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Abstract

Cancer cachexia is a complex multi-organ catabolic syndrome that reduces mobility, increases fatigue, decreases the efficiency
of therapeutic strategies, diminishes the quality of life, and increases the mortality of cancer patients. This review provides an
exhaustive and comprehensive analysis of cancer cachexia-related phenotypic changes in skeletal muscle at both the cellular
and subcellular levels in human cancer patients, as well as in animal models of cancer cachexia. Cancer cachexia is character-
ized by a major decrease in skeletal muscle mass in human and animals that depends on the severity of the disease/model and
the localization of the tumour. It affects both type 1 and type 2 muscle fibres, even if some animal studies suggest that type 2
muscle fibres would be more prone to atrophy. Animal studies indicate an impairment in mitochondrial oxidative metabolism
resulting from a decrease in mitochondrial content, an alteration in mitochondria morphology, and a reduction in mitochon-
drial metabolic fluxes. Immuno-histological analyses in human and animal models also suggest that a faulty mechanism of
skeletal muscle repair would contribute to muscle mass loss. An increase in collagen deposit, an accumulation of fat depot
outside and inside the muscle fibre, and a disrupted contractile machinery structure are also phenotypic features that have
been consistently reported in cachectic skeletal muscle. Muscle function is also profoundly altered during cancer cachexia with
a strong reduction in skeletal muscle force. Even though the loss of skeletal muscle mass largely contributes to the loss of
muscle function, other factors such as muscle–nerve interaction and calcium handling are probably involved in the decrease
in muscle force. Longitudinal analyses of skeletal muscle mass by imaging technics and skeletal muscle force in cancer patients,
but also in animal models of cancer cachexia, are necessary to determine the respective kinetics and functional involvements
of these factors. Our analysis also emphasizes that measuring skeletal muscle force through standardized tests could provide a
simple and robust mean to early diagnose cachexia in cancer patients. That would be of great benefit to cancer patient’s qual-
ity of life and health care systems.
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Introduction

Cancer cachexia is a complex catabolic syndrome character-
ized by an involuntary body mass loss essentially due to a se-
vere depletion of skeletal muscle, with or without adipose

tissue loss, while the non-muscle protein compartment is rel-
atively preserved.1 Cancer cachexia cannot be reversed by in-
creasing conventional nutritional intake, thus highlighting the
fact that the hypercatabolic state of cachectic patients is a
critical determinant of the syndrome. The prevalence of
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cachexia in cancer patients is quite variable, affecting 15–30%
of prostate or breast cancer patients to 75% of pancreatic
cancer patients,2 with an increasing prevalence with the ad-
vanced stages of the disease.2 It is thus estimated that the
prevalence of cachexia can reach 90% in patients suffering
from advanced colorectal cancer 100 days before death.3 Fur-
thermore, cancer cachexia can be also under-recognized by
some confounding factors, such as obesity4 or weight gain
in the form of ascites or peripheral oedema.5 Overall, it has
been recently estimated that 15.8 subjects per 10 000 of
the total general population in European Union in 2013 suf-
fered from cancer cachexia.2

Cancer cachexia is one of the most debilitating and
life-threatening aspects of cancer, profoundly affecting the
patient’s quality of life.6–12 Cachexia increases surgical risks13

and the susceptibility to the adverse effects of
chemotherapy.11,14,15 It also induces a progressive reduction
in the body’s functional capacities16 leading to an increase
in sedentarization9,17 and a loss of autonomy, ultimately re-
quiring institutional care of patients. Since the pioneering
works of Dewys et al.18 it has been consistently reported that
the extent of cachexia is inversely correlated with the survival
of cancer patients.8–10,19–25 Even if probably underestimated,
it is generally assumed, according to Warren,26 that cachexia
will be responsible for the death of approximately 20% of can-
cer patients with death typically occurring when weight loss
reaches 30%, thus making it the leading cause of death in
cancer.

During cancer cachexia, skeletal muscle represents the
main site of protein loss.27,28 The loss of muscle mass affects
5–89% of cancer patients depending on the cancer site and
the method of measurement used.29 Muscle mass loss is
greater in weight-losing cancer patients when compared with
weight-losing anorexia nervosa patients,30 indicating that
cancer-specific factors independently of undernutrition con-
tribute to decrease skeletal muscle mass. As described for
body mass, skeletal muscle mass loss in cancer patients is
an independent factor that increases the risk of surgical
complications,31,32 decreases surgical efficiency,24 and in-
creases chemotherapy toxicity.33–36 Skeletal muscle mass loss
has therefore been consistently associated with a decreased
survival rate of cancer patients.20,24,31–33,35,37–40

Cancer cachexia is a constantly developing area of great re-
search interest.41 Numerous clinical and experimental studies
have thus been devoted to deciphering the molecular path-
ways involved in cancer cachexia, as well as developing strat-
egies aimed at stopping or even reversing the loss of body
mass and skeletal muscle mass loss (reviewed in
literatures5,42–49). However, what is less known are the ef-
fects of cancer cachexia on skeletal muscle structure and
function. To fully understand the aetiology of cancer ca-
chexia, it is essential to identify its effects on skeletal muscle
phenotype. In this review, we will consider the effects of can-
cer cachexia on skeletal muscle contractile and metabolic

phenotypes both in cancer patients and in animal models. Be-
cause muscle structure cannot be dissociated from muscle
function, we will also consider how and to what extent cancer
cachexia affects skeletal muscle function.

Skeletal muscle atrophy during cancer
cachexia

Skeletal muscle atrophy in human cancer patients

When studying cancer cachexia in human patients, it is essen-
tial to determine the extent of skeletal muscle atrophy, be-
cause body mass loss in cancer patients does not strictly
reflect skeletal muscle mass loss.50 This is particularly true
in obese cachectic patients where high body mass index
may mask the extent of skeletal muscle depletion.20 Different
techniques have been used to quantify the atrophy of skele-
tal muscle mass during the time course of cancer cachexia
(for review, see previous studies51,52). Indirect assessments
of skeletal muscle mass by the analysis of whole-body com-
position using neutron activation,27 dual-energy X-ray
absorptiometry,53–56 or bioelectric impedance10,25,57–60 indi-
cate that lean body mass is reduced in cachectic cancer pa-
tients compared with healthy controls or non-cachectic
cancer patients. When specifically looking at skeletal muscle
by imaging techniques, studies also clearly evidence skeletal
muscle atrophy. The quadriceps muscle area measured by
magnetic resonance imaging is decreased by 10–33% in ca-
chectic cancer patients when compared with healthy control
subjects.57,61,62 When compared with non-cachectic cancer
patients, the quadriceps muscle area of cachectic cancer pa-
tients is either stable (female) or decreased (male) but to a
lesser extent (14%),61 indicating that even if cachexia is not
clinically diagnosed (based on body mass analysis), skeletal
muscle catabolism has already started. Lately, the use of com-
puterized tomography scans has spread widely as these im-
ages may be available in the medical records of patients.
Computerized tomography scan analysis at the third lumbar
vertebrae level allows the quantification of the areas of rec-
tus abdominis, transversus abdominis, erector spinae,
quadratus lumborum, psoas minor and major, and internal
and external abdominal oblique muscles,63 which gives a
good estimate of the whole-body muscle compartment.64

By using this technique, the atrophy of skeletal muscle is also
clearly evident and increases with body mass loss in cachectic
cancer patients.50 When skeletal muscle area is normalized to
the height of patients (skeletal muscle index), similar results
are obtained with a 4–13% decrease in skeletal muscle index
in cachectic cancer patients compared with non-cachectic
cancer patients.10,12,59,65 Once again, skeletal muscle mass
loss increases with the severity of the disease.
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Skeletal muscle atrophy in animal models of cancer
cachexia

Studies using different animal models of cancer cachexia also
consistently report, when compared with control animals, a
decrease in lean body mass,66–69 as well as in the mass of skel-
etal muscles with different metabolic and contractile proper-
ties such as of gastrocnemius,70–95 soleus,69,73,77,78,80–82,86,88,
90,93,96–98 extensor digitorum longus,69,79,80,85,88,89,93,97–101

tibialis anterior,69,70,73,76,79–81,84,85,88–95,97–99,101,102 plantaris,
80,82,85,86,99 quadriceps,66,68,70,76,79,80,85,91,92,94,99 triceps,66

epitrochlearis,89 and diaphragm86,96 muscles.When compared
with non-cachectic cancer animals, themuscle mass of cachec-
tic cancer animals is also lower.71,77,79,102–106 Similarly to hu-
man cancer patients, the extent of skeletal muscle mass loss
increases with the severity of the experimental
model.71,104,105,107 When normalized to body mass, skeletal
muscle mass still remains lower in cachectic cancer
animals,72,79,80,85,103,108–118 indicating that skeletal muscle
mass loss exceeds that of all other tissues and organs.
Interestingly, many studies reported no difference in soleus
muscle mass between cachectic cancer animals and healthy
animals.79,85,89,99,104,106,112,113 The postural/anti-gravitational
function of the soleus muscle (enriched in type 1 muscle
fibres119), which involves a tonic motor nerve activity, may ex-
plain its resistance to cancer cachexia, also suggesting that
skeletal muscle phenotype, function, and pattern of neuronal
innervation are critical in determining skeletal muscle
sensitivity to cancer cachexia.

Skeletal muscle atrophy and metastasis

A higher incidence of metastasis (the dissemination of
tumour cells from the primary site in distant organs) has
been reported in pancreatic cachectic cancer patients com-
pared with non-cachectic patients.120 Similarly, lung cancer
patients with metastases developed cachexia more often
than patients without metastases.121 It is thus generally
considered that cachexia is a hallmark of metastatic cancer
and the main feature of terminal metastatic cancer.
However, if the presence of metastasis is associated with a
higher incidence of cancer cachexia, it is not clear whether
the extent of skeletal muscle depletion is increased in
metastatic cancer patients. Animal studies provide impor-
tant complementary information. Although largely under-
estimated (the vast majority of cancer cachexia studies in
animals are not conducted in a metastatic context122), some
recent studies covering this topic showed that skeletal mus-
cle mass loss is exacerbated in metastatic compared with
non-metastatic C26123 or HCT116124 tumor-bearing mice.
Therefore, metastasis would aggravate the cachectic pheno-
type in animal models of cancer cachexia. This also illus-
trates the need to use in vivo metastatic models for the

study of cancer cachexia to more closely mimic the diversity
and complexity of cancer cachexia observed in human
patients.

Skeletal muscle atrophy and chemotherapy

The depletion of the skeletal muscle compartment may also
have important implications for anticancer drug toxicity. It
has thus been shown that patients with depletion of skeletal
muscle mass presented higher chemotherapy-related toxicity
compared with patients with larger amounts of lean body
mass.11,14,15,33,36,125,126 Those patients are forced to reduce
dosage or to delay the cycles of administration and
ultimately have worsened outcomes.125 Chemotherapy also
triggers very debilitating side effects, including unintentional
body weight loss that primarily affects skeletal muscle.
Therefore, understanding the complex interplay between
chemotherapy, skeletal muscle toxicities, and cachexia is an
important issue. Some recent studies addressed this question
by determining the effects of chemotherapy itself on skeletal
muscle or by studying the combined effects of tumour
growth and chemotherapy on skeletal muscle. Administra-
tion of FOLFOX (5-fluorouracil, leucovorin, oxaliplatin)
or FOLFIRI (5-fluorouracil, leucovorin, CPT-11) in originally
healthy mice triggers a loss of muscle mass and an
increase in muscle weakness.127–129 Similar observations
have been reported using carboplatin,130,131 cisplatin,132–134

doxorubicin,135–137 and 5-fluorouracil.138 Injection of
gemcitabine and cisplatin in mice induced an even greater
decrease in skeletal muscle mass than an orthotopic injection
of tumour cells alone.139 One should note however that
if some studies used similar dosages to that encountered
in human patients,127–129,132–134 others used higher
dosages.130,131,135,136,138 Furthermore, the drug is generally
more frequently administered in animal studies compared
with human patients leading to cumulative higher dosages.
Overall, this may contribute to exacerbate the extent of skel-
etal muscle mass loss. In tumour-bearing mice, the combina-
tion of cancer cachexia and FOLFIRI administration resulted
in a more severe depletion of quadriceps muscle mass com-
pared with cancer cachexia or FOLFIRI alone.94 Similar obser-
vations were also reported in tumour-bearing mice with the
use of cisplatin140 and doxorubicin.141 Therefore, and while
chemotherapy is obviously dispensable to combat tumour
growth, these data from animal studies strongly suggest that
chemotherapy potentially also plays a causative role in the
occurrence of skeletal muscle loss and weakness during
cancer cachexia. Developing strategies that preserve
skeletal muscle mass would therefore counteract both
chemotherapy-related toxicity and deleterious effects of
chemotherapy on skeletal muscle.
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Skeletal muscle fibre typology, size,
and number during cancer cachexia

Skeletal muscle fibre type

Skeletal muscle fibres are heterogeneous with respect to
their expression of myosin heavy chain isoforms conferring
them distinct contractile properties.142 Based on myosin
heavy chain isoform expression, it is possible to distinguish
type 1, 2A, 2X, and 2B (absent in human) fibres. The relative
proportion of each fibre type inside a muscle differs accord-
ing to species, muscle function, and innervation but also
reflects dynamic adaptations to whole-body energy metabo-
lism, neuromuscular activity, and muscle injuries.142

If one study reported a shift towards an increase in the
proportion of fast myosin heavy chain isoform in cachectic
cancer patients,143 all other studies indicated that the
distribution between type 1 and type 2 skeletal muscle fibres
remained unchanged in cachectic cancer patients when
compared with either non-cachectic cancer patients54,144,145

or healthy control subjects62,146 (Table 1). Similarly, in animal
models of cancer cachexia, a large majority of studies did not
find any difference in fibre type distribution in the
gastrocnemius,77,82,111,118,147–149 plantaris,82 tibialis anterior,
80,99,111,150 diaphragm,96,99,118,147–149 extensor digitorum
longus,111 quadriceps,151 and soleus111 muscles (Table 2).
However, some animal studies reported an increase in the
proportion of type 2A and 2B muscle fibres together with a
concomitant decrease in the proportion of type 1 fibres in
the slow-twitch oxidative soleus muscle, in cachectic cancer
mice compared with control mice.78,82,100 A transition from
type 2A towards type 2B has also been reported in the
soleus100,152 and tibialis anterior153 muscles of cachectic
cancer mice. Differences between studies could be explained
by the physiological function of the muscle (postural/anti-
gravitational such as soleus vs. locomotor such as gastrocne-
mius) and the extent of cachexia. From a teleological point of
view, a shift from slow to fast fibre type may lead to higher
and faster force production (at the expense of greater fatiga-
bility), which may tentatively compensate for the whole
decrease in muscle force due to muscle mass loss (see
succeeding text). If the existence of a slow-to-fast fibre type
shift needs to be further strengthened, such a shift could re-
flect an altered neuromuscular control, as the innervation
pattern and neuromuscular junction integrity are essential
for conferring contractile and metabolic characteristics to
the muscle fibre.154 This hypothesis is supported by observa-
tions showing that expression of denervation markers was
increased in skeletal muscle of C26 tumour-bearing mice,
which is consistent with the notion that muscle fibre dener-
vation may contribute to muscle wasting during cachexia.155

Although less convincing, fairly similar observations were also
reported in skeletal muscle of cancer cachectic patients

compared with non-weight-losing cancer patients and control
subjects.155 However, a recent study showed that neuromus-
cular junction morphology and structural integrity are
conserved between control subjects, weight-stable cancer pa-
tients, and cachectic cancer patients.156 Although a molecular
characterization of denervation markers was not performed
in this study, the absence of neuromuscular junction
pathology is in contrast to what is found in the aforemen-
tioned study in cachectic C26 tumour-bearing mice.155

Electromyographic studies would be helpful to provide
complementary information about the functionality of moto-
neurons. Therefore, whether cancer cachexia is associated
with alteration in the innervation pattern and neuromuscular
junction fragmentation of the postsynaptic membrane
remains to be further explored.

Skeletal muscle fibre size

Skeletal muscle fibre cross-sectional area is decreased in
cachectic cancer patients, when compared with healthy
subjects,55,57 non-cachectic cancer patients,55,157 or athero-
sclerotic patients158 (Table 1). A reduction in fibre
cross-sectional area has also been consistently reported in
cachectic cancer mice compared with control mice in the
quadriceps,76,141 gastrocnemius (�28% to �62%),69,76,92,132,
159–164 tibialis anterior (�22% to �40%),79,90,94,95,97,98,101,114,
117,150,152,153,165–175 soleus (�24% to �40%),78,152,173,176 and
extensor digitorum longus (�28%)112,177 muscles (Table 3).
Similar results have also been reported in cachectic
cancer rats.87,112

The size of muscle fibres expressing type 1 myosin heavy
chain (the slow contractile isoform) is decreased by about
26% in skeletal muscle of cachectic compared with
non-cachectic cancer patients,144 as well as between cancer
patients and healthy control subjects.54,178 Similarly, the
cross-sectional area of type 1 fibres is also decreased by about
30% in the gastrocnemius,118,147–149 diaphragm,96,118,147–149

and soleus152 muscles of cachectic cancer mice or rats
compared with control animals. However, some studies did
not report any change in type 1 fibre size in cachectic cancer
patients when compared with either non-cachectic cancer
patients54 or healthy subjects.62,146 Similar results have also
been reported in cachectic cancer animals vs. control
animals.85,91,99,100,106,111,179,180 These discrepancies between
studies regarding the extent of the decrease in type 1 fibre
cross-sectional area could be explained by the tumour locali-
zation, the severity of cachexia, the typology and function of
the analysed skeletal muscles, and also the criterion used to
define cachexia. For instance, Johns et al.144 showed that type
1 fibre cross-sectional area was significantly lower in cancer
patients with cachexia compared with non-cachectic cancer
patients only when considering low muscularity plus body
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mass loss as a criterion for cachexia, while no difference was
observed when using either body mass loss only or low mus-
cularity as a criterion of cachexia.

The cross-sectional area of type 2 muscle fibres (expressing
either type 2A or type 2X myosin heavy chain isoforms) is
smaller in the quadriceps muscle of cachectic cancer
patients.54 Similar observations have been also reported in
the diaphragm147–149 and gastrocnemius147–149,179 muscles
of cachectic cancer mice, as well as in the extensor digitorum
longus,112 diaphragm,118 and gastrocnemius111,118 muscles of
cachectic cancer rats. If some studies show that muscle fibre
atrophy is not fibre type dependent in both patients54,144,178

and animals,96,118,147–149,152,174,175 a preferential atrophy of
type 2 muscle fibres has been reported in a biceps muscle bi-
opsy from a cachectic cancer patient181 and more recently in
the quadriceps muscle of cachectic cancer patients that were
compared with healthy patients.146 Similarly, animal studies
also indicate that type 2 muscle fibres are more prone to
atrophy than type 1 muscle fibres.85,100,111,179,180 Therefore,
despite controversies, preferential atrophy of type 2 muscle
fibres could occur during cancer cachexia, suggesting that
the contractile and metabolic phenotypes of skeletal muscle
fibre types may affect their sensibility to cancer cachexia.
When specifically looking at the effect of cancer cachexia on
type 2A and type 2X muscle fibres, human studies indicate

that the decrease in the cross-sectional area of type 2
muscle fibres is similar in type 2A144,178 and type 2X62

muscle fibres of cachectic cancer patients compared
with healthy controls. Animal studies also show a similar
reduction in the cross-sectional area of type 2A muscle
fibres80,84,96,100,104,106,152 and type 2B80,84,91,96,100,104,182 in
cachectic cancer mice. Similar results have also been reported
in skeletalmuscle of cachectic cancer rats.85 However, it should
be noted though that some animal studies reported a greater
decrease infibre cross-sectional area of type 2B comparedwith
type 2Amuscle fibres,91,104,106,150,153,182,183 suggesting greater
sensitivity of type 2B muscle fibres to cachexia.

Skeletal muscle fibre number

Skeletal muscle mass also depends on the number of muscle
fibres. However, cancer cachexia does not seem to involve a
decrease in muscle fibre number. The number of muscle
fibres is similar in the vastus lateralis of cachectic cancer
patients and healthy control subjects,57 as well as the
number of type 1 and type 2A muscle fibres in the rectus
abdominis muscle of cachectic and non-cachectic cancer
patients.144 However, the count of muscle fibres was
expressed per square millimetre,57,144 which obviously did

Table 2 Cancer cachexia model
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Table 3 Muscle fibre cross-sectional area in mice and rat models of cancer cachexia
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not allow the determination of the absolute number of fibres
in the muscle. In a mouse model of cancer cachexia, it has
also been reported that the whole number of tibialis anterior
muscle fibres was unchanged between control and cachectic
cancer mice.99 Therefore, the decrease in muscle mass during
cancer cachexia would be mainly due to a decrease in muscle
fibre volume rather than a decrease in muscle fibre number.
If the number of muscle fibres seems to be unchanged during
cancer cachexia, nuclear death by apoptosis may occur locally
along the muscle fibre. Although not systematically
observed,184 the presence of extrafibre and intrafibre
apoptotic nuclei has been reported in the muscle of cachectic
cancer patients,185,186 as well as in muscles of cachectic
cancer mice and rats.99,104,115,116,118,147–149 However, apopto-
sis does not seem to be high enough to decrease the whole
number of muscle fibres, so that these apoptotic events
may rather weaken the muscle fibre locally, rendering it more
sensitive to micro-injuries (see succeeding text).

Skeletal muscle metabolic phenotype
during cancer cachexia

Skeletal muscle metabolism in human cancer
patients

The diversity between muscle fibres is not restricted to the
expression of myofibrillar proteins but also extends to the en-
ergetic metabolic characteristics of the fibre. Only a limited
number of studies have explored the metabolic phenotype
of skeletal muscle in cancer patients. The balance between
oxidative and glycolytic metabolisms seems to be maintained
in skeletal muscle of cachectic cancer patients as indicated by
a similar ratio of oxidative-to-glycolytic enzyme activities in
the quadriceps muscle of cachectic cancer patients compared
with that of patients without cachexia and healthy subjects.54

Regarding mitochondrial content, studies provide contrasted
results. Electron microscopy analyses showed unchanged
mitochondrial density and diameter in skeletal muscle of
cachectic cancer patients compared with healthy controls,146

or increased intermyofibrillar mitochondrial area in skeletal
muscle of cachectic cancer patients compared with
non-cachectic patients.186 This latter result may be explained
by mitochondrial swelling and/or by a relative increase in
mitochondrial density due to a faster and greater reduction
in myofibrillar protein loss. In contrast, a pioneering case
study181 reported a decrease in the number of skeletal
muscle mitochondria in a cachectic cancer patient. Finally, a
biomolecular analysis indicated that the mitochondrial DNA
copy number is unchanged in skeletal muscle of cachectic
and non-cachectic cancer patients.186 Regarding mitochon-
drial morphology, the presence of mitochondria with swollen
appearance and the absence of cristae157 have been

reported, suggesting an impairment in mitochondrial func-
tion. Clearly, the number of studies aimed at exploring ener-
getic metabolism and mitochondrial structure and function in
skeletal muscle of human cachectic cancer patients is too lim-
ited to draw an accurate picture of the metabolic phenotypic
alterations that occurs during cancer cachexia. An in-depth
analysis of metabolism in skeletal muscle of cachectic cancer
patients is therefore necessary.

Skeletal muscle metabolism in animal models of
cancer cachexia

Animal studies provide important complementary informa-
tion and allow us to draw a more precise picture of the
regulation of energetic metabolism in skeletal muscle during
cancer cachexia (Figure 1). The mitochondrial DNA-to-nuclear
DNA ratio is lower in cachectic cancer mice compared with
non-cachectic cancer mice,77,148,187 suggesting a decrease in
mitochondrial content. This reduction was associated with
body mass loss.77,187 A lower mitochondrial content has also
been reported in skeletal muscle of cachectic cancer rats
compared with control rats.112 As observed in human pa-
tients, mitochondria also present an altered morphology187

with a swollen appearance,112,170,180,188,189 a smaller size,187

and the presence of electron-lucent areas,112,180,189 which
all together indicate an alteration in the mitochondrial
network and function. Biochemical analyses corroborate
ultrastructural information. A reduction in the metabolic flux
throughout the Krebs cycle,188 which has also been confirmed
bymetabolomic approaches,94,190,191 and a decrease in the ac-
tivities of complexes I,135,192 II,80,99,135,170,192,193 III,193

IV,72,85,192–194andV72,87have thusbeenconsistentlydescribed.
Accordingly, mitochondrial respiration rate is also reduced in
isolatedmitochondria from skeletal muscle of cachectic cancer
mice compared with control mice.192,195,196 Therefore, animal
studies clearly indicate that the entire mitochondrial oxidative
pathway is profoundly impaired by cancer cachexia.

The oxidative activity of a muscle fibre is also tightly associ-
ated with its capillary density,197 which allows oxygen supply
and substrate delivery to the muscle fibre. Although data are
scarce, cancer cachexia does not seem to impact capillary den-
sity of cachectic cancer patients.57 In animals, a study reported
an increased number of blood vessels in skeletal muscle of ca-
chectic cancer mice.179 This would not be true angiogenesis
but would rather reflect a relative increase in capillary density
because of the reduction in muscle fibre cross-sectional area.

The decrease in oxidative activity is also associated with a
decrease in skeletal muscle ATP content,94,170,198 a decrease
in creatine phosphate concentration,94 a decrease in glucose
concentration,92,199 a decrease in glycogen store,92 a
decrease in glycolysis,92,190,199 and a reduction in lactate
concentration,199 which together may contribute to reducing
skeletal muscle to synthesize ATP during contraction.
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Importantly, the decrease in skeletal muscle capacity to gen-
erate ATP113,188 may also alter its capacity to perform other
essential ATP-dependent cellular works involved in skeletal
muscle homeostasis such as the maintenance of mineral
balance.

Amino acid metabolism

The intense catabolism of skeletal muscle proteins during
cancer cachexia71,89,90,105,107,109,110,147,148,200–209 also raises
the question of the metabolic fate of amino acids. Cancer
cachexia is associated with an alteration in skeletal muscle
amino acid profile,151,199 as well as an altered concentration
of circulating amino acids.83,210 In cachectic skeletal muscle,
increased provision of glutamate199 may increase the
anaplerotic flux to the Krebs cycle (α-cetoglutarate produc-
tion). Similarly, branched chain amino acids may be con-
verted to acetyl-CoA and then enter the tricarboxylic acid
cycle.199 Furthermore, a recent in vivo metabolomic study
revealed that mitochondrial dysfunction in cachectic skeletal
muscle tissue also seemed to influence amino acid

metabolism.151 Considering the whole decrease in mitochon-
drial activity that occurs during cancer cachexia, major adjust-
ments of metabolic fluxes may occur, so that the muscle fibre
may adapt skeletal muscle proteolysis.

Amino acids can be also released into the blood compart-
ment, interconverted into gluconeogenic amino acids by
the liver, and recycled into glucose through hepatic
gluconeogenesis.211 This may thus rewire amino acid metab-
olism to promote glucose supply for tumour growth.47,212

Under stress conditions, hepatic protein synthesis also shifts
from constitutive proteins (albumin, transferrin) to inflamma-
tory acute-phase proteins, such as C-reactive protein, fibrino-
gen, or serum amyloid A1. How the acute-phase response is
linked to the development of skeletal muscle atrophy during
cancer cachexia is not clear, but it has been hypothesized that
skeletal muscle can provide the amino acids required for the
synthesis of hepatic positive acute-phase proteins.210,213

Bonetto et al.214 also showed that cancer cachexia in mice
was associated with an increase in liver fibrinogen protein
content but more surprisingly also by a strong elevation of
fibrinogen and serum amyloid A1 protein content in skeletal
muscle. Sustained synthesis of acute-phase proteins in liver

Figure 1 Effects of cancer cachexia on skeletal muscle energetic metabolism. This schematic representation is only based on animal studies. Reduced
glycogen and glucose contents in skeletal muscle contribute to alter glycolysis flux. A decrease in mitochondrial content and mitochondrial oxidative
phosphorylation, together with a decreased in ATP synthesis from phosphocreatine system, leads to a reduced ATP content in skeletal muscle. Skeletal
muscle proteins are degraded and subsequently processed into amino acids. Individual amino acids can be either exported outside the muscle fibre or
transported into the mitochondria (anaplerotic flux). Fatty acid metabolism is not represented because there is currently no study available. Black
arrows indicate variations in metabolite concentration. Dashed arrow indicates experimentally demonstrated reduction in the corresponding meta-
bolic pathway. Cr, creatine; G, glucose; G-1-P, glucose-1-phosphate; G-6-P, glucose-6-phosphate; OXPHOS, oxidative phosphorylation; PCr, phosphocre-
atine; TCA, tricarboxylic acid cycle.
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and skeletal muscle may thus represent a spillway for amino
acids derived from skeletal muscle proteolysis.210,213 A better
knowledge of the contribution of skeletal muscle amino acid
metabolism to whole-body metabolism during cancer
cachexia is needed.

Mononucleated cell niche of skeletal
muscle fibre during cancer cachexia

The micro-environment of skeletal muscle fibres contains
different mononucleated cell types that are important for
skeletal muscle repair and that contribute to skeletal muscle
diversity. Upon muscle injury, quiescent resident satellite cells
get activated, proliferate, and then fuse with pre-existing
damaged muscle fibres to rebuild new functional fibres.215

Activation of satellite cells, proliferation of myoblasts, and
their differentiation into myotubes require the presence of
pro-inflammatory macrophages (M1) and their transition into
anti-inflammatory macrophages (M2), with M1 and M2 mac-
rophages stimulating, respectively, the early and late phases
of regeneration.215 Fibro-adipogenic progenitors, fibroblasts,
and endothelial cells are also important to achieve proper
skeletal muscle regeneration.215

Pioneering works from Jewesbury and Topley at the begin-
ning of the 20th century216 and later by Marin and Denny-
Brown158 already indicated that skeletal muscle fibres from
cachectic cancer patients had more nuclei in the vicinity of
the sarcolemma even though the intrafibre or extrafibre
localization of nuclei was not determined in these studies.
Much more recently, cancer cachexia in pancreatic cancer
patients was associated with a type of muscle damage
characterized by the activation of both satellite cells and
non-satellite muscle progenitor cells.217 The extent of the
activation correlated with body mass loss.217 The presence
of inflammatory cells,146 macrophages, and fibro-adipogenic
progenitors218 was also reported in skeletal muscle of cachec-
tic cancer patients. In animal models of cancer cachexia,
skeletal muscle also contains a higher number of activated
satellite cells and non-satellite muscle progenitor cells,217

undifferentiated cells,73,160 and inflammatory cells.78,118,
147–149,219 In contrast, it has been reported that the cachectic
muscle of tumour-bearing mice was enriched in
haematopoietic stem cells, but not in inflammatory cells.167

Together, these data from human and animal studies suggest
that an alteration in the mononuclear cell profile of skeletal
muscle fibre micro-environment, and particularly the persis-
tence of inflammatory cells, may contribute to skeletal
muscle mass loss during cancer cachexia.

Indeed, a greater fragility of skeletal muscle to
micro-injuries and injuries in the cachectic muscle may lead
to episodes of degeneration/regeneration, thus allowing the
activation of satellite cells. The existence of ongoing episodes

of regeneration in cachectic skeletal muscle is supported
by the observation that skeletal muscle of cachectic
cancer patients218,220,221 and cachectic cancer mice or
rats78,118,147–149 displays a higher number of muscle fibres
with centralized nuclei, indicating the presence of
regenerating muscle fibres. Interestingly, internally located
nuclei were predominantly found in type 2 muscle fibres,220

which is consistent with the notion that these fibres would
be more prone to cachexia. Importantly, satellite cells of
cachectic cancer mice are able to commit to the myogenic
program, but not to completely differentiate, as indicated
by the persistent expression of Pax7.217 Together with the
deficiency of cancer cachectic skeletal muscle to regenerate
after freeze clamping-induced70,217 or cardiotoxin-induced103

muscle injury, these data collectively indicate that an
accumulation of unresolved/incomplete episodes of skeletal
muscle repair could contribute to the loss of skeletal muscle
mass and function during cancer cachexia. Finally, this
response could also indicate the existence of a vain compen-
satory mechanism to limit the extent of skeletal muscle mass
loss during cancer cachexia.

Other histological features of skeletal
muscle during cancer cachexia

Endomysial space

Skeletal muscle from cachectic cancer patients displays an in-
creased area occupied by collagen that positively correlates
with weight loss and poor survival.218 This increase in fibrosis
is in agreement with the increase in endomysial space ob-
served in skeletal muscle of cachectic cancer patients,178,218

but not in non-cachectic cancer patients.218 This is also
consistent with decreased mRNA level for matrix metallopro-
teinase 3, an enzyme involved in extracellular matrix
protein breakdown.222 A similar increase in collagen
deposition was also reported in skeletal muscle of cachectic
cancer mice,160,223 together with an increased area of
non-contractile tissue that may reflect disrupted extracellular
matrix remodelling.84 The progressive development of fibro-
sis may be the long-term consequence of an increase in the
expansion and differentiation of fibro-adipogenic progenitor
in the cachectic muscle.218 Surprisingly, a down-regulation
of extracellular matrix gene expression has been also
reported in skeletal muscle of cancer cachectic patients91

and animal models of cancer cachexia91,166,172,214,223–228 with
Col1a1, Col3a1, Col5a1, and Col5a2, the most frequently
down-regulated genes. Anyhow, it remains clear that extra-
cellular matrix is markedly disorganized in cachectic skeletal
muscle, which may likely alter the mechanical properties of
skeletal muscle and may also contribute to render muscle
fibres more susceptible to injuries.
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Fat depot

Computerized tomography analyses of the third lumbar
vertebra level show an increase in fat infiltration in skeletal
muscle of cachectic cancer patients12,65,229 that was not
correlated with muscle mass loss.230 An increase in the size
and the number of lipid droplets231 and an increase in the
lipid content218 have also been reported in skeletal muscle
of cachectic cancer patients. This increase in lipid content in
skeletal muscle of cachectic cancer patients is due to both
an intramyocellular and an extramyocellular accumulation
of triglycerides.232 The expansion and differentiation of
fibro-adipogenic progenitors, which occur in skeletal muscle
of cachectic cancer patients,218 may explain the accumulation
of extramyocellular lipids. It has also been proposed that
impaired lipid oxidation due to altered mitochondrial func-
tion may contribute to the accumulation of intramyocellular
lipid droplets in skeletal muscle fibres of cachectic cancer
patients.230 It may be noted that one study reported a
decreased lipid content in the slow-twitch muscle fibres of
cachectic patients with late-stage non-small-cell lung
cancer.233 In animals, lipid accumulation in the skeletal mus-
cle fibres of cachectic cancer mice has been also reported.188

Consequently, an increase in fat depot appears to be a com-
mon histological feature of cachectic skeletal muscle in both
patients and animal models, but its consequence on skeletal
muscle function has to be further explored.

Altered myofibrillar structure

Sarcolemmal alterations,146,157,218 which heighten with body
mass loss,217 an increase in the number of damaged218 and
shrunken178 fibres, a loss of normal cross-striation
pattern,158,178,181,218 disrupted triads,186 and a dilated sarco-
plasmic reticulum,181 have been observed in skeletal muscle
of cachectic cancer patients. Similarly, a disorganization of
the sarcolemma76,179 and basement membrane,97,179,224 an
alteration of sarcomere structure,97,180,188,189 disrupted
triads,170 and a dilated sarcoplasmic reticulum112 have been
also reported in skeletal muscle of animal models of cancer
cachexia. These structural alterations may impact membrane
excitability, calcium transient frequency, and cross-bridge
kinetics, which are major determinants of myofibre contrac-
tile performance (see succeeding text).

Figure 2 sums up the most important cellular and
subcellular phenotypic changes in skeletal muscle during
cancer cachexia.

Skeletal muscle function during cancer
cachexia

The main function of skeletal muscle is to generate force to
maintain posture and produce movement. Any alteration in

skeletal muscle mass, metabolism, structure, and organiza-
tion may profoundly alter its capacity to generate force.
The data reported earlier in human patients and in animal
models of cancer cachexia highlighting marked alterations
in skeletal muscle mass and metabolism indicate that the
function of cachectic skeletal muscle must be profoundly
modified.

Decrease in skeletal muscle force

Cachectic cancer patients have a lower handgrip force (�7%
to �31%) than cancer patients without cachexia.7,10,12,25,32,53

Absolute isometric muscle force of knee extensors55,57,61,146

and knee flexors55 has also been consistently reported to be
lowered in cachectic cancer patients compared with healthy
subjects, as well as compared with non-cachectic cancer
patients.55 The isokinetic force of knee extensors and knee
flexors is also reduced in cachectic cancer patients when
compared with healthy subjects54,57 or non-cachectic cancer
patients.54 Accordingly, the speed of contraction is also lower
in men, but interestingly not in women, cachectic cancer pa-
tients, when compared with gender-paired healthy control
subjects.61

In murine models of cancer cachexia, a decrease in grip
force (�9% to �40%) has also been observed in
cachectic cancer mice or rats when compared with
control animals.69,73,74,79,80,92,94,95,101,108,150,152,161,162,166,170,
177,192,196,207,234–241 We can note that this decrease was not
observed when cachectic cancer mice were compared with
mild-cachectic mice,79 indicating that moderate cachexia is
already associated with functional alterations of skeletal
muscle. Maximal contraction force of the extensor digitorum
longus,67,81,91,97,100,242 soleus,67,97,100,135 tibialis anterior,79,99,
102,153 and diaphragm96 muscles are also decreased in ca-
chectic cancer mice compared with control mice, as well as
in cachectic cancer mice compared with non-cachectic cancer
mice.102 Interestingly, skeletal muscles of cachectic cancer
mice with a majority of fast fibres, such as extensor digitorum
longus, are more prone to a decrease in force,67 further
strengthening the notion that type 2 fibres are more im-
pacted by cachexia. Although some authors did not find any
difference,79,242 the speed of muscle contraction and relaxa-
tion in response to a single twitch stimulation is also reduced
in the tibialis anterior102 and extensor digitorum longus81,100

muscles of cachectic cancer mice when compared with
control mice. Similar results have been obtained when the
comparison was done with non-cachectic cancer mice.102

nterestingly, the extent of the decrease in speed contraction
correlated with body mass loss.102

Taken together, all these data emphasize that skeletal
muscle force could be an important criterion to diagnose
cachexia. In this context, it is essential to know the kinetic
of skeletal muscle force decrease, because if the loss in
muscle force occurs before the loss in muscle mass during
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Figure 2 Schematic overview of the main cellular and subcellular phenotypic changes that occur in cachectic cancer skeletal muscle. This schematic
representation is based on the analysis of both human and animal studies. Arrows indicate either an increase or a decrease for the corresponding
parameters during cancer cachexia. =, the parameter is unchanged with cancer cachexia. * denotes a phenotypic change that has only been reported
in animal models of cancer cachexia. FAP, fibro-adipogenic precursor.
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cancer cachexia, as it is observed during the geriatric mus-
cle mass loss,243 the measurement of muscle force would
be a precocious and easily measurable predicting factor of
cancer cachexia in human cancer patients. However, there
is limited information on this topic. An 8 week follow-up
study reported that isometric quadriceps and hamstring
muscle force, as well as handgrip force, were stable in ca-
chectic cancer patients, but skeletal muscle mass was not
determined in this study.244 More studies are necessary
to provide comparative analyses of the time-course
changes in the loss of skeletal muscle mass and function
in human cancer patients. Finally, an increase in muscle
fatigue may also contribute to decrease muscle force in
cancer cachectic patients. Some studies reported an
increase in muscle fatigue that was attributed to an
increased central fatigue,245–247 but no information about
the cachectic status of the cancer patients was reported.
Therefore, studies aimed at exploring muscle fatigue
would be very helpful to further understand the
aetiology of the decrease in skeletal muscle force in cancer
cachectic patients. In animal models of cancer cachexia,
muscle fatigue has been consistently reported to
increase.79,80,97,100,102,150,221,242 Importantly, muscle fatigue
also correlated with body mass loss.80

Potential factors involved in muscle force decrease

Beyond the description remains the question of the mech-
anisms involved in the loss of skeletal muscle force produc-
tion in the cachectic muscle. A decrease in muscle mass
can obviously contribute to explain the decrease in muscle
force in human cancer patients.57 However, when muscle
force is normalized to muscle cross-sectional area or body
mass, difference in muscle force between cachectic cancer
patients and control subjects still persists.61 Similarly, in
mice models of cancer cachexia, if a decrease in muscle
force can be attributed to a loss of body mass74 or muscle
mass242 or a decrease in skeletal muscle cross-sectional
area,79,91,97,99,135 the loss in muscle force persists even
after normalization by body mass,79 muscle mass,81 or
muscle fibre cross-sectional area96,100,102 or both.67 Collec-
tively, these data indicate that muscle mass loss does not
account entirely for the decrease in force and support the
conclusion that cancer cachexia is also associated with
intrinsic contractile dysfunctions (i.e. diminished function
per unit muscle size).

Factors required for co-ordinated muscle contractile
function involve neuromuscular junction integrity, excita-
tion–contraction coupling, calcium handling, sarcomere
structure, and energetic metabolism.142 Previous studies
indicate that the decrease in muscle force would not
involve an alteration in neuromuscular junction as cancer
cachexia seems to affect neither muscular nor

intramuscular nerve bundles in patients,158,181 nor neuro-
muscular junction integrity,156 or the number of neuromus-
cular junctions in the muscle of cachectic cancer mice.167

However, this concept has recently been questioned at
least in C26 tumour-bearing mice.155 Anyhow, an in-depth
analysis of skeletal muscle junction and neuromuscular cou-
pling is necessary for cancer patients and animal models of
cancer cachexia. Loss in muscle force can also result from
impairment in calcium handling. Unexpectedly, isolated
muscle fibres from cachectic cancer patients have an in-
creased calcium sensitivity,143 which could be explained by
a shift from slow to fast myosin isoform expression, as type
2 muscle fibres are more calcium sensitive.248 In contrast,
muscle fibre calcium sensitivity is reduced in cachectic
cancer mice compared with control mice.96 Moreover, the
calcium-activated force and cross-bridge kinetics are re-
duced in cachectic cancer mice compared with control
mice,96 strongly suggesting that the loss of skeletal muscle
force can be due to an alteration of calcium handling. A
recent study by Judge et al. also described an increase in
calcium deposition in skeletal muscle of cachectic pancre-
atic cancer patients.218 Calcium overload within skeletal
muscle fibre may exert deleterious effects leading to
muscle damage via the activation of calcium-activated
proteases (calpains) and the disruption of sarcolemma
integrity.249 Furthermore, calcium overload can be also
sensed by mitochondria, which may further contribute to
alter mitochondrial metabolism and worsen cellular
damages.249 Together, this may profoundly alter the capac-
ity of the fibre to generate force. Therefore, and although
several evidences suggest that calcium handling may be in-
volved in the loss of muscle force, more investigations are
required to clearly establish the role of altered calcium
handling.

Further insights into the mechanisms involved in the loss
of skeletal muscle force have been also provided by ex vivo
analysis of the contractile properties of skeletal muscle
fibres178 or muscle fibre bundles143 from cachectic cancer
patients. The absolute143 and specific178 maximal force of
isolated fibres has thus been shown to decrease in cachec-
tic cancer patients. Furthermore, specific maximal force
correlates with myosin-to-actin ratio,178 indicating that the
loss of contractile machinery is a factor contributing to
decreased muscle force. However, one may remind that
measuring the actin-to-myosin ratio is strongly dependent
on the extraction conditions and may thus lead to
misinterpretations.250 Another study showed that single
fibre isometric tension was reduced in type 2A fibres from
non-cachectic and cachectic cancer patients, which was
explained by a reduction in the number of strongly bound
cross-bridges.251 Myosin–actin cross-bridge kinetics were
also reduced in type 1 fibres from non-cachectic and
cachectic cancer patients.251 Therefore, a reduction in myo-
filament protein function may be a potential molecular
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Figure 3 Functional relationship between skeletal muscle fibre phenotypic changes, skeletal muscle function, and patient’s quality of life during cancer
cachexia. ECM, extracellular matrix; NMJ, neuromuscular junction.
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mechanism contributing to muscle weakness in human
cancer patients. Finally, a decrease in the capacity of skele-
tal muscle to sustain ATP production by mitochondrial
oxidative phosphorylation during contraction (see earlier
discussion) could also contribute to decrease muscle force
and increase muscle fatigue.

Summary and future perspectives

The purpose of this review was to specifically focus on the
structure and function of cachectic skeletal muscle in
human cancer patients and animal models of cancer ca-
chexia. The extent of skeletal muscle mass loss has largely
been described, and the consequences of cachexia on
skeletal muscle function are now getting more and more
documented. The loss of muscle mass is of course an
important factor to consider when studying cancer ca-
chexia, but qualitative factors such as changes in skeletal
muscle metabolism, muscle fibre micro-environment,
fibrosis, neuromuscular junction, and sarcomere integrity,
as well as calcium handling, are certainly involved in the
impaired muscle function and need to be explored in de-
tails (Figure 3). A comparative analysis of the time-course
changes of these qualitative factors and skeletal muscle
mass during cancer cachexia is also necessary.

Our review also underlines important methodological
aspects that may explain contrasted results between stud-
ies. For instance, the choice of the control group is quite
heterogeneous between clinical studies (due to obvious
constraints related to the recruitment of the subjects).
Healthy control subjects, non-cachectic cancer patients,
and cachectic non-cancer patients have thus been used. A
careful analysis of the reference group is therefore neces-
sary. Longitudinal analyses of the kinetic of the loss in skel-
etal muscle mass and function in cancer patients should be
also preferred. This implicates that the detection of ca-
chexia must be carefully and regularly performed with the
use of solid image-based analyses4,37 and standardized
functional tests. This also applies to animal models of can-
cer cachexia where time point analyses are essential to de-
lineate the time-course changes in the loss of skeletal
muscle mass and function occurring during cancer cachexia.
Non-invasive measurement of skeletal muscle force, to-
gether with the use of image-based analysis of skeletal

muscle mass, such as computerized tomography or mag-
netic resonance imaging, should be therefore encouraged
whenever it is possible. The analysis of a gender effect in
the development of cancer cachexia has also to be ex-
plored in both human and animal studies. Differences in
skeletal muscle physiology between species142,252,253 must
be also kept in mind when analysing and translating animal
data to human patients, as animal models of cancer ca-
chexia remain very different from human cancer
cachexia.239,254 The physiological status of the animal spe-
cies is also very important to consider. Many studies, espe-
cially those using tumour-bearing models of cancer
cachexia, use young growing animals (2 to 3 months old).
The strong stimulation of protein synthesis that supports
skeletal muscle growth during the post-natal period may
mask/modify numerous cellular events. Non-growing adult
animals should be thus preferentially used when using
tumour-bearing animal models of cancer cachexia. Finally,
our analysis emphasizes that measuring skeletal muscle
force on a large epidemiologic scale by standardized func-
tional tests is clinically fundamental to have a simple and
robust mean to early diagnose cachexia in cancer patients.
This could lead to proposing specific physical activity pro-
grams that may slow down the progression of cachexia
and improve patient’s quality of life.
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