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Abstract

Background: The biological interpretation of even a simple microarray experiment can be a
challenging and highly complex task. Here we present a new method (Iterative Group Analysis) to
facilitate, improve, and accelerate this process.

Results: Our Iterative Group Analysis approach (iGA) uses elementary statistics to identify those
functional classes of genes that are significantly changed in an experiment and at the same time
determines which of the class members are most likely to be differentially expressed. iGA does not
require that all members of a class change and is therefore robust against imperfect class
assignments, which can be derived from public sources (e.g. GeneOntologies) or automated
processes (e.g. key word extraction from gene names).

In contrast to previous non-iterative approaches, iGA does not depend on the availability of fixed
lists of differentially expressed genes, and thus can be used to increase the sensitivity of gene
detection especially in very noisy or small data sets. In the extreme, iGA can even produce
statistically meaningful results without any experimental replication.

The automated functional annotation provided by iGA greatly reduces the complexity of
microarray results and facilitates the interpretation process. In addition, iGA can be used as a fast
and efficient tool for the platform-independent comparison of a microarray experiment to the vast
number of published results, automatically highlighting shared genes of potential interest.

Conclusions: By applying iGA to a wide variety of data from diverse organisms and platforms we
show that this approach enhances and accelerates the interpretation of microarray experiments.

Background

Microarray experiments determine the relative expression
levels of a large number of genes in various conditions. In
the easiest case they are used to detect differences in gene
expression between two conditions, e.g. in diseased vs.
healthy tissue, or in mutant vs. wild type organisms. The
results in general are presented as lists of "differentially

expressed” genes. A number of statistical techniques have
been successfully employed to prepare and analyze these
lists (preparation reviewed in [1-5]; analysis methods e.g.
[6-11]).

In some applications, e.g. identification of marker genes
or potential drug targets, such mere lists of genes may be
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considered sufficient. More often, however, it will be nec-
essary to make biological sense of the data. Given lists of
hundreds of genes, this is a daunting task, especially when
nothing is known about the expected outcome. But even
when the physiology of the experimental system is well-
defined, it is sometimes difficult to distinguish which
parts of the interpretation are significant and which may
be artifacts of a biased focus on familiar features.

Here we present a method (Iterative Group Analysis, iGA)
that provides an automatic functional annotation of
microarray results together with a statistical confidence
level for each annotation feature. This annotation is based
on a comprehensive hypergeometric statistics calculation
detecting concerted changes in "functional classes" of
genes. In contrast to previous methods with similar objec-
tives [6-11], iGA does not require a fixed list of reliably
differentially expressed genes but rather uses an iterative
procedure to determine the optimal threshold for each
functional class. This feature should make iGA more flex-
ible in the case of noisy data, when a reliable list of genes
is not available, and allows its use as a sensitive gene
detection method. The functional classes can be of diverse
origin (e.g. GeneOntology assignments http://www.gene
ontology.org, BLAST result key words, literature extracts)
and the detection algorithm will automatically determine
the genes in each class that are most likely to be differen-
tially expressed.

By focusing on groups instead of single genes, it is possi-
ble to determine statistical significance even without
experimental replication, the group members serving as
"internal replicates". While this will not provide the same
detail as "real" replication, it can provide important infor-
mation on the biology of a sample. At the same time, the
iGA approach should enhance the sensitivity of gene
detection, especially for small, noisy data sets.

The iGA approach also provides a fast and efficient way to
compare an experiment with a large number of published
microarray experiments, without requiring a common
experimental platform or analytical technique.

Results and discussion

Functional annotation of microarray results

Iterative Group Analysis is based on the idea that a con-
certed expression change of (some) members of the same
functional class is physiologically relevant. We assign each
gene to functional classes, e.g. based on its GeneOntology
assignments. For each functional class we then determine
the probability of change (PC-value). The iterative proce-
dure for that calculation is illustrated in Fig. 1. First, all
genes are sorted according to a metrics of differential
expression (fold-change, t-statistics...). The choice of the
optimal sorting method will depend on personal prefer-
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ences and details of the experimental design, but has rela-
tively little influence on the iGA results (not shown; see
also [8]). In the test cases described below we usually
sorted the genes once by up-regulation and once by down-
regulation and analyzed the two lists separately, but sort-
ing by absolute changes is possible just as well. Second,
we move along the list, counting the members of the func-
tional class of interest, and each time we encounter a new
class member we ask: How likely is it to observe this many
members of the class that high up in the list by chance.
This probability (p-value) is exactly:

Ot Mn-t 0
T -2 f
z,nt,x)=p(z-1,ntx) ———; p(O,n,t,x) =1,
n( ) =1( ) 0 p( )
oo
QO

where n is the total number of genes, x is the total number
of class members, and ¢ is the rank of the z-th class mem-
ber (z being the current step in the iteration; see Fig. 1).

On 0O
The notation Ek Eindicates the binomial coefficient, i.e.

the number of ways of picking k unordered items from a
list of n items. This equation is equivalent to that used by
Onto-Express [7] in a more restricted context. Third, we
determine the position in the list that yields the smallest
p-value, and assign this as the PC-value of the class. All
class members above that position are considered as
"potentially differentially expressed". Fourth, all classes
are sorted by their PC-values. The classes with the lowest
PC-value are most significantly changed.

Note that this process does not require that all members
of a group change at the same time or in the same direc-
tion - a very important feature, because genes that share a
functional annotation may include activators as well as
inhibitors of a certain process, and may also include a
large number of hypothetically assigned genes that in the
majority won't change at all.

In the case of genes that are present several times on a
chip, the user can decide how to proceed: Either the repli-
cate spots are merged into an average value during the pre-
vious steps of analysis, i.e. before sorting the gene list, or
each replicate is treated as an independent group member.
The latter approach is statistically not quite correct, as rep-
licate spots do not represent independent measurements,
but in the case studies described below we found the
resulting summaries of replicates very useful.

An example illustrating the use of iGA is shown in Table
1. In this experiment, Arabidopsis thaliana seedlings were
grown in the dark for 4 days and then treated with white
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Gene 2 =Group member 1 (t=2;z=1)
Gene 3 = Group member 2 (t=3;z=2)

Gene 4 = Group member 3 (t=4;z=13)
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Principle of Iterative Group Analysis. The left panels shows a notional microarray result for 14 genes (n = 14), which are
sorted by decreasing fold-change. 5 of the genes (filled circles) belong to the functional class of interest (x = 5). For each class
member the p-value was calculated according to the hypergeometric equation given in the text, using the t- and z-values shown
next to each gene. The left panel shows those p-values plotted against the position of the class member. The minimum is found
at position 3 and is used to determine the cutoff for this group, i.e. group members | to 3 would be listed as "most likely to be
up-regulated”. The corresponding p-value (0.1) would be assigned as the PC-value for this group.

light for six hours (chip ID 7341, see Material and Meth-
ods). The dark-grown seedlings are almost colorless,
because they lack the photosynthetic pigments, and after
light treatment the most obvious physiological reaction of
the plants is their de-etiolation ("greening"), i.e. they
rebuild the photosynthetic machinery. Gene expression
was compared to non-treated plants on a single microar-
ray. 460 of 4828 detectable genes are more than 2-fold up-
regulated under these conditions. All genes were sorted by
fold-change and 588 GeneOntology classes were tested
for differential expression. Table 1 shows that iGA reliably
identifies the effect on the photosynthetic apparatus (6
out of the top 10 groups) and also detects changes in bio-
chemical pathways that may be associated with the restart

of anabolic metabolism (pentose-phosphate cycle, starch
breakdown).

Assigning statistical confidence to the annotation

As the PC-values are directly derived from p-values, they
already give a good idea of the statistical significance of an
observed change, after correcting for the effect of multiple
testing, i.e. the fact that many hundreds of groups are
tested for differential expression at the same time. How-
ever, as many functional classes overlap, multiple testing
correction using the total number of functional classes
tested is too restrictive. At the same time, the PC-values are
underestimating the true probability of changes, because
they are based on determining the minimum p-value
within each class. As iGA is rank-based, it is very easy to
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Table I: Up-regulated GeneOntology classes after 6 h of white light-treatment applied to etiolated A. thaliana seedlings (chip ID 7341,
see Material and Methods for details). The top 10 classes are shown. They contain a total of 26 distinct genes that are detected as
"possibly changed". Six of the 10 classes are directly related to the light reactions of photosynthesis.

GO class GO class description PC-value # changed # members
GO:0015979 Photosynthesis 2.99E-08 5 8
GO:0009538 photosystem | reaction center 4.52E-07 4 5
GO:0019253 reductive pentose-phosphate cycle 7.27E-05 3 12
GO:0016168 chlorophyll binding 9.40E-05 3 6
GO:0009523 photosystem |l 2.36E-04 2 2
GO:000031 | plastid large ribosomal subunit 9.26E-04 3 8
GO:0016459 Myosin 1.75E-03 | 6
GO:0004556 alpha-amylase activity 1.94E-03 3 3
GO:0003774 motor activity 2.05E-03 | 7
GO:0009533 chloroplast stromal thylakoid 2.14E-03 2 2

overcome these two problems by calculating PC-values
from a large number of random permutations of genes
and count how often a given p-value and smaller is actu-
ally observed in those random data. This approach is
possible even when the list of genes is based on a single
experiment. E.g., PC-values smaller than 0.00092
occurred 48 times in 100 random permutations of the
photosynthesis example discussed above. This also means
that the expected false-discovery rate (FDR) among the
top 5 groups in the example is less than 10% [12]. Such an
FDR is not particularly impressive at first glance, but these
results are based on a single array, while in a single-gene
approach no statistical confidence determination is possi-
ble at all without replication (or a detailed a priori knowl-
edge of measurement errors). The results can be
corroborated by the analysis of three replicate hybridiza-
tions for the same experiment, as iGA finds almost exactly
the same groups in two of them (the third [chip 14753]
may be a biological "outlier", as its iGA result shows
hardly any similarity to the other three chips, although
clustering analysis does not indicate a serious technical
problem with this hybridization).

Major assumptions underlying the iGA statistics are the
independence of measurements within a group and equal
variation between groups. While the first assumption will
generally hold unless replicate spots or cross-hybridizing
isoforms of a gene are included as group members, the
second assumption may be violated for biological rea-
sons: There may be certain groups of genes that tend to
show more variation of their expression than others, even
in constant conditions, and will therefore show up more
often in the iGA results. The same problem occurs with a
manual analysis of microarrays. iGA is still applicable in
these cases, but is essential that the statistical analysis is
followed by a rigorous assessment of the biological signif-
icance of the results.

Sources of functional annotations

The power of iGA increases with the quality of the availa-
ble annotations. In the case of human and mouse
genomes, the functional annotation by GeneOntology
terms is relatively detailed and comprehensive and in our
test cases (see below) gave satisfactory results. For rat and
A. thaliana data we found it useful to include classes
defined by key words automatically extracted from the
complete annotation of each gene (including the gene
description and the description of BLAST hits). While
those key word-based classes are not necessarily biologi-
cally meaningful, iGA proved to be sufficiently robust to
detect the most relevant changes. Of course, user-defined
groups of interest can be particularly powerful and are eas-
ily integrated in iGA.

Sensitive gene detection by using Iterative Group Analysis
Instead of focusing on a list of "differentially expressed"
genes that is arbitrarily determined by some statistical
threshold, we make use of all genes, sorted by their level
of "differential expression". This provides the additional
opportunity of using iGA as a sensitive tool to detect dif-
ferentially expressed genes, if they are part of a group of
genes changing in concert. Such cases can be biologically
very interesting. E.g., when a certain metabolic pathway is
changed, only a few rate-controlling enzymes may change
dramatically and those could even be absent on the par-
ticular microarray used. The rest of the pathway compo-
nents will change only slightly, but if all of them move in
the same direction, this important effect will be detected
by iGA. Another example is the detection of tissue-specific
regulationeneen in thethers, even in the entence: ": In a
study of gene expression in roots of A. thaliana seedlings
during potassium starvation we expected important
changes in root potassium transporters. However, if each
cell type along the way from soil to internal vessel would
specifically change the expression of only a few transport-
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Table 2: Group analysis of gene expression in potassium-starved A. thaliana roots. This experiment used a custom-made transporter
array and corresponding annotations [13]. The PC-values, number of group members and of significantly changed genes are indicated.
Only groups with a group-wise FDR <10% are shown. The last column indicates the number of group members that were detected by

Significance Analysis of Microarrays [14] with a FDR <10%.

Group PC-value Group members Changed members SAM
Potassium transporter (up) 1.26E-05 13 7 2
Nitrate transporter (down) 3.47E-04 9 3 |
Putative anion exchanger (up) 8.62E-04 7 2 2
19 TMS proteins (down) 2.22E-03 2 2 0
Total: 14 Total: 55

Table 3: Comparison of SAM and iGA performance on noisy lymphocyte data. The cells were obtained from elicitor-treated animals
and show an expression pattern indicative of immune system activation. For iGA the genes on the array were annotated by Gene

Ontology terms and keywords extracted from gene names.

SAM

iGA (based on lists of sorted by fold-change)

Groups detected n.a.

Kallikrein (4 genes)

Rhesus transporters (2)
Antimicrobial peptides (4)
Classical complement (4)
Immunoglobulins (6)
Scavenger receptors (2)

7 other groups (15)

Genes detected 0

37 total
FDR used 50% 10%

ers, these expression changes would be "diluted" in the
whole-root analysis. In fact, a single-gene approach found
only two significantly up-regulated potassium transport-
ers among 55 genes that were labeled as "differentially
expressed". In contrast, iGA identified potassium trans-
porters as the most significantly changed group of all in
this experiment, with 7 out of 13 potassium transporters
involved in the response (3 replicates of a membrane
transporter microarray, [13]; Tab. 2).

The focus on functionally consistent gene groups can be
particularly helpful in very noisy data sets, where the
results lists are highly contaminated by false positives. In
one of the test cases described in the next section, each
sample consisted of a purified lymphocyte subpopulation
isolated from single mice. Due to inter-individual varia-
tion and the tiny amount of material the data were so
noisy that Significance Analysis of Microarrays [14] failed
to find any differentially expressed genes with a false dis-
covery rate below 50%. iGA analysis of fold-change-based
lists in contrast found 37 genes in about 10 functional
classes and made biological sense of the data (Tab. 3).

Using Iterative Group Analysis to compare microarray
results

A variation of iGA uses classes based on the results of pre-
vious microarray experiments. Those classes can either be
manually extracted from the published literature (e.g.,
each list of up- or down-regulated genes defines one class)
or automatically determined from the raw data files (e.g.,
each class contains the genes that change more than 2-
fold in a certain experiment). In this way, each experiment
is described by a number of "signature classes", which can
then be tested for concerted differential expression in the
experiment of interest. This approach not only identifies
the experimental conditions that come closest to the
present experiment, but also highlights the shared genes.
In contrast to clustering techniques that can be used for
similar purposes, iGA does not require that the same
genes are present in all experiments, that the experimental
platform is the same, or that all genes behave identically.
The "open", iterative technique of iGA makes it more
robust than previous "fixed list"-based approaches used
for similar purposes [15]. It is also not necessary that the
complete data are available for all experiments. The statis-
tical confidence measures associated with iGA results are
particularly useful when only a small number of regulated
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Table 4: Summary of the case studies used for the "semi-blind" evaluation of iGA. The first two columns indicate the study organism
and experiment performed. The next two columns show the tissue and physiological condition identified on the basis of iGA.

Organism Experimental condition Tissue identified Condition identified Remarks
Mouse activated T-cells leukocytes infection
Human CaCo-2 cell Campylobacter infection cell culture anoxia, growth arrest, immediate-early
response
Human CaCo-2 cell Campylobacter infection cell culture — hepatocytes growth arrest, acute-phase response 1
Human polymyositis biopsies muscle biopsies inflammation, anaerobiosis
Human Chronic Fatigue Syndrome muscle muscle biopsies "older muscle"
Human lipid phosphate phosphatase-transfected HEK embryonal neurons mostly minor changes 2
cells
Mouse testis of hormone receptor knock-outs spermatogenic tissue steroidogenesis vs. spermatogenesis 3
Rat phaeochromocytoma treated with neural growth  neurons? growth-factor response vs. basic 4
factor metabolism
Human activated monocytes myeloid leukocytes inflammation; early activation;
chemokines

I CaCo?2 cells have an hepatocyte-like acute-phase response [16]2 HEK cells have important neuronal features [17]3 differences in sperm number
are the main effect of the gene disruptions 4 phaeochromocytoma are neural-crest derived cells

genes are shared between two experiments, as we often
found to be the case even for almost identical treatments
(not shown).

Validation of Iterative Group Analysis

To validate our approach we performed a "semi-blind"
study of microarray data produced at the Sir Henry Well-
come Functional Genomics Facility at the University of
Glasgow. The data were collected by one of us (P.H.) from
samples provided by several collaborators. The pre-proc-
essed and normalized data were then passed on to iGA
without information on the biology of the experiment
other than the array used. Using these "anonymized"
results the first author (R.B.) produced a detailed descrip-
tion of the samples, trying to identify the sample source,
treatment and physiological status of each sample. The
final interpretation was then discussed with the experi-
mentalists to establish the correctness of the iGA
conclusions.

Overall, the results of the "semi-blind" study showed that
iGA provides a detailed and largely correct picture of the
biology of the samples (Tab. 4). In 6 out of 9 cases the tis-
sue was identified correctly, in 7 out of 9 cases the inter-
pretation of the physiological response came very close to
identifying the actual treatment, sometimes approaching
what a collaborating experimentalist called a "compre-
hensive molecular diagnosis" of their sample. In no case
did iGA miss changes that were considered relevant by the
experimentalist after a comprehensive manual survey.
Not all experiments were equally amenable to interpreta-
tion, either manually based on gene lists or using iGA,
however, it was noticeable that in each case iGA speeded
up the interpretation process drastically (anecdotally

speaking, by a factor of about 10, although the exact
improvement will depend on the analyst and the specific
experiment). This was all the more striking as the analysis
did not benefit from the extensive background of expecta-
tions and experiment-specific expertise that normally
guides the analysis process.

Conclusions

This study shows that iGA can yield a reasonable, unbi-
ased, and statistically supported interpretation of microar-
ray data even without prior knowledge of the expected
outcome. With increasing comprehensiveness and quality
of available annotations the method will become ever
more powerful. iGA can be used as a stand-alone applica-
tion, but it should also be easily integrated with existing
graphical interfaces for microarray exploration such as
MAPPFinder [6], SuperViewer [10], GoMiner [11], or var-
ious commercial programs.

Material and methods

Pre-processed microarray data for light-treated A. thaliana
seedlings were obtained from TAIR (http://www.arabi
dopsis.org; ExpressionSet:1005823603, AFGC IDs 7341,
14753, 14765, 14779). These were from two-color cDNA
arrays that covered about 5000 genes after pre-processing
as described on the Arabidopsis website. All other experi-
ments were performed at the Sir Henry Wellcome Func-
tional Genomics Facility at the University of Glasgow
http://www.gla.ac.uk/functionalgenomics/ and mainly
involved whole-genome Affymetrix arrays for various
mammalian species. Details of those experiments will be
published elsewhere. Mammalian gene annotations were
downloaded from Affymetrix  http://www.affyme

Page 6 of 8

(page number not for citation purposes)


http://www.arabidopsis.org
http://www.arabidopsis.org
http://www.gla.ac.uk/functionalgenomics/
http://www.affymetrix.com/analysis/download_center.affx

BMC Bioinformatics 2004, 5

trix.com/analysis/download center.affx, A. thaliana gene
annotations were obtained from TAIR.

iGA was implemented as a Perl script (Additional file 2).
Required input data are a list of genes sorted by differen-
tial expression (Additional file 4) and a list of functional
annotations (Additional file 5). A Windows executable of
iGA (Additional file 1) as well as a manual (Additional file
3) and further annotation and examples (Additional files
6, 7, and 8) are also provided.

Authors' contributions

RB devised, implemented and tested the iGA approach
and drafted the manuscript. PH co-designed the "semi-
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Additional material

Additional File 1

iGA software. For use from the Windows command line.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-34-S1.exe]

Additional File 2

iGA source code.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-34-S2.pl]

Additional File 3

iGA Manual. This file describes the use of the iGA software (both the
Windows and Perl version).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-34-S3.pdf]

Additional File 4

Example input file for use with iGA. This file contains a sorted list of genes
from a photosynthesis experiment similar to those described in the text.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-34-S4. txt]

Additional File 5

Gene annotations file for use with iGA. This file contains a classification
of genes in the example input file by GeneOntology numbers.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-34-85.txt]

Additional File 6

Gene names file for use with iGA. This file contains the descriptive names
of the genes in the example input file.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-34-S6.txt|

http://www.biomedcentral.com/1471-2105/5/34

Additional File 7

Group names file for use with iGA. This file links GeneOntology terms to
GeneOntology numbers.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-5-34-S7.txt|

Additional File 8

Sample output file. This file was produced by running iGA with default
settings on the four input files (Additional files 4 to 7).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-34-S8. txt|
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