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Abstract: Interferometry sensors are frequently analyzed by applying the Fourier transform because
the transformation separates all frequency components of its signal, making its study on a complex
plane feasible. In this work, we study the relation between the optical path difference (OPD) and
poles location theoretically and experimentally, using the Laplace transform and a pole-zero map.
Theory and experiments are in concordance. For our study, only the cosine function was considered,
which is filtered from the interference pattern. In experimental work, two unperturbed low-finesse
Fabry–Pérot interferometers were used. First, a Fabry–Pérot interferometer that has a cavity length of
∼1.6 mm was used. Its optical path difference was 2.33 mm and the poles were localized at points
±i12. rad/nm. Secondly, a Fabry–Pérot interferometer with a cavity length of ∼5.2 mm was used,
and its optical path difference was 7.59 mm and the poles were localized at points ±i40.4 rad/nm.
Experimental results confirmed the theoretical analysis. Our proposal finds practical application for
interferometer analysis, signal processing of optical fiber sensors, communication system analysis,
and multiplexing systems based on interferometers.

Keywords: relation between the optical path difference (OPD) and poles location; interferometry
sensors; Fabry–Pérot interferometer; Laplace transform; pole-zero map
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1. Introduction

Many implemented interferometers are based on Bragg gratings, optic fiber, mirrors,
crystals, and their combinations [1–5]. Interferometers find practical applications for physical
parameter measurements, such as temperature, strain, humidity, pressure, level, current, voltage,
and vibration [6–10]. When used for measurement, any interferometer suffers the modification of its
optical path difference (OPD) due to external perturbations where the OPD parameter is the relative
path difference (or phase shift) traveled between two light beams emitted from two coherent sources.
Thus, the optical path difference measurement plays a very important role for the interferometry
system application. Diverse transformations were applied to study the OPD parameter, for example:
Fourier transform and Hilbert transform [11–14]. Their studies permitted the signal demodulation for
the interferometry systems, and, consequently, new sensing systems were developed [15,16].

Graphical methods are frequently applied to study the dynamic behavior of any continuous
system. Some methods are pole-zero maps, bode diagrams, polar, and Nichols diagrams [17–20]. Each
graphical representation has its own characteristics, but all graphical techniques frequently require
a complex s-function. In particular, a pole-zero map shows graphically pole-zeros in the s-complex
plane. Poles and zeros have been calculated from a complex function which was determined by
applying the Laplace transform to the system’s equation. Necessarily, this complex function contains
the complete information about the physical parameter under study, since otherwise the system
wouldn’t be correctly studied.

On the other hand, in the dynamic system analysis, the complex s-function F(s) = P(s)
G(s) describes

the system under study completely, where P(s) and G(s) are complex polynomials in terms of s = iω+σ:
i is the imaginary operator, ω is the angular frequency, and σ is a real parameter. Poles are calculated
through the polynomial G(s), and, using the polynomial P(s), the zeros are calculated. Both poles and
zeros can be graphed in the pole-zero map representation [18,19]. To our knowledge, the dependence
of the pole location due to the optical path difference has not been reported in the literature. If this
study is developed, an interferometric system based on two beams can be analyzed on the s-plane,
making it feasible to apply graphical methods to study the dynamic behavior of interferometers,
and as a consequence, the graphical methods can simplify the signal demodulation of interferometer
systems. In this work, using a pole-zero map and two low-finesse Fabry–Pérot interferometers printed
inside the fiber’s core, the behavior of optical path difference vs. pole location was theoretically and
experimentally corroborated. Theory and experiments are in concordance. To study the relation
between both terms, all frequency components were calculated from the optical signal produced by the
two interferometers. Using two filters, the cosine functions from both interference patterns were filtered
and then its inverse Fourier transform was calculated for each interference pattern. Following this,
the Laplace transform was applied to obtain a complex function, which was used to calculate the poles
and zeros, making it feasible to build a pole-zero map. Based on our results, when the interferometers
have their cavities of 1.6 mm and 5.2 mm, the optical path differences are 2.36 mm and 7.63 mm, while
the pole locations are ±i12.50 rad

nm and ±i40.58 rad
nm , respectively. Poles are always over the imaginary

axis and a zero is over the origin. Our analysis considers only the cosine function of an interference
pattern produced between two beams, and the interferometer doesn’t have external perturbations.

2. Materials and Methods

2.1. Optical System

Figure 1 shows the optical system under study. The system consisted of a single-mode optical
fiber (FS-PM-7621). Its characteristics were: refraction index 1.46, operating wavelength 1550 nm,
nominal numerical aperture 0.13, attenuation α = 1 Db

Km , cladding diameter 125 µm, core diameter
9.5 µm, and length L = 4 m. The fiber had two low finesse Fabry–Pérot interferometers printed inside
the fiber’s core. Both Fabry–Pérot interferometers were formed by two identical Bragg gratings. The
length of cavities were LFP1 ≈ 1.6 mm and LFP2 ≈ 5.2 mm and the separation, LSR ≈ 1.2 m (between
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both interferometers), eliminated ghost interferometers. All Bragg gratings have a rectangular profile,
with a Bragg wavelength at λBG ≈ 1535 nm, a length at LBG ≈ 0.5 mm, and low reflectivity (≈1%),
eliminating cross-talk noise. The fiber optic circulator (6015-3-FC) couples a beam light between the
optical broadband source (Thor-Labs model SLD1005S) and the single-mode optical fiber. Finally,
the reflection spectrum generated from both interferometers was detected using the optical analyzer
spectrometer (Q8384 OSA spectrometer, brand ADVANTEST).
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Figure 1. Optical system formed by two interferometers.

2.2. Optical Signal

Based on References [21,22], when both interferometers do not have external perturbations,
the optical signal RT(λ) is the superposition of two interference patterns, which are generated from
both Fabry–Pérot interferometers. Its mathematical representation can be written as:

RT(λ) =
2∑

m=1

2am

{
b2 sin c2

(
λ− λBG

∆BG

)}{
1 + cos[2πνFPm(λ− λBG)]

}
, (1)

where am is an amplitude factor and the term b is given by

b =
πn1LBG
λBG

, (2)

where the width ∆BG is the spectral distance between its +1 and −1 zeros,

∆BG =
λ2

BG
n1LBG

, (3)

and the frequency component νFPm is defined as

νFPm =
2nLFMm

λ2
BG

m = 1, 2, (4)

where λ is the wavelength, n1 is the the amplitude of the effective refraction index modulation of the
gratings, and LFMm is the m-th cavity length (m = 1, 2). From Equation (1), each interference pattern is
formed by an enveloped function and a modulate function. The enveloped function is the sinc2(x) and
the modulate function is a constant plus the cosine function.
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Applying the Fourier transform, the frequency components can be calculated, and, as a
consequence, these can be graphed on the complex plane. Therefore, we applied the Fourier transform
to the optical signal.

RT(ν) =

∫
∞

−∞

RT(λ)e−i2πνλdλ, (5)

where RT(ν) is the frequency spectrum and ν is the frequency. Substituting Equation (1) into Equation (5),
the frequency spectrum is

RT(ν) =

∫
∞

−∞

2∑
m=1

2am

{
b2sinc2

(
λ− λBG

∆BG

)}{
1 + cos[2πνFPm(λ− λBG)]

}
e−i2πνλdλ. (6)

Invoking the Fourier transform properties and series properties, RT(ν) can be expressed through

RT(ν) =
2∑

m=1

F

{
2am

{
b2sinc2

(
λ− λBG

∆BG

)}}
⊗F

{
1 + cos[2πνFPm(λ− λBG)]

}
, (7)

where the symbol F { } is the Fourier operator and the symbol ⊗ indicates the convolution operation.
Invoking the convolution properties, using the identities cos(ϕ) = eiϕ+e−iϕ

2 , cos2(ϕ) = 1
2 (1 + cos(2ϕ)),

and
∑M

m=1 e−iϕ =
∑
−1
m=−M eiϕ and solving the transformation, the optical signal RT(ν) takes the form.

RT(ν) =
2∑

m=−2

cmtri
(
ν− νFPm

νBG

)
(8)

RT(ν) is formed by five triangle functions, where the triangle function tri(x) is defined as

tri(x) =

1− |x| |x| ≤ 1

0 otherwise
, cm are amplitudes factors and νBG is the bandwidth.

νBG =
4n1LBG

λ2
BG

(9)

Figure 2 shows the frequency spectrum RT(ν).
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Figure 2. Optical signal formed by two interferometers.

Analyzing Figure 2, the direct component (νFP0) contained information from both Fabry–Pérot
interferometers; the components ±νFP1 contained information from the first interferometer and the
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components ±νFP2 contained information from our second interferometer. Four lateral components
contained information about the cosine function and the enveloped function, such that, the cosine
functions could be filtered from the lateral components, as we describe in the next section.

2.3. Cosine Function Determination

To filter both cosine functions generated from both Fabry–Pérot interferometers, the following
system was considered.

Fm(ν) = RT(ν)Tm(ν) m = 1, 2, (10)

where Tm(ν) is the m− th filter and Fm(ν) is the m− th cosine function. The first filter T1(ν) consisted
of two unitary Dirac deltas, which were centered at ±νFP1,

T1(ν) = δ(ν− νFP1) + δ(ν+ νFP1), (11)

and our second filter T2(ν) consisted of two unitary Dirac delta, but their locations were ±νFP2

T2(ν) = δ(ν− νFP2) + δ(ν+ νFP2). (12)

Developing the operation described in Equation (10), both cosine functions were filtered from the
optical signal RT(ν), and its graphical representation is shown in Figure 3.
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Based on Figure 3, the enveloped function information was eliminated, but the cosine function
was conserved. We can then study the relationship between optical path difference and poles location.
Following this, the inverse Fourier transform was applied to the signal Fm(ν),

fm(λ) =
∫
∞

−∞

Fm(ν)ei2πνλdν, (13)

and then we obtained both cosine functions in the wavelength domain

fm(λ) = 2a1b2cos(2πνFP1λ) + 2a2b2cos(2πνFP2λ). (14)

Considering Equation (4) and the next condition a1 ≈ a2 ≈ a, Expression (14) takes the form,

fm(λ) = 2ab2cos

4πnLFP1

λ2
BG

λ

+ 2ab2cos

4πnLFP2

λ2
BG

λ

. (15)
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The condition a1 ≈ a2 ≈ a is acceptable because all Bragg gratings have the same characteristics. Let
us introduce the optical path difference definition (OPDm = nLFPm) for our last expression, obtaining
the next Equation,

fm(λ) = f1(λ) + f2(λ) = 2ab2cos

4πOPD1

λ2
BG

λ

+ 2ab2cos

4πOPD2

λ2
BG

λ

. (16)

Figure 4 shows both cosine functions in the wavelength domain.Sensors 2020, 20, 453 6 of 12 
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function, 

𝐹𝑚(𝑠) = ∫ 𝑓𝑚(𝜆)𝑒−𝑠𝜆𝑑𝜆
∞

−∞

= ∫ 𝑓1(𝜆)𝑒−𝑠𝜆𝑑𝜆
∞

−∞

+ ∫ 𝑓2(𝜆)𝑒−𝑠𝜆𝑑𝜆
∞

−∞

. (17) 

Substituting Equation (16) into Equation (17), 

𝐹𝑚(𝑠) = 2𝑎𝑏2 ∫ 𝑐𝑜𝑠 (
4𝜋𝑂𝑃𝐷1

𝜆𝐵𝐺
2 𝜆) 𝑒−𝑠𝜆𝑑𝜆

∞

−∞

+ 2𝑎𝑏2 ∫ 𝑐𝑜𝑠 (
4𝜋𝑂𝑃𝐷2

𝜆𝐵𝐺
2 𝜆) 𝑒−𝑠𝜆𝑑𝜆

∞

−∞

, (18) 

and solving the transformation, the complex function 𝐹𝑚(𝑠) takes the form, 

𝐹𝑚(𝑠) = 𝐹1(𝑠) + 𝐹2(𝑠) =
2𝑎𝑏2𝑠

𝑠2 + (
4𝜋𝑂𝑃𝐷1

𝜆𝐵𝐺
2 )

2 +
2𝑎𝑏2𝑠

𝑠2 + (
4𝜋𝑂𝑃𝐷2

𝜆𝐵𝐺
2 )

2. 
(19) 
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𝐹𝑚(𝑠) = 𝐹1(𝑠) + 𝐹2(𝑠) =
2𝑎 (

𝜋𝑛1𝐿𝐵𝐺

𝜆𝐵𝐺
)

2

𝑠

𝑠2 + (
4𝜋𝑂𝑃𝐷1

𝜆𝐵𝐺
2 )

2 +
2𝑎 (

𝜋𝑛1𝐿𝐵𝐺

𝜆𝐵𝐺
)

2

𝑠

𝑠2 + (
4𝜋𝑂𝑃𝐷2

𝜆𝐵𝐺
2 )

2. (20) 
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function 𝐹1(𝑠) is defined as 

𝐹1(𝑠) =
2𝑎 (

𝜋𝑛1𝐿𝐵𝐺

𝜆𝐵𝐺
)

2

𝑠

𝑠2 + (
4𝜋𝑂𝑃𝐷1

𝜆𝐵𝐺
2 )

2. (21) 

  

Figure 4. Cosine functions represented in wavelength domain: (a) function f1(λ); (b) function f2(λ).

From Equation (16) and Figure 4, each Fabry–Pérot interferometer has its own optical path
difference because each interferometer has its own cavity length, and, as a consequence, each cosine
function has its own frequency. These frequecies can be vizualized through a pole-zero-map. Notice
that cosine’s amplitude depends of physical parameters as a, Bragg wavelength λBG, the amplitude
of the effective refraction index modulation of the gratings n1, and the length of Bragg grating LBG
(See Equation (2)).

2.4. Pole-Zero Map Representation

To graph the pole-zero map, the unilateral Laplace transform was calculated for each
cosine function,

Fm(s) =
∫
∞

−∞

fm(λ)e−sλdλ =

∫
∞

−∞

f1(λ)e−sλdλ+

∫
∞

−∞

f2(λ)e−sλdλ. (17)

Substituting Equation (16) into Equation (17),

Fm(s) = 2ab2
∫
∞

−∞

cos

4πOPD1

λ2
BG

λ

e−sλdλ+ 2ab2
∫
∞

−∞

cos

4πOPD2

λ2
BG

λ

e−sλdλ, (18)

and solving the transformation, the complex function Fm(s) takes the form,

Fm(s) = F1(s) + F2(s) =
2ab2s

s2 +
(

4πOPD1
λ2

BG

)2 +
2ab2s

s2 +
(

4πOPD2
λ2

BG

)2 . (19)
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Substituting Equation (2) into Equation (19), the complex function Fm(s) is

Fm(s) = F1(s) + F2(s) =
2a

(
πn1LBG
λBG

)2
s

s2 +
(

4πOPD1
λ2

BG

)2 +
2a

(
πn1LBG
λBG

)2
s

s2 +
(

4πOPD2
λ2

BG

)2 . (20)

Observing Equation (20), the complex function Fm(s) contains information on the optical path
differences (OPDs). F1(s) contains information about the first Fabry–Pérot interferometer and F2(s)
contains information about the second Fabry–Pérot interferometer. From Equation (20), the complex
function F1(s) is defined as

F1(s) =
2a

(
πn1LBG
λBG

)2
s

s2 +
(

4πOPD1
λ2

BG

)2 . (21)

Its zero is localized at the origin because 2a
(
πn1LBG
λBG

)2
s1 = 0→ s1 = 0 , and its poles’ location is

s2 +

4πOPD1

λ2
BG

2

= 0 →

s1 = i 4πOPD1
λ2

BG

s2 = −i 4πOPD1
λ2

BG

. (22)

Figure 5a shows the pole-zero map representation. Following this, the complex function F2(s) is:

F2(s) =
2a

(
πn1LBG
λBG

)2
s

s2 +
(

4πOPD2
λ2

BG

)2 . (23)

Sensors 2020, 20, 453 7 of 12 

 

Its zero is localized at the origin because 2𝑎 (
𝜋𝑛1𝐿𝐵𝐺

𝜆𝐵𝐺
)

2

𝑠1 = 0 → 𝑠1 = 0, and its poles’ location is 

𝑠2 + (
4𝜋𝑂𝑃𝐷1

𝜆𝐵𝐺
2 )

2

= 0   →   

𝑠1 = 𝑖
4𝜋𝑂𝑃𝐷1

𝜆𝐵𝐺
2

𝑠2 = −𝑖
4𝜋𝑂𝑃𝐷1

𝜆𝐵𝐺
2

 . (22) 

Figure 5a shows the pole-zero map representation. Following this, the complex function 𝐹2(𝑠) 

is: 

𝐹2(𝑠) =
2𝑎 (

𝜋𝑛1𝐿𝐵𝐺

𝜆𝐵𝐺
)

2

𝑠

𝑠2 + (
4𝜋𝑂𝑃𝐷2

𝜆𝐵𝐺
2 )

2. (23) 

Again, its zero is localized at the origin, 2𝑎 (
𝜋𝑛1𝐿𝐵𝐺

𝜆𝐵𝐺
)

2

𝑠1 = 0. However, the poles are localized at 

𝑠2 + (
4𝜋𝑂𝑃𝐷2

𝜆𝐵𝐺
2 )

2

= 0   →    

𝑠1 = 𝑖
4𝜋𝑂𝑃𝐷2

𝜆𝐵𝐺
2

𝑠2 = −𝑖
4𝜋𝑂𝑃𝐷2

𝜆𝐵𝐺
2

. (24) 

Figure 5b shows the pole-zero map for our optical system. 

  
(a) (b) 

Figure 5. Pole-zero map obtained for the complex function 𝐹𝑚(𝑠): (a) the complex function 𝐹1(𝑠); (b) 

the complex function 𝐹2(𝑠). 

Based on Figure 5, both zeros are over the origin, but the pole locations depend on the optical 

path difference (OPD). Thus, in the pole-zero map representation, each interference pattern 

generates its own pole location. 

3. Results 

3.1. Optical Signals 

To detect the optical signal 𝑅𝑇(𝜆), the OSA spectrometer parameters were: a spectrometer 

resolution of ∆𝜆 = 20 𝑛𝑚, the number of samples N = 1000, and a selected dynamic range between 

1533 and 1536 nm. The optical broadband source parameters were: power 16 mW and a dynamic 

range between 1510 and 1570 nm. Finally, Figure 1 shows the sensor parameters. The detected 

optical signal can be observed in Figure 6a. The measured bandwidth was Δ𝐵𝐺 ≈ 3.18 𝑛𝑚  (the 

theoretical value was Δ𝐵𝐺 = 3.22 𝑛𝑚) and the signal-to-noise ratio was SNR = 174.24. Following this, 

the frequency spectrum 𝑅𝑇(𝜈) was calculated and five frequency components were obtained, as 

Figure 5. Pole-zero map obtained for the complex function Fm(s): (a) the complex function F1(s);
(b) the complex function F2(s).

Again, its zero is localized at the origin, 2a
(
πn1LBG
λBG

)2
s1 = 0. However, the poles are localized at

s2 +

4πOPD2

λ2
BG

2

= 0 →

s1 = i 4πOPD2
λ2

BG

s2 = −i 4πOPD2
λ2

BG

. (24)

Figure 5b shows the pole-zero map for our optical system.
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Based on Figure 5, both zeros are over the origin, but the pole locations depend on the optical
path difference (OPD). Thus, in the pole-zero map representation, each interference pattern generates
its own pole location.

3. Results

3.1. Optical Signals

To detect the optical signal RT(λ), the OSA spectrometer parameters were: a spectrometer
resolution of ∆λ = 20 nm, the number of samples N = 1000, and a selected dynamic range between
1533 and 1536 nm. The optical broadband source parameters were: power 16 mW and a dynamic range
between 1510 and 1570 nm. Finally, Figure 1 shows the sensor parameters. The detected optical signal
can be observed in Figure 6a. The measured bandwidth was ∆BG ≈ 3.18 nm (the theoretical value
was ∆BG = 3.22 nm) and the signal-to-noise ratio was SNR = 174.24. Following this, the frequency
spectrum RT(ν) was calculated and five frequency components were obtained, as Figure 6b illustrates.
Their central frequencies were νFP0 = 0, ±νFP1 ≈ 1.91 nm−1, and ±νFP2 ≈ 6.43 nm−1. Five peaks had the
same bandwidth, νBG ≈ 1.32 nm−1 (the theoretical value was νBG = 1.23 nm−1).
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3.2. Cosine Functions

Applying the system described by Equation (10) and two filters defined as

T1(ν) = δ(ν− 1.91) + δ(ν+ 1.91) (25)

and
T2(ν) = δ(ν− 6.43) + δ(ν+ 6.43), (26)

both cosine functions were filtered from the frequency spectrum RT(ν), see Figure 7a,b. Calculating
its inverse Fourier transform, the cosine functions were represented in the wavelength domain,
as Figure 7c,d illustrates. Based on Figure 7, the first cosine function had the frequency of νFP1 ≈

1.91 nm−1 and its amplitude was 2a
(
πn1LBG
λBG

)2
≈ 5.7× 10−11; the second cosine function had a frequency

of νFP2 ≈ 6.43 nm−1 and its amplitude was 2a
(
πn1LBG
λBG

)2
≈ 4.48 × 10−11. Considering Equation (14),

the mathematical representation is

fm(λ) = f1(λ) + f2(λ) = 5.7cos[2π(1.91)λ] × 10−11[nm] + 4.48cos[2π(6.43)λ] × 10−11[nm] (27)
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where
f1(λ) = 5.7cos[2π(1.91)λ] × 10−11 [nm] (28)

and
f2(λ) = 4.48cos[2π(6.43)λ] × 10−11 [nm]. (29)

Their optical path differences were estimated as

OPD1 = nLFP1 = 2.33 mm
OPD2 = nLFP2 = 7.59 mm

. (30)
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3.3. Pole-Zero Map Representation

Using the cosine functions obtained in Section 3.2, based on Section 2.4 and knowing that our goal
verifies the relation between optical path difference and pole location, the unilateral Laplace transform
was calculated for both cosine functions obtained experimentally,

F1(s) = 5.7× 10−11
·

∫
∞

0 cos[2π(1.91)λ]e−sλdλ
F2(s) = 4.48× 10−11

·

∫
∞

0 cos[2π(6.43)λ]e−sλdλ.
(31)
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Solving the transformations, we obtained the next complex functions.

F1(s) = 5.7×10−11 s
s2+[2π(1.91)]2

F2(s) = 4.48×10−11 s
s2+[2π(6.43)]2 .

(32)

From Equation (32), F1(s) has one zero over the origin and two poles localized at points

s1 = i2π(1.91) = i12
s2 = −i2π(1.91) = −i12,

(33)

where as F2(s) has one zero over the origin but their poles are localized at the points.

s1 = i2π(6.43) = i40.4
s2 = −i2π(6.43) = −i40.4.

(34)

Figure 8 shows the pole-zero map representation.
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4. Discussion

In this work, Fabry–Pérot interferometers are studied theoretically and experimentally on the
s-plane. Both theory and experiments are in concordance. Such concordance can be observed in
Figures 2–8, where Figures 2–5 show the theoretical results and Figures 6–8 show the experimental
results. From our theoretical analysis and experimental results, each Fabry–Pérot interferometer has its
own frequency channel and the cosine function can be filtered from each interference pattern. Because
the cosine function contains the optical path difference information, using this function, we studied
the relation between the optical path difference and pole location, as Figure 8 illustrates. Based on
Figure 8, each Fabry–Pérot interferometer produced an interference pattern, where each interference
pattern had its own frequency and then both frequencies were visualized in the pole-zero map.

From our theoretical analysis and experimental results, it is possible to infer a few key points:

(a) Interferometry systems can be studied on the complex s-plane;
(b) The modulated function can be expressed as an s-complex function F(s), applying the

Laplace transform;
(c) The cosine function filtered from the interference pattern always has one zero s1 and two poles

s1, s2;
(d) The zero s1 is over the origin and it contains the amplitude information;
(e) Both poles s1, s2 are over the imaginary axes. The frequency defines the poles location, and, as a

consequence, their locations depend on the optical path difference; see Figures 5 and 7;
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(f) The pole-zero map gives us information about the optical path difference (OPD);
(g) Physical parameters are measured on the complex s-plane;
(h) Theoretical and experimental results have small variations due to numerical errors and variations

between theoretical and experimental parameters;
(i) Since the fiber FS-PM-7621 is polarization maintaining, the polarization effects do not affect our

analysis about the optical system under study, as in optical systems where the fibers have high
birefringence [23,24].

From our results, a novel method was applied for the interferometric system analysis. The
methodology was based on the relationship between the optical path difference and pole location,
which was visualized in the pole-zero map. Our proposal finds potential applications on low-coherence
interferometry systems, optical sensors, bridge visibility measurement, multiplexing systems based on
interferometers, and optical source characterization. Therefore, our future work has two directions:
practical applications and theoretical analysis. In the practical applications, signal processing and
bridge visibility measurement can be implemented for optical fiber sensors. In the theoretical analysis,
using the direct component permits us to obtain more information from the interference pattern,
and this information could be studied on the complex s-plane.

5. Conclusions

In this work, using two unperturbed Fabry–Pérot interferometers, the cosine function filtered
from both interference patterns, the Laplace transform, and a pole-zero map, we corroborated that
pole location depends on the optical path difference. We also confirmed that the zero doesn’t give
information about the interferometer because its location was over the origin of a pole-zero map. Both
cases were theoretically and experimentally confirmed. In our analysis, the zero was over the origin,
both poles were always at the imaginary axes, their locations depended on optical path differences,
and each Fabry–Pérot interferometer generated two poles. In our experiments, the first Fabry–Pérot
interferometer had the cavity length of ∼1.6 mm, its optical path difference was of 2.33 mm, and the
poles were localized at points ±i12. rad/nm. The second Fabry–Pérot interferometer had a cavity
length of ∼5.2 mm, its optical path difference was of 7.59 mm, and the poles were localized at the points
±i40.4 rad/nm. These experimental results confirmed our theoretical analysis.

Our proposal finds practical applications on coherence interferometers, signal processing for fiber
optic sensors, and multiplexing systems based on the interferometry.

Author Contributions: J.T.G.B., M.E.S.M. and J.R.G. developed the experimental work. H.G.B., V.M.R.B.,
and A.C.Z. developed the signal analysis. A.G.B. and J.T.G.B. implemented the signal processing. All authors
wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank the Mexico’s National of Science and Technology (CONACyT) and
University of Guadalajara for the support granted. A.C.Z. gives thanks to CONACyT for their scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hassan, M.A.; Martin, H.; Jiang, X. Development of a spatially dispersed short-coherence interferometry
sensor using diffraction grating orders: Publisher’s note. Appl. Opt. 2018, 57, 5. [CrossRef] [PubMed]

2. Wan, X.; Ge, J.; Chen, Z. Development of stable monolithic wide-field Michelson interferometers. Appl. Opt.
2011, 50, 4105–4114. [CrossRef] [PubMed]

3. Peng, J.; Lyu, D.; Huang, Q.; Qu, Y.; Wang, W.; Sun, T.; Yang, M. Dielectric film based optical fiber sensor
using Fabry-Pérot resonator structure. Opt. Commun. 2019, 430, 63–69. [CrossRef]

4. Liang, Y.; Zhao, M.; Wu, Z.; Morthier, G. Investigation of grating-assisted trimodal interferometer biosensors
based on a polymer platform. Sensors 2018, 18, 1502. [CrossRef] [PubMed]

http://dx.doi.org/10.1364/AO.57.000005
http://www.ncbi.nlm.nih.gov/pubmed/29328111
http://dx.doi.org/10.1364/AO.50.004105
http://www.ncbi.nlm.nih.gov/pubmed/21772398
http://dx.doi.org/10.1016/j.optcom.2018.08.037
http://dx.doi.org/10.3390/s18051502
http://www.ncbi.nlm.nih.gov/pubmed/29748499


Sensors 2020, 20, 453 12 of 12

5. Kamenev, O.; Kulchin, Y.N.; Petrov, Y.S.; Khiznyak, R.V.; Romashko, R.V. Fiber-optic seismeter on the basis of
Mach-Zehnder interferometer. Sens. Actuors A Phys. 2016, 244, 133–137. [CrossRef]

6. Zhao, N.; Lin, Q.; Jing, Z.; Yao, K.; Tian, B.; Fang, X.; Shi, P.; Zhan, Z. High temperature high sensitivity
multipoint sensing system based on three cascade Mach-Zehnder interferometers. Sensors 2018, 18, 2688.
[CrossRef]

7. Jia, X.; Liu, Z.; Deng, Z.; Wang, Z.; Zhen, Z. Dynamic absolute distance measurement by frequency sweeping
interferometry based on Doppler beat frequency tracking model. Opt. Commun. 2019, 430, 163–169.
[CrossRef]

8. Vigneswaran, D.; Ayyanar, V.N.; Sharman, M.; Sumahí, M.; Mani Rajan, M.S.; Porsezian, K. Salinity sensor
using photonic crystal fiber. Sens. Actuors Phys. A 2019, 269, 22–28. [CrossRef]

9. Dong, C.; Li, K.; Jeang, Y.; Arola, D.; Zhang, D. Evaluation of thermal expansion coefficient Carbon fiber
reinforced composites using electronic speckle interferometry. Opt. Express 2018, 26, 531. [CrossRef]

10. Wang, S.; Gao, Z.; Li, G.; Feng, Z.; Feng, Q. Continual mechanical vibration trajectory tracking based on
electro-optical heterodyne interferometric. Opt. Express 2014, 22, 7799. [CrossRef]

11. Miridonov, S.V.; Shlyaing, M.G.; Tentori, D. Twin-grating fiber optic sensor demodulation. Opt. Commun.
2001, 191, 253–262. [CrossRef]

12. Pan, H.; Qu, X.; Shi, C.; Zhang, F.; Li, Y. Resolution-enhancement and sampling error correction based on
molecular absortion line in frequency scanning interferometry. Opt. Commun. 2018, 416, 214–220. [CrossRef]

13. Born, M.; Wolf, E. Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light,
17th ed.; Cambridge University Press: Cambridge, UK, 1999; p. 256.

14. Dicaire, M.C.N.; Upham, J.; De Leon, I.; Schulz, S.; Boyd, R.W. Group delay measurement of fiber Bragg
grating resonances in transmission: Fourier transform interferometry versus Hilbert transform. J. Opt. Soc.
Am. B 2014, 31, 5. [CrossRef]

15. Ma, C.T.; Chang, Y.W.; Yang, Y.J.; Lee, C.L. A dual-polymer fiber Fizeau interferometer for simultaneous
measurement of relative humidity and temperature. Sensor 2017, 17, 2659. [CrossRef] [PubMed]

16. Hirai, A.; Matsumoto, H. Low-coherence tandem interferometer for measurement of group refractive index
without knowledge of the thickness of the test sample. Opt. Lett. 2003, 28, 2112–2114. [CrossRef] [PubMed]

17. Popescu, N.; Ivanescu, M.; Popescu, D. A note on observer-based frequency control for a class of systems
described by uncertain models. J. Dyn. Syst. Meas. Control 2017, 140, 021008. [CrossRef]

18. Campi, M.C.; Garatti, S.; Prandini, M. The scenario approach for systems and control design.
Annu. Rev. Control 2009, 33, 149–157. [CrossRef]
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