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Abstract: African swine fever virus (ASFV) is the etiological agent of a swine pandemic affecting a
large geographical area extending from Central Europe to Asia. The viral disease was also recently
identified in the Dominican Republic and Haiti. ASFV is a structurally complex virus with a large
dsDNA genome that encodes for more than 150 genes. Most of these genes have not been experi-
mentally characterized. One of these genes, A151R, encodes for a nonstructural protein and has been
reported to be required for the replication of a Vero-cell-adapted ASFV strain. Here, we evaluated the
role of the A151R gene in the context of the highly virulent field isolate Georgia 2010 (ASFV-G) during
virus replication in swine macrophage cell cultures and during experimental infection in swine. We
show that the recombinant virus ASFV-G-∆A151R, harboring a deletion of the A151R gene, repli-
cated in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the
A151R gene is not required for ASFV replication in swine macrophages. Interestingly, experimental
infection of domestic pigs demonstrated that ASFV-G-∆A151R had a decreased replication rate and
produced a drastic reduction in virus virulence. Animals were intramuscularly inoculated with 102

HAD50 of ASFV-G-∆A151R and compared with pigs receiving a similar dose of virulent ASFV-G.
All ASFV-G-infected pigs developed an acute lethal form of the disease, while those inoculated
with ASFV-G-∆A151R remained healthy during the 28-day observational period, with the exception
of only one showing a protracted, but fatal, form of the disease. All ASFV-G-∆A151R surviving
animals presented protracted viremias with lower virus titers than those detected in ASFV-G-infected
animals. In addition, three out of the four animals surviving the infection with ASFV-G-∆A151R
were protected against the challenge with the virulent parental virus ASFV-G. This is the first report
indicating that the ASFV A151R gene is involved in virus virulence in domestic swine, suggesting
that its deletion may be used to increase the safety profile of currently experimental vaccines.

Keywords: ASFV; ASF; African swine fever virus; A151R; helicase

1. Introduction

African swine fever virus (ASFV) is producing a devastating pandemic affecting the
swine industry in a large geographical area from Central Europe to East and Southeast
Asia. ASFV was recently detected in the Dominican Republic and Haiti, the first outbreak
of ASF in America in the last 40 years [1]. With a commercial vaccine available in only
Vietnam [2,3], disease control in general depends on culling susceptible animals and strict
biosecurity procedures to avoid disease spread.

ASFV is a large and structurally complex dsDNA virus (approximately 180 kb) [4] that
encodes for more than 150 genes, most of them yet to be characterized [1,4]. Production of
recombinant ASFV harboring gene deletion(s) has been a powerful method to understand
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the role of specific genes in virus replication and virulence during natural infection. This
approach has been used for the rational development of multiple ASFV experimental
vaccines [5]. The resulting attenuated viruses have been shown to be effective in preventing
disease during challenges with parental virulent strains [6–12]. Elucidating the role of virus
genes involved in virus replication and/or virulence has allowed for the development of
experimental vaccines [6–12] and expanded the overall knowledge of virus function [13–25].

ASFV gene A151R encodes for a non-structural protein that has been associated with
virus replication [26]. Inhibition of A151R translation by siRNA significantly decreased
virus production in cell cultures. These results were obtained using an ASFV strain (BA71V)
adapted to grow in the Vero cell line, suggesting an important role of this gene in virus repli-
cation [27]. Although its crystal structure has been recently reported, the protein encoded
by the A151R gene shares a very low sequence identity with homologous structures [26].
In this report, we investigated the role of the A151R gene in ASFV replication in swine
macrophage cultures, the natural target cells for the virus, and in experimental infection
of domestic pigs. The studies presented here demonstrate that the ASFV gene A151R is
involved in both virus replication and disease production in domestic swine.

2. Materials and Methods
2.1. Viruses and Cells

Production of primary blood-derived swine macrophage cultures was done as de-
scribed elsewhere [28]. Briefly, the peripheral blood mononuclear cell fraction was enriched
using Ficoll-Paque (Pharmacia, Piscataway, NJ, USA) gradients, and adherent cells were
obtained by overnight incubation in Primaria T75 flasks. Adherent cells were detached
by EDTA-PBS treatment and seeded into Primaria T25 6- or 96-well dishes at a density of
5 × 106 cells per mL. ASFV Georgia (ASFV-G) was a field isolate kindly provided by Dr.
Nino Vepkhvadze, from the Laboratory of the Ministry of Agriculture in Tbilisi, Republic
of Georgia [29]. Comparative growth curves between recombinant ASFV-G-∆A151R and
parental ASFV-G were assessed in primary swine macrophage cultures in 24-well Primaria
plates using an MOI of 0.01 HAD50 (hemadsorbing doses, as determined in primary swine
macrophage cell cultures). After 1 h of adsorption at 37 ◦C under 5% CO2, the inocu-
lum was removed, cells rinsed twice with PBS, and incubated with macrophage media at
37 ◦C under 5% CO2. At different times post-infection, the cells were frozen at ≤−70 ◦C,
thawed, and the lysates titrated by HAD50/mL in primary swine macrophage cell cultures
in 96-well plates. All samples were run simultaneously to avoid inter-assay variability. The
presence of the virus was assessed by hemadsorption (HA), and virus titers were calculated
as previously described [30].

2.2. Detection of A151R Transcription

Real-time PCR (qPCR) was used to assess the transcriptional profile of the A151R
gene in cultures of porcine macrophage cell cultures infected with ASFV-G. As a control for
transcription, the early CP204L (p30) and late B646L (p72) genes were also quantified. Cell
cultures of porcine macrophages were infected (MOI of 1) with ASFV-G. RNA extractions,
using an RNeasy Kit (QIAGEN, Hilden, Germany), were performed at 4-, 6-, 8-, and
24 h post-infection. All extracted materials were treated with 2 units of DNase I (BioLabs,
Ipswich, MA, USA) and then purified using the Monarch® RNA Cleanup Kit (New England
BioLabs, Inc.). One µg of RNA was used to produce cDNA using qScript cDNA SuperMix
(Quanta bio, Beverly, MA, USA), which was used for the qPCR.

Primers and probe for detection of the A151R gene were designed using the ASFV Geor-
gia 2007/1 strain (GenBank data base NC_044959.2). Primer forward: 5′-GAGCCGCGTAC-
TCAAATTTATT-3′, reverse: 5′-AGTACACCAAATGCTACGATCAT-3′, and probe:
5′-FAM/TGGAATGTTTCAACTTCAGTCGGTCCTC/MGBNFQ-3′. Primers and probes
for the detection of p72, p30, and the β-actin gene were previously described [12]. All
qPCRs were conducted using the TaqMan Universal PCR Master Mix (Applied Biosystems)
using the following amplification conditions: one step at 55 ◦C for 2 min, followed by one
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denaturation step at 95 ◦C for 10 min, then 40 cycles of denaturation at 95 ◦C for 15 s and
annealing/extension at 65 ◦C for 1 min.

2.3. Construction of the ASFV A151R Deletion Mutant

An ASFV strain lacking the A151R gene, ASFV-G-∆A151R, was developed by homol-
ogous recombination between the genome of the parental ASFV-G and a recombination
transfer vector [9]. The recombinant transfer vector, p72mCherry∆151R, contains the flank-
ing genomic regions of the A151R gene with the left arm covering genomic positions
48629-49629 and the right arm between genomic positions 50108-51108, and contains a
reporter gene cassette harboring the mCherry fluorescent protein (mCherry) gene under
the control of the ASFV p72 late gene promoter [31]. The recombinant transfer vector was
obtained by DNA synthesis (Epoch Life Sciences, Sugar Land, TX, USA). The designed
construction creates a deletion of 478 nucleotides between nucleotide positions 49630 and
50107, deleting the A151R ORF sequence. ASFV-G-∆A151R was purified to homogeneity
by successive rounds of limiting dilution based on detection of the mCherry activity. ASFV
DNA was full-length-sequenced using next-generation sequencing (NGS) as previously
described [31] using an Illumina NextSeq500 sequencer. Sequence analysis was performed
using CLC Genomics Workbench software version 20 (QIAGEN, Hilden, Germany).

2.4. Animal Experiments

The virulence of the recombinant ASFV-G-∆A151R was assessed in 35–40 kg com-
mercial breed swine. Five pigs were intramuscularly (IM) inoculated with 102 HAD50 of
ASFV-G-∆A151R while another group of five animals was inoculated with 102 HAD50
of ASFV-G. Development of ASF clinical signs (anorexia, depression, fever, purple skin
discoloration, staggering gait, diarrhea, and cough) as well as changes in body temperature
were recorded daily throughout the experiment. Blood samples were obtained at 0, 4, 7, 11,
14, 21, and 28 days post-inoculation (pi). In protection experiments, animals inoculated
with ASFV-G-∆A151R were IM challenged 28 days later with 102 HAD50 of parental vir-
ulent ASFV-G. The presence of clinical signs associated with the disease was recorded as
described earlier. Animal experiments were performed under biosafety level 3 conditions
in the animal facilities at Plum Island Animal Disease Center, following a strict protocol
approved by the Institutional Animal Care and Use Committee (225.01-16-R_090716).

3. Results and Discussion
3.1. A151R Gene Is Conserved across Different ASFV Isolates

Previously, the A151R protein was identified as a non-structural protein, expressed
during early and late stages of viral replication, with a potential role in replication and
virus assembly [26]. To assess the conservation of the A151R gene across different ASFV
isolates, 17 ASFV isolates representing the genetic diversity of this gene were evaluated by
pairwise analysis using the model p-distance and the bootstrap method to obtain a confi-
dence interval of 95% [32]. We calculated an overall 80.79–99.77% (average 90.88%), and
65.56–99.33% (average 84.70%) nucleotide and amino acid identity, respectively (Figure 1A),
across the 17 isolates analyzed. When evaluated by protein BLAST analysis, A151R was
100% identical among 41 contemporary ASFV isolates associated with the pandemic Eura-
sia lineage (genotype II), indicating high conservation of this gene within this lineage. The
China/GD/2019 isolate was the only exception, with 98.90% nucleotide identity when
compared with the other 41 isolates. This difference is due to a five-nucleotide deletion
(nucleotides 270 to 274) that truncates the protein. In addition, deletion in this gene has
been reported in isolates (such as ASFV Liv/13/33) of other ASFV genotypes (Figure 1A).
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Figure 1. Evaluation of A151R protein across ASFV isolates. (A) Amino acid alignment representing
the diversity of A151R protein of ASFV in the field. Residues in white spots represent changes
between amino acids with different charges. Conservation plot scores reflect the nature of the
change in specific sites, with high scores associated with changes in similar biological properties.
Alignment was produced using the software Jalview version 2.11.1.4. (B) Phylogenetic analysis
representing the diversity of A151R protein of ASFV in the field. Based on the cluster distribution,
isolates were categorized into five groups. Numbers above internal branches represent bootstrap
values (1000 repetitions). (C) The graphic represents the dN (rate of evolution at non-synonymous
sites), dS (rate of evolution at synonymous sites), and ratio (dN-dS) at specific codon sites in the
A151R gene of ASFV. Blue and red asterisks represent codon sites evolving under diversifying
and purifying selection, respectively. Analyses were conducted using the evolutionary algorithms
FEL and MEME using cutoff values of p = 0.1. (D) Phylogenetic analysis showing the topology
incongruence produced by different segments where the single breakpoint at nucleotide 197 was
detected by GARD. Phylogenetic analysis was conducted with the maximum likelihood method,
using the general time reversible model.

Based on a phylogenetic analysis conducted by maximum likelihood and the JTT
model using the amino acid sequences of A151R isolates, we were able to categorize multi-
ple isolates into four different groups (Figure 1B). Interestingly, the Georgia 2007/1 isolate, a
virus of the genotype II lineage, is a unique isolate classified into Group 3, highlighting the
differences between the A151R protein of the pandemic lineage compared to other ASFV
isolates. This is a significant observation, considering that previous studies proposed that
A151R is essential for the in vitro replication of the isolate BA71V (Group 1) [27], which
contrasts with the results obtained in our study. We consider the low protein homology
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(90.07%) a potential reason for the disparity. It is important to consider that differences in
other parts of each isolate’s genome might also explain the differences.

Little is known about the function and structural mechanism of the A151R protein
in the replication of ASFV. Just recently, a study identified the motif WCTKC at the C’
terminus of this protein (amino acids 131–135), which is similar to the thioredoxins’ active
site motif [26]. Our attempts to find a homology with other proteins using the program
Pfam [33] were negative when A151R was compared with 19,175 other protein families.
To gain more insight into the A151R protein, we conducted an evolutionary analysis. The
fixed-effects likelihood (FEL) and mixed-effects model of evolution (MEME) [34,35] algo-
rithms indicated that the evolution of the A151R gene is influenced by negative selection
(dN/dS = 0.601), suggesting an increased number of synonymous mutations were fixed
during the evolution of this gene and favored the preservation of the A151R protein. Our
analyses identified 17 codons evolving under purifying selection (Figure 1C); these sites
may represent relevant sites for the functionality of the A151R protein preserved by the
evolutionary process. We identified amino acid 135 evolving under purifying selection,
preserving the conservation of the WCTKC motif. However, a mutation present in the
RSA 2008 isolate changed the sequence of the motif WCTKC to WCTIC. More studies
are necessary to understand the impact of this mutation. Furthermore, amino acids were
identified that are evolving under diversifying selection, potentially promoting the diver-
gence of this protein. Interestingly, using the genetic algorithm for recombination detection
(GARD) [36], we identified evidence of recombination. A single breakpoint was identified
by GARD at nucleotide 197. This inference was supported by an improvement in the
c-AIC = 3030.73 assuming the existence of potential breakpoints vs. AIC-c = 3046.09 model
assuming a single partition: no breakpoints. This inference is consistent with the topology
incongruence produced by different segments at the A151R gene (Figure 1D). This result
indicates the potential relevance of recombination in the evolution of this gene.

3.2. Detection of A151L Transcription

To determine when the A151R gene is transcribed during the replication cycle, a time
course experiment was performed to analyze the kinetics of RNA transcription in primary
swine macrophages infected with the ASFV strain Georgia. Swine macrophage cultures
were infected at an MOI = 1 with ASFV-G, and cell lysate samples were taken at 0, 4, 6, 8, and
24 hpi. The presence of A151R RNA was detected by two-step RT-PCR as described in the
Material and Methods Section. Transcription of A151R was detected at 4 hpi and remained
stable until 24 hpi (Figure 2). The pattern of expression of the well-characterized ASFV early
protein p30 (CP204L) and the late protein p72 (B646L) has been previously described and is
used here as a reference of early and late transcription profiles, respectively. Expression
of A151R was transiently detected throughout the assessed timepoints, suggesting that
it is neither a late nor an early protein. As previously reported [26], our results indicate
that the ASFV A151R gene encodes for a protein that is expressed throughout the virus
replication cycle.

3.3. Development of the ASFV-G-∆A151R Deletion Mutant

Conservation of the A151R gene among ASFV isolates and its previously described
involvement in the process of virus replication [26,27] support the hypothesis that A151R
could play a role in several virus functions.

A recombinant deletion mutant of the highly virulent ASFV Georgia 2007 isolate
(ASFV-G) lacking the A151R gene was developed (ASFV-G-∆A151R). The A151R gene was
deleted by substituting 151 amino acid residues in the A151R ORF with a p72mCherry
cassette by homologous recombination and 23 nucleotides of the immediate promoter
region for A151 (Figure 3). As a result, a 478bp DNA fragment (found between nucleotide
positions 49,630 and 50,107 and deleted from the ASFV-G genome, resulting in the deletion
of the entire A151R ORF. This deleted fragment was replaced by a 1226-bp cassette contain-
ing the p72mCherry construct (see Section 2) (Figure 3). The recombinant ASFV-G-∆A151R
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stock was obtained after several limiting dilution steps in primary swine macrophage cell
cultures. Final virus stock was also produced in primary swine macrophage cell cultures.
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Figure 2. Expression profile of A151R gene of ASFV during in vitro infection of porcine macrophages.
Reverse transcription followed by qPCR was used to evaluate the expression profile of the A151R
gene during in vitro infection at different time points, up to 24 h. As a reference for this analysis,
we used qPCRs to specifically detect the expression of genes encoding ASFV proteins p30 (early
expression) and p72 (late expression). Additionally, the β-actin gene was used as a control to evaluate
the quality and levels of RNA during the infection at different time points.
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Figure 3. Schematic for the development of ASFV-G-∆A151R. The transfer vector contains the p72
promoter and a mCherry cassette; the flanking left and right arms are indicated and were designed
to have flanking ends at both sides of the deletion/insertion cassette. The nucleotide positions of
the ASFV-G genome are indicated. The resulting ASFV-G-∆A151R virus with the cassette inserted is
shown on the bottom.

The accuracy of the genomic alterations introduced into ASFV-G-∆A151R and the
integrity of the remaining virus genome were evaluated by analyzing the full virus genome
sequence by NGS using an Illumina NextSeq® 500. Analysis of the ASFV-G-∆A151R
genome confirmed a deletion of 478 nucleotides, the designed genomic modifications. In
addition, the genome of ASFV-G-∆A151R had an insertion of 1226 nucleotides, consistent
with the p72-mCherry cassette sequence. No other genomic differences were detected
between ASFV-G-∆A151R and ASFV-G, confirming no unwanted genomic changes were
introduced in the development and further purification of ASFV-G-∆A151R. NGS analysis
also showed the absence of the parental ASFV-G genome as a possible contaminant in the
ASFV-G-∆A151R stock.
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3.4. Replication of ASFV-G-∆A151R in Primary Swine Macrophages

To assess the potential role of A151R in the process of ASFV replication, the kinetics of
ASFV-G-∆A151R replication was compared with that of the parental ASFV-G. A multistep
growth curve in swine macrophage cultures was performed. Cell cultures were infected
with an MOI of 0.01, either with the recombinant ASFV-G-∆A151R or the parental ASFV-G.
Virus yields were assessed at 2, 24, 48, 72, and 96 h post-infection (pi). ASFV-G-∆A151R had
a growth kinetic indistinguishable from that of the parental ASFV-G, with no significant
differences in virus titers at any of the evaluated times post-infection (Figure 4). Results
demonstrate that deletion of the A151R gene from the ASFV-G genome does not affect the
ability of ASFV-G-∆A151R to replicate in primary cultures of swine macrophages. This was
unexpected, since it had previously been reported that the A151R gene is involved in ASFV
replication [26,27]. Of note, those results were obtained by blocking A151R transcription
using siRNA targeting and an ASFV strain (BA71V) adapted to growth in an established
Vero cell line. Adaptation of the virulent BA71 strain to replication in Vero cells resulted
in dramatic genomic changes and attenuation of the virus in domestic swine [37]. It is
possible the critical role of A151R in BA71V replication in Vero cells is associated with loss
of genes potentially replacing A151R function.
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Figure 4. In vitro growth kinetics in primary swine macrophage cell cultures for ASFV-G-∆A151R
and parental ASFV-G (MOI = 0.01). Samples were taken from three independent experiments at
the indicated time points and titrated. Data represent means and standard deviations of three
replicas. Sensitivity using this methodology for detecting virus was ≥log10 1.8 HAD50/mL. No
significant differences in viral yields between viruses were observed at any time point tested, which
was determined using the Holm–Sidak method (α = 0.05) without assuming a consistent standard
deviation. All calculations were conducted using the software Graphpad Prism version 8.

3.5. Assessment of ASFV-G-∆A151R Virulence in Swine

To evaluate the impact of deletion of the A151R gene from the genome of ASFV-
G, ASFV-G-∆A151R was inoculated into domestic swine. Five 30–40 kg pigs were IM
inoculated with 102 HAD50 of either ASFV-G-∆A151R or the parental ASFV-G. All animals
inoculated with virulent ASFV-G presented a sudden rise in body temperature (>40 ◦C)
for day 5–6 pi, which was quickly followed by the development of full clinical disease
(depression, anorexia, staggering gait, diarrhea, and purple skin discoloration) (Table 1
and Figure 5). Disease severity rapidly progressed to a terminal disease, with all animals
euthanized in extremis by day 7 pi.
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Table 1. Swine survival and fever response following infection with ASFV-G-∆A151R and parental
ASFV-G.

Fever

Virus (102 HAD50)
No. of

Survivors/Total
Mean Time to
Death (± SD)

No. of Days to
Onset (± SD)

Duration No. of
Days (± SD)

Maximum Daily
Temp, ◦C (± SD)

ASFV-G-∆A151R 4/5 21 * 16 5 40.94
ASFV-G 0/5 7 (0) 5.6 (0.55) 1.4 (0.55) 41.25 (038)

(*) Results for the only animal in the group that developed disease and needed to be euthanized on day 21 pi.
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Figure 5. Evolution of body temperature (A) and mortality (B) in animals (5 animals/group) IM
infected with 102 HAD50 of either ASFV-G-∆A151R or parental ASFV-G.

Animals inoculated with ASFV-G-∆A151R remained clinically normal during the
28-day observational period with the exception of one animal that presented a protracted
but lethal form of the disease. This animal presented a rise in body temperature by day
16 pi followed by the development of a severe form of the disease and needed to be
euthanized on day 21 pi (Table 1 and Figure 5). These results indicate that deletion of the
A151R gene from the genome of ASFV-G causes an extensive decrease in virus virulence in
domestic swine.

Virus replication in animals experimentally infected with either ASFV-G-∆A151R
or parental ASFV-G was evaluated by quantifying titers of viremia at different times
post-infection. As expected, viremia titers in IM inoculated ASFV-G-infected animals
were high (107.3–108.3 HAD50/mL) on day 4 pi, and remained high by day 7 pi (around
108 HAD50/mL), when all animals were euthanized. In the ASFV-G-∆A151R-inoculated
animals, viremia values and kinetics were heterogenous and followed the presentation
of the clinical signs of the disease. The animal presented a protracted form of the dis-
ease and showed an undetectable level of viremia until day 14 pi (showing a titer of
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104.05 HAD50/mL). Titers increased to 107.3 HAD50/mL by day 21 pi, when the animal
was euthanized due to the severity of the clinical signs. It is important to mention that
NGS analysis of the virus obtained from this animal showed the exclusive presence of
ASFV-G-∆A151R, eliminating the possibility that the disease of this particular animal was
caused by the presence of residual parental ASFV-G in the ASFV-G-∆A151R stock. It is
possible that ASFV-G-∆A151R retains some degree of residual virulence that may produce
a delayed form of the disease in an animal that may present a higher susceptibility than
the others. The rest of the ASFV-G-∆A151R-inoculated animals remined clinically asymp-
tomatic. One animal presented viremias titers of 105.05, 104.3, and 104.3 HAD50/mL on day
14, 21, and 28 pi, respectively. The third animal presented undetectable viremias until day
28 pi when it reached a titer of 106.05 HAD50/mL, while the other two animals did not
show any detectable viremia titers during the 28-day observational period (Figure 6).
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In most of the cases, animals surviving the infection with ASFV presented a strong
virus-specific antibody response [7–9,12,38,39]. The assessment of ASFV-specific antibod-
ies in serum of the ASFV-G-∆A151R-inoculated pigs was performed using an in-house-
developed ELISA [40]. All surviving pigs developed an ASFV-specific circulating antibody
response. The response could be detected by day 14 pi in two of these animals. All animals
presented strong antibody titers by day 21 pi and remained high until reaching day 28 pi
(Figure 7).

It should be noted that a naïve animal (sentinel), which had been cohabitating with the
ASFV-G-∆A151R-inoculated pigs since day 0 pi, remained completely asymptomatic, not
showing detectable viremic titers nor the presence of circulating ASFV-specific antibodies
during the whole observational period of 28 days. This indicates the absence of transmission
of the ASFV-G-∆A151R from the inoculated pigs, particularly for the animal that developed
clinical disease and needed to be euthanized by day 21 pi.

3.6. Evaluation of the Protective Effect of the Infection with ASFV-G-∆A151R

In general, pigs surviving an infection with an attenuated ASFV strain became pro-
tected against an experimental infection with the virulent parental virus [6–12]. It was then
important to evaluate if animals infected with ASFV-G-∆A151R were protected against
the challenge with the highly virulent ASFV-G. All four pigs surviving infection with
ASFV-G-∆A151R were IM challenged with 102 HAD50 of ASFV-G. An additional group of
five naïve animals was used as a control group and challenged under the same conditions.
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The onset of the disease in the control group occurred by days 4 to 5 post-challenge
(dpc), and quickly progressed to a more severe clinical disease with all animals being
euthanized by days 6 and 7 pc (Figure 8). Conversely, except for one animal that developed
a clinical disease similar to that in the mock-vaccinated group, ASFV-G-∆A151R-infected
animals survived the challenge. Two of them remained clinically normal throughout the
21-day observational period. The third one presented a transient rise in body temperature
between day 3 and 7 pc and remained asymptomatic after that until day 21 pc.

Viremia titers in mock-vaccinated and challenged animals followed the expected
evolution along with the clinical signs. Titers were high (ranging between 107.3 and
108.05 HAD50/mL) at day 4 pi and remained high until animals were euthanized due to the
severity of the clinical disease on day 7 pc (Figure 6). After the challenge, viremia titers
of the ASFVG-∆A151R-infected animals had a heterogenous presentation following the
appearance of clinical signs of the disease. The animal that developed a lethal disease
presented undetectable virus on day 4 pc and a sudden rise on day 7 pc (106.8 HAD50/mL)
before being euthanized the next day. The other three animals presented long viremias
after the challenge and peaking titers by day 7 pc, which remained present at different
levels until the end of the observational period (21 days pc) (Figure 6). Therefore, three out
the four animals who survived ASFV-G-∆A151R infection developed a protective immune
response and survived the challenge with the virulent parental virus ASFV-G.

These results indicate that deletion of A151R from the genome of ASFV-G affects
virus replication and virulence when experimentally inoculated in domestic swine. It
is important to note that just a few genes (or group of genes) have been demonstrated
to produce the attenuation of virulence when deleted from the genome of ASFV-G or
its derivative viruses. The deletion of the 9GL gene (by itself or in combination with
the UK gene deletion) [9,41], a six-gene deletion of the MGF360 and 530 members [7,11],
the deletion of the I177L gene [6,42], the co-deletion of the CD2-like and UK genes [43],
the combined deletion of genes L7L, L8, L9L, 304 L10L, and L11L [44], the deletion of
QP509L/QP383R genes [45], and the individual deletions of genes A137R [12], I226R [38],
A104R [39], E184L [46], and MGF110-9L [47] are the only reports describing attenuation of
an ASFV-G strain. Therefore, A151R is one of the few genes experimentally demonstrated
to be involved in the process of disease production by the ASFV Georgia isolate.
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In summary, we determined that A155R is a non-essential gene, since its deletion from
the ASFV-G genome did not significantly alter virus replication in cell cultures of swine
macrophage cultures, the natural cell target during infection in swine infection. However,
A155R is important for ASFV virulence in domestic pigs.
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