

VEGFd 344 (275,

VEGFc 112 (88,

IFNg 7.1 (4, 1

IL-10 6.3 (2.3,

IL-12 p70 1.5 (0.9,

IL-13 4.3 (2.4,

IL-1b 0.4 (0.2,

IL-2 0.9 (0.5,

IL-4 0.3 (0.1,

IL-6 60.5 (34.6

IL-8 20.2 (11.8

TNFa 4.1 (2.9,

IL-18 468 (374,

KIM-1 323 (260,

TNFR-1 (ng/ml) 6.8 (4.8,

TNFR-2 (ng/ml) 9.1 (6.9,

ST-2 (ng/ml) 95.6 (10.1

Galcetin-3 (ng/ml) 11.5 (8.1,

AKI, acute kidney injury; bFGF, basic fibroblast growth factor; CKMB, creatine kinase-MB; EG
interferon gamma; KIM-1, kidney injury molecule-1; L-FABP, liver fatty acid-binding protein; M
ocalin; PIGF, placental growth factor; Pro BNP, pro-B-type natriuretic peptide; ST-2, soluble S
necrosis factor receptor 1; TNFR-2, tumor necrosis factor receptor 2; TNI, troponin I; TNTHS,
endothelial growth factor-C; VEGFd, vascular endothelial growth factor-D; VEGF-R1, vascular e
Units are pg/ml unless otherwise indicated. Values are median (interquartile range).
Urine biomarkers and serum creatinine were missing for 4 patients. Plasma biomarker values w
71–73 patients: Pro BNP, TNI, TNTHS, CKMB HFABP, MCP-1.
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Second, in each imputed dataset, we used BMA to
estimate the posterior probability of every candidate
predictor. Third, we identified the predictors for
which the posterior probability estimates, averaged
over the 10 imputed datasets, exceeded 0.5. Fourth,
we fit a logistic regression model using the selected
predictors in each of the 10 imputed datasets. For
each predictor, the final regression coefficient was
[ 354)

AKI progression

Event (n [ 39) Non-event (n [ 315)

1.5) 1.4 (1.2, 1.9) 1.2 (1, 1.5)

0.5) 0.5 (0.4, 0.7) 0.4 (0.3, 0.5)

, 112) 41.7 (24, 72.3) 70.7 (38.8, 121)

, 143) 70.4 (14.9, 314) 46.4 (13.8, 125)

, 85.2) 62.4 (8.7, 503) 27.8 (13.6, 82.8)

, 68.5) 44.1 (19.6, 79.2) 28.9 (13.1, 62.8)

7.3) 2.4 (1.1, 4.3) 3.2 (1.1, 7.9)

67.4) 21.4 (5.6, 371) 15.2 (3.3, 60.9)

0.3) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3)

568) 281 (103, 440) 253 (115, 572)

, 105) 107 (61.8, 219) 57 (32.7, 97.4)

4.7) 3.3 (1.9, 5.7) 2 (1, 4.5)

1055) 921 (484, 1482) 530 (330, 946)

39) 34.4 (20.7, 56.4) 19 (9.6, 36.2)

, 58.2) 99.4 (43.5, 141) 28.4 (18.7, 51.2)

451) 421 (295, 537) 278 (198, 445)

3.1) 0.9 (0.9, 0.9) 0.9 (0.9, 3.5)

, 137) 38.9 (3.9, 94) 79.3 (31.4, 139)

1.8) 9.1 (3.9, 15.2) 5.8 (3, 11)

47.3) 27.9 (15.5, 40.7) 33.2 (22.7, 48)

, 4261) 3810 (3010, 4257) 3679 (3132, 4263)

660) 704 (261, 1208) 229 (117, 570)

452) 326 (271, 434) 349 (276, 452)

146) 134 (102, 165) 111 (88, 143)

2.1) 11.1 (8.4, 20.3) 6.7 (3.8, 11.6)

35.1) 26.9 (4.4, 117) 5.6 (2.3, 28.9)

2.7) 2 (1.3, 5.2) 1.4 (0.9, 2.5)

7.4) 6.8 (4.1, 10.4) 4.1 (2.3, 7)

0.7) 0.7 (0.5, 1.5) 0.4 (0.2, 0.7)

1.8) 1.8 (0.9, 3.4) 0.9 (0.5, 1.6)

0.5) 0.4 (0.3, 0.8) 0.2 (0.1, 0.4)

, 105) 107 (61.8, 219) 57 (32.7, 97.4)

, 36.2) 47.4 (19.8, 96.4) 19 (11.2, 32.6)

6.1) 5.9 (4.4, 9.2) 3.9 (2.8, 5.8)

574) 472 (367, 571) 467 (378, 574)

411) 321 (269, 387) 323 (257, 412)

10) 10.8 (7.2, 13.1) 6.5 (4.7, 9.4)

12.4) 12.2 (8.7, 15.4) 8.8 (6.8, 11.8)

, 187) 43.2 (8.1, 124) 100 (11.5, 190)

16.4) 16 (9, 21.1) 11 (8, 15.7)

F, epidermal growth factor; HFABP, heart-type fatty acid-binding protein; IFNg, human
CP-1, monocyte chemoattractant protein-1; NGAL, neutrophil gelatinase-associated lip-
T2; Tie-2, tyrosine kinase-2; TNFa, human tumor necrosis factor alpha; TNFR-1, tumor
high-sensitivity troponin T; VEGF, vascular endothelial growth factor; VEGFc, vascular
ndothelial growth factor receptor-1.

ere missing for 27 patients, except for the following biomarkers, which were missing for

Kidney International Reports (2019) 4, 1677–1688
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the average regression coefficient across the 10
imputed datasets. Fifth, we calculated an empirical
AUC based on these regression coefficients in each
imputed dataset, and averaged these AUC values. In
order to correct this estimate of performance for
optimistic bias, we took independent bootstrap
samples from each imputed dataset, re-running the
steps above in each bootstrap sample. Obtaining
estimated regression coefficients in a bootstrap
dataset, and assessing the combination performance
in both the bootstrap dataset and the original data-
set, allowed us to estimate and average optimism
using a total of 1000 bootstrap datasets. We sub-
tracted this estimated optimism from our nominal
estimate of performance to produce an optimism-
corrected estimate of performance.

Methods to Handle Study-Center Effect

We aimed to additionally explore the effect of study
center on results. Since BMA uses linear combina-
tions of biomarkers, the natural method of center-
Plasma hFABP Plasma
5

4

3

2

1.5

1.0

0.5

0.0

AKI progression No AKI progression AKI progression

AKI progression No AKI progression

AKI progression No AKI progression

7.5

5.0

2.5

0.0

-2.5

AKI progression

AKI progression

Difference in creatinine Urine cre

Urine NUrine IL18

6

5

4

3

2

6

5

4

3

2

7.5

5.0

2.5

0.0

Figure 1. Distributions of select biomarkers in patients who had ver
Supplementary Figure S1 for all biomarkers. hFABP, heart-type fatty acid
Tie-2, tyrosine kinase-2; VEGF, vascular endothelial growth factor.
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adjusted performance is to force “center” as a
covariate in the linear combinations. However, due to
a small number of patients who progressed to AKI in
some centers, this approach was not computationally
feasible when combined with our resampling
approach (described later). For random forests, this
integrated approach to center-adjustment is not
possible generally. Therefore, to adjust for center
with random forests we transformed biomarkers to
the percentile scale, using the distribution of the
biomarker among those who did not progress to AKI
in the same center as the reference distribution. In
summary, we applied the random forests approach
twice. First, we applied the algorithm to the biomarkers
in the same form we used for BMA. In a second appli-
cation, we applied random forests to the center-specific
transformed biomarkers. We note that classification
trees, unlike linear model methods such as BMA, are
invariant to monotone transformations of predictors.
Because the center-specific transformation procedure
involves a highly variable nonlinear transformation, we
 IL-8 Plasma IL-2

No AKI progression AKI progression No AKI progression

No AKI progression AKI progression No AKI progression

AKI progression No AKI progressionNo AKI progression

atinine

GAL Plasma Tie-2

Plasma VEGF

8.5

8.0

7.0

7.5

6.5

6

4

2

0

3

2

1

0

-1

sus did not have progression of acute kidney injury (AKI). See
-binding protein; NGAL, neutrophil gelatinase-associated lipocalin;
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did not apply BMA to the center-specific transformed
biomarker values.

Assessing Variability in Predictive Model

Performance

For the model selected by BMA, within each complete
dataset arising from multiple imputations, we performed
bootstrapping to estimate the AUC variance of the fitted
BMA combination. We combined these AUC variances
across multiple imputation datasets using the Rubin rule.17

This gave an estimated AUC variance that we used to
Table 3. Area under the ROC curve (AUC) and odds ratios (ORs) for individu

Log-transformed biomarker

Original scale

Mean AUC OR p

Plasma hFABP 0.73 (0.64, 0.82) 2.48 (1.7

Plasma IL-8 0.72 (0.64, 0.81) 2.16 (1.5

Plasma TNF-R1 0.72 (0.63, 0.81) 2.29 (1.5

Plasma VEGF R1 0.70 (0.61, 0.79) 1.90 (1.3

Plasma IL1b 0.70 (0.61, 0.78) 2.06 (1.4

Plasma IFNg 0.69 (0.60, 0.78) 1.89 (1.3

Plasma TNFa 0.69 (0.60, 0.77) 1.72 (1.2

Plasma IL6 0.69 (0.59, 0.78) 2.08 (1.4

Plasma IL-2 0.69 (0.59, 0.78) 1.98 (1.4

Delta serum creatinine 0.68 (0.59, 0.76) 1.59 (1.2

Plasma MCP-1 0.67 (0.59, 0.76) 1.67 (1.2

Plasma IL13 0.67 (0.58, 0.76) 1.62 (1.1

Plasma IL-4 0.67 (0.58, 0.76) 1.83 (1.3

Urine creatinine 0.66 (0.58, 0.74) 0.59 (0.4

Plasma IL10 0.65 (0.56, 0.75) 1.73 (1.2

Plasma TNF-R2 0.65 (0.56, 0.75) 1.72 (1.2

Plasma CKMB 0.65 (0.56, 0.74) 1.67 (1.1

Plasma IL12p70 0.65 (0.55, 0.75) 1.73 (1.2

Plasma galcetin-3 0.64 (0.53, 0.74) 1.59 (1.1

Plasma VEGF 0.63 (0.53, 0.73) 0.61 (0.4

Plasma PIGF 0.62 (0.52, 0.72) 0.63 (0.4

Plasma TNTHS 0.62 (0.52, 0.71) 1.47 (1.0

Plasma bFGF 0.61 (0.52, 0.70) 1.42 (1.0

Plasma VEGFc 0.61 (0.51, 0.70) 1.40 (1.0

Plasma TNI 0.60 (0.51, 0.70) 1.40 (0.9

Urine IL18 0.59 (0.48, 0.70) 1.58 (1.1

Urine KIM1 0.58 (0.50, 0.66) 0.81 (0.5

Urine albumin 0.57 (0.48, 0.67) 1.18 (0.8

Urine LFABP 0.57 (0.47, 0.68) 1.30 (0.9

Plasma ST2 0.57 (0.47, 0.67) 0.79 (0.5

Plasma YKL-40 0.56 (0.47, 0.66) 0.89 (0.6

Plasma VEGFd 0.54 (0.43, 0.64) 0.91 (0.6

Urine NGAL 0.54 (0.42, 0.66) 1.36 (1.0

Plasma KIM1 0.51 (0.42, 0.61) 0.96 (0.6

Plasma PROBNP 0.51 (0.42, 0.60) 1.04 (0.7

Urine CysC 0.51 (0.41, 0.61) 1.06 (0.7

Plasma IL18 0.50 (0.40, 0.60) 0.89 (0.6

Plasma Tie-2 0.48 (0.38, 0.59) 0.77 (0.5

Plasma EGF 0.46 (0.38, 0.53) 0.85 (0.5

bFGF, basic fibroblast growth factor; CKMB, creatine kinase-MB; CysC, cystatin C; EGF, epider
gamma; KIM-1, kidney injury molecule-1; LFABP, liver fatty acid-binding protein; MCP-1, mono
placental growth factor; PROBNP, pro-B-type natriuretic peptide; ST-2, soluble ST2; Tie-2, tyro
receptor 1; TNF-R2, tumor necrosis factor receptor 2; TNI, troponin I; TNTHS, high-sensitivity tr
factor-C; VEGFd, vascular endothelial growth factor-D; VEGF-R1, vascular endothelial growth f
ORs are per biomarker SD. We report mean AUC and OR values across the 10 imputed datas
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construct an AUC confidence interval, which we corrected
according to the estimated optimism (see earlier
description).

For the random forest prediction models, within
each complete dataset arising from multiple imputa-
tions, we ran the forest-building algorithm and esti-
mated its AUC using out-of-bag trees for each
observation as described. We estimated the variance
of these AUCs using DeLong’s method. We combined
these estimates using the Rubin rule,17 and then
constructed an AUC confidence interval.
al biomarkers measured in this study, with 95% confidence intervals
Center-specific transformation

er SD Mean AUC OR per SD

0, 3.61) 0.70 (0.61, 0.79) 2.16 (1.46, 3.18)

6, 3.00) 0.70 (0.61, 0.78) 2.17 (1.46, 3.22)

7, 3.33) 0.70 (0.61, 0.79) 2.14 (1.44, 3.18)

8, 2.62) 0.69 (0.60, 0.78) 2.10 (1.42, 3.11)

7, 2.87) 0.68 (0.60, 0.77) 1.99 (1.36, 2.92)

8, 2.60) 0.67 (0.58, 0.75) 1.88 (1.29, 2.73)

7, 2.33) 0.66 (0.57, 0.75) 1.79 (1.24, 2.60)

7, 2.95) 0.67 (0.58, 0.76) 1.92 (1.32, 2.79)

3, 2.75) 0.68 (0.58, 0.78) 1.93 (1.32, 2.81)

2, 2.08) 0.64 (0.55, 0.73) 1.77 (1.21, 2.60)

1, 2.30) 0.64 (0.56, 0.73) 1.71 (1.19, 2.47)

7, 2.24) 0.65 (0.55, 0.74) 1.72 (1.20, 2.47)

4, 2.52) 0.64 (0.55, 0.73) 1.66 (1.16, 2.38)

2, 0.81) 0.70 (0.62, 0.78) 0.47 (0.31, 0.69)

4, 2.40) 0.65 (0.56, 0.74) 1.75 (1.21, 2.52)

1, 2.45) 0.63 (0.54, 0.73) 1.62 (1.13, 2.32)

7, 2.38) 0.64 (0.54, 0.73) 1.65 (1.15, 2.37)

6, 2.37) 0.62 (0.52, 0.72) 1.55 (1.09, 2.21)

0, 2.30) 0.62 (0.51, 0.73) 1.54 (1.08, 2.19)

5, 0.82) 0.61 (0.51, 0.72) 0.66 (0.47, 0.94)

7, 0.85) 0.63 (0.53, 0.73) 0.62 (0.44, 0.89)

5, 2.05) 0.62 (0.52, 0.72) 1.52 (1.07, 2.17)

4, 1.95) 0.61 (0.52, 0.71) 1.51 (1.06, 2.14)

1, 1.93) 0.61 (0.51, 0.71) 1.48 (1.04, 2.10)

9, 1.96) 0.61 (0.52, 0.70) 1.50 (1.06, 2.14)

3, 2.21) 0.55 (0.44, 0.66) 1.18 (0.85, 1.65)

9, 1.13) 0.57 (0.48, 0.65) 0.78 (0.56, 1.10)

3, 1.66) 0.56 (0.46, 0.66) 1.24 (0.88, 1.74)

2, 1.84) 0.55 (0.43, 0.66) 1.19 (0.85, 1.67)

8, 1.09) 0.54 (0.44, 0.64) 0.88 (0.63, 1.23)

5, 1.21) 0.56 (0.47, 0.66) 0.80 (0.57, 1.12)

5, 1.27) 0.52 (0.42, 0.62) 0.91 (0.65, 1.28)

0, 1.86) 0.51 (0.39, 0.63) 0.97 (0.69, 1.35)

9, 1.36) 0.51 (0.42, 0.61) 1.01 (0.72, 1.41)

4, 1.46) 0.49 (0.40, 0.58) 1.03 (0.74, 1.43)

6, 1.50) 0.53 (0.42, 0.63) 0.90 (0.64, 1.26)

1, 1.29) 0.54 (0.44, 0.64) 0.87 (0.62, 1.21)

7, 1.03) 0.47 (0.37, 0.57) 0.90 (0.64, 1.25)

9, 1.24) 0.55 (0.46, 0.63) 1.30 (0.88, 1.90)

mal growth factor; hFABP, heart-type fatty acid-binding protein; IFNg, human interferon
cyte chemoattractant protein-1; NGAL, neutrophil gelatinase-associated lipocalin; PIGF,
sine kinase-2; TNFa, human tumor necrosis factor alpha; TNF-R1, tumor necrosis factor
oponin T; VEGF, vascular endothelial growth factor; VEGFc, vascular endothelial growth
actor receptor-1.
ets resulting from our multiple imputation procedure.
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Software

All analyses were completed using R 3.1.2; the BMA
package was used for the BMA analyses, the ranger
package for random forests, the mice package for
multiple imputations, and the pROC package for AUC
variances.
RESULTS

Table 1 describes the characteristics of the study
population by AKI progression status. There were 354
patients in the full dataset, including 39 patients who
progressed to a higher AKI stage. All patients were
diagnosed with stage 1 AKI either 1, 2, or 3 days after
surgery (33%, 38%, and 29%, respectively). Among
the 39 patients with AKI progression, 21 (54%) pro-
gressed from stage 1 to stage 2, and 18 (46%) pro-
gressed from stage 1 to stage 3. Thirteen of the 18
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Figure 2. Biomarker posterior probabilities using Bayesian model averagi
50%; these biomarkers are included in the Bayesian model averaging comb
MB; hFABP, heart-type fatty acid-binding protein; IFNg, human interferon g
protein; MCP-1, monocyte chemoattractant protein-1; NGAL, neutrophil gel
pro-B-type natriuretic peptide; ST-2, soluble ST2; Tie-2, tyrosine kinase-2;
factor receptor 1; TNI, troponin I; TNTHS, high-sensitivity troponin T; VEG
growth factor receptor 1.
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stage-3 patients received dialysis. Fourteen (4%) pa-
tients died in the hospital; 7 each in the subsets of
patients with and without AKI progression. Table 2
and Figure 1 summarize the distribution of the bio-
markers in those with and without AKI progression
(see also Supplementary Figure S1). Table 3 summa-
rizes biomarker AUC and odds ratios (ORs) on the
original scale and after the center-specific trans-
formation. A handful of biomarkers show modest
predictive capacity in the data, with point estimates
for AUC in the range 0.68 to 0.72 and with wide
confidence intervals. In terms of individual AUC, the
center-specific transformation appeared to lower AUC
values.

Applying BMA to develop biomarker combina-
tions, 3 markers had posterior variable probabilities
exceeding 0.5. The markers and their mean posterior
probabilities across multiple imputation datasets
 posterior probability
50 75 100

ng. The 3 biomarkers in blue have posterior probabilities exceeding
ination. bFGF, basic fibroblast growth factor; CKMB, creatine kinase-
amma; KIM1, kidney injury molecule-1; LFABP, liver fatty acid-binding
atinase-associated lipocalin; PIGF, placental growth factor; PROBNP,
TNFa, human tumor necrosis factor alpha; TNF-R1, tumor necrosis
F, vascular endothelial growth factor; VEGF R1, vascular endothelial
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were the following: plasma heart-type fatty acid-
binding protein (95.8%), change in serum creatinine
level (89.0%), and plasma IL-8 (66.8%). Figure 2
displays the posterior probabilities for all bio-
markers. The optimism-corrected AUC estimate for
the 3-biomarker combination was 0.75 (95% CI: 0.68,
0.82). A random forest of classification trees built
using untransformed biomarkers had an AUC of 0.74
(95% CI: 0.66, 0.82). According to our measure of
variable importance for random forests, the most
important biomarkers were plasma IL-8, heart-type
fatty acid-binding protein, Tie-2, and urine neutro-
phil gelatinase-associated lipocalin (Figure 3). When
we built a random forest using the biomarkers after
the center-specific transformation, the estimated AUC
was 0.80 (95% CI: 0.72, 0.88). The strongest pre-
dictors after center transformation were plasma Tie-2,
followed by plasma heart-type fatty acid-binding
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Figure 3. Biomarker importance in the random forest applied to untran
characteristic curve; bFGF, basic fibroblast growth factor; CKMB, creatin
epidermal growth factor; hFABP, heart-type fatty acid-binding protein; IFN
liver fatty acid-binding protein; MCP-1, monocyte chemoattractant protein
growth factor; PROBNP, pro-B-type natriuretic peptide; ST2, soluble ST2;
TNF-R1, tumor necrosis factor receptor 1; TNF-R2, tumor necrosis factor r
vascular endothelial growth factor; VEGF R1, vascular endothelial growth fa
vascular endothelial growth factor-D.
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protein, urine creatinine, and tumor necrosis factor
receptor 1 (Figure 4).

DISCUSSION

Multiple biomarkers were associated with AKI pro-
gression among patients diagnosed with AKI following
cardiac surgery. However, these associations do not
imply high prognostic capacity.18 Of the 38 biomarkers
we examined, the most prognostic individual
biomarker had an AUC of only 0.73. The modest
prognostic capacity of individual biomarkers motivated
our investigation of whether a combination of multiple
biomarkers could improve prediction.

Figure 5 summarizes this investigation. The 2
methods we applied—BMA and random forests of
classification trees—are complementary approaches in
the sense that BMA seeks simple linear combinations
of candidate predictors and parsimonious models,
AUC Decrease
.000 0.0100.005

sformed biomarker data. AUC, area under the receiver operating
e kinase-MB; CPB, cardiopulmonary bypass; CysC, cystatin C; EGF,
g, human interferon gamma; KIM1, kidney injury molecule-1; LFABP,
-1; NGAL, neutrophil gelatinase-associated lipocalin; PIGF, placental
Tie-2, tyrosine kinase-2; TNF-a, human tumor necrosis factor alpha;
eceptor 2; TNI, troponin I; TNTHS, high-sensitivity troponin T; VEGF,
ctor receptor 1; VEGFc, vascular endothelial growth factor-C; VEGFd,
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whereas random forests are well suited to situations in
which interactions among candidate predictors are
important and the model includes all biomarkers.
Although the random forest approach uses all candi-
date predictors, the bootstrap aggregation component
of the algorithm protects against overfitting. Despite
these complementary approaches, we did not identify a
biomarker combination that was clearly superior to the
best-performing individual biomarkers.

A disadvantage of a random forest is that it is a
“black box” approach—it is difficult to understand the
impact of any given biomarker on predictions. Using
our measure of variable importance for random forests,
the important biomarkers were roughly similar be-
tween the methods.

Although it is counterintuitive, biomarkers that
perform best in combination are not necessarily those
Kidney International Reports (2019) 4, 1677–1688
that have the strongest individual performance.19,20 It is
mathematically possible for a biomarker to have null
individual prognostic capacity yet contribute substan-
tially to prediction in combination with other variables.
On its own, Tie-2 had almost no predictive capacity in
our dataset, yet it had the fourth-highest mean posterior
probability in the BMA analysis and appeared as one of
the top-performing biomarkers in the random forest an-
alyses. Furthermore, although many share the intuition
that combinations of modestly performing biomarkers
should be able to achieve substantially better prediction,
theoretical results teach us that this intuition may be
misguided.19,20

The predictive capacity of individual biomarkers in
our data tended to be lower after the center-specific
transformation. This could suggest that the variability
introduced by the transformation hurt performance. An
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alternative explanation is that performance of the un-
transformed biomarkers was inflated due to confounding
effects of center.21 However, there was not compelling
evidence of center effects for these biomarkers that would
support the latter hypothesis. Counterintuitively, the
most promising result for biomarker combinations was
for the center-specific transformed biomarkers. We
caution that the center-specific transformation is highly
variable, particularly for smaller centers. Therefore, this
result should be considered preliminary.

We believe our experience in this endeavor is com-
mon across a wide array of fields in which there is in-
terest in using biomarkers to improve risk prediction,
prognosis, or other types of forecasting. For example,
Wang et al.22 measured 10 biomarkers in 3209 partici-
pants in the Framingham Heart study. Adding multi-
marker scores to conventional risk factors for death or
cardiovascular events resulted in only small improve-
ments in predictive capacity. Similar experiences are
reported in the literature,23 and we suspect that many
more “negative” results go unpublished.

A plethora of methods are available for building
predictive models. It is possible that another method,
perhaps one that has not yet been invented, would yield
a combination of our biomarkers that would accurately
forecast AKI progression. However, there are reasons to
suspect that other methods would not yield better re-
sults.24 Lim et al.25 compared 33 algorithms for building
predictive models, including classical statistical algo-
rithms and “machine learning” algorithms. The
1686
investigators had 32 datasets in which to compare the
predictive performance of the models produced by the
algorithms. Classical logistic regression was the second-
best algorithm in terms of accuracy. An important
point to note is that results were similar among the best-
performing algorithms. A recent survey of the literature
found no advantage to machine-learning methods over
logistic regression methods.26

This study had several strengths, including the
number of biomarkers measured; the use of bio-
markers that are biologically meaningful and
measured by high-quality immunoassays; and the use
of statistical methods to assess performance while
avoiding optimistic bias. Limitations of this study
include a modest number of patients progressing in
AKI, with the majority of patients with AKI pro-
gression (23 of 39) coming from the largest center.
The other 5 centers had 2–5 patients progressing in
AKI. Missing biomarker data further reduced power,
although this reduction was mitigated through
application of multiple imputations. Seven patients
without AKI progression died in the hospital, raising
a potential concern for misclassification, since pro-
gression might have been observed had these pa-
tients survived. However, these patients comprise
only 2% of patients without AKI progression, so the
potential impact of hypothetical misclassification is
minor. Finally, the outcome of AKI progression may
not serve as the ideal outcome to test multiple
biomarker combinations due to the fact that the
Kidney International Reports (2019) 4, 1677–1688



KF Kerr et al.: Biomarker Panels for AKI Progression CLINICAL RESEARCH
dimensions that determine “AKI progression”
(change in serum creatinine level over a given unit of
time) may not be congruent with the biological
expression of the biomarkers that we measured.8

The application of advanced statistical techniques to
combine the prognostic information in a panel of bio-
markers produced a small or negligible improvement
over individual biomarkers. These findings are
instructive for investigators seeking to develop
biomarker panels in many fields. In light of empirical
experience and theoretical results, investigators should
have realistic expectations for biomarker combinations
when the performance of individual biomarkers is
insufficient for clinical application: combinations of
modestly performing biomarkers are unlikely to yield
excellent prediction.
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