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Summary 
Experimental data suggest that negative selection of thymocytes can occur as a result of su- 
praoptimal antigenic stimulation. It is unknown, however, whether such mechanisms are at 
work in mature CD8 + T lymphocytes. Here, we show that CD8 + effector cytotoxic T lym- 
phocytes (CTL) are susceptible to proliferative inhibition by high dose peptide antigen, leading 
to apoptotic death mediated by TNF-ci release. Such inhibition is not reflected in the cytolytic 
potential of  the CTL, since concentrations of antigen that are inhibitory for proliferation pro- 
mote efficient lysis of target cells. Thus, although CTL have committed to the apoptotic path- 
way, the kinetics of this process are such that CTL function can occur before death of the 
CTL. The concentration of antigen required for inhibition is a function of  the CTL avidity, in 
that concentrations of  antigen capable of completely inhibiting high avidity CTL maximally 
stimulate low avidity CTL. Importantly, the inhibition can be detected in both activated and 
resting CTL. Blocking studies demonstrate that the CD8 molecule contributes significantly to 
the inhibitory signal as the addition of anti-CD8 antibody restores the proliferative response. 
Thus, our data support the model that mature CD8 + CTL can accommodate an activation sig- 
nal of restricted intensity, which, if surpassed, results in deletion of that cell. 

T he induction and maintenance of tolerance has been 
shown to significantly limit the potentially deleterious 

responses of self-reactive T lymphocytes. Although thymic 
education is thought to contribute significantly to the erad- 
ication of self-reactive T cells (1, 2), the induction of toler- 
ance via peripheral exposure to antigen has been well doc- 
umented (3-9). Deletion and/or inactivation of peripheral, 
antigen-reactive T lymphocytes has been observed in a 
number of experimental systems, including oral administra- 
tion of  antigen (10), repeated immunization with antigen 
(9), exposure to superantigens (8), and tissue-specific ex- 
pression of  antigens (5, 11). In addition, a recent report of 
clonal exhaustion has demonstrated the selective deletion 
of virus-specific T cells after challenge with high doses of 
virus (12). This result adds to a growing body of literature 
that examines the induction of tolerance in the presence of 
high doses of antigen. Several mechanisms have been pos- 
tulated to explain this phenomenon including downregula- 
tion of cell-surface receptors leading to anergy (7, 11) and 
deletion of reactive cells (7, 8, 12). 

The induction of peripheral tolerance via administration 
of high doses of  antigen is poorly understood. In vitro data 

investigating the role of high concentrations of antigen on 
the regulation of resting CD4 + T lymphocytes have dem- 
onstrated a suppression of the proliferative response and in- 
duction of anergy in CD4 + T cell clones when exposed to 
supraoptimal antigen doses (13). More recent data from 
Lenardo and collaborators using T C k  transgenic animals 
specific for a myelin basic protein (MBP) I peptide, Acl-11, 
demonstrated CD4 + T cell deletion as a result ofsupraopti- 
mal peptide/MHC stimulation (14). Transfer of CD4 + 
cells from the transgenic mice into nontransgenic mice in- 
duced experimental allergic encephalomyelitis in the recip- 
ient animal. However, recipient mice treated with high 
doses of MBP peptide did not develop experimental aller- 
gic encephalomyelitis. In vitro studies showed that such 
high antigen conditions resulted in the deletion of recently 
activated cycling MBP-reactive T cells via activation- 
induced cell death (AICD), thereby establishing tolerance. 
AICD is thought to result from reexposure of cycling T 

IAbbreviations used in this paper: AICD, activation-induced cell death; 
MBP, myelin basic protein. 
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lymphocytes to antigen (14). Mthough characterized pri- 
marily in CD4 + T cells, AICD has also been observed in 
bulk lymph node CD8 + T cells stimulated with ant i -CD3 
(15), but not in CTL lines of defined epitope specificity. 

Previously, we have demonstrated that CD8 + CTL lines 
of differing avidity can be selected by varying the peptide/ 
M H C  determinant density on APC (16). In this system, se- 
lection of low avidity CTL lines by high determinant den-  
sity should be possible only if high avidi W CTL are being 
actively deleted. In the current report, we have investigated 
the effect of  high dose antigen on CTL of differing avidities 
to define parameters giving rise to negative selection in ma- 
ture, peripheral CD8 + effector T lymphocytes. Classically, 
the functional consequence of T C R  engagement by CD8 + 
CTL has been evaluated by the lysis of appropriate target 
cells, and under these circumstances, high dose inhibition 
has not been observed (17). As little is known about the ef- 
fects of stimulation with supraoptimal antigen on the pro- 
liferative response of either resting or cycling CD8 + CTL, 
CTL lines of either high or low avidity (as measured by 
their dose response curve to peptide antigen) were exam- 
ined for their proliferative response to APC pulsed with a 
range of peptide concentrations. The data presented herein 
demonstrate that CD8 + CTL can undergo inhibit ion and 
cell death in a peptide specific and dose titratable manner,  
mediated at least in part by the release of  TNF-ot, but not 
by Fas. In addition, the susceptibility of CTL to inhibition 
at any given peptide concentration is dependent on the 
avidity of  those CTL. Importantly, the observed inhibit ion 
appears to be independent  of the initial activation state of 
the CTL, and is set in motion even in resting CTL within 
the first 9 h of stimulation, in contrast to AICD in CD4 + T 
cells. Thus, CD8 + CTL, depending on their avidity, are 
susceptible to negative regulation in the periphery by su- 
praoptimal pep t ide /MHC determinant density on APC. 

Materials and Methods  

Mice and Antibodies. BALB/c mice were purchased from Jack- 
son Laboratories (Bar Harbor, ME). Anti-CD8ot antibody (clone 
53-6.7), Jo2 anti-fas antibody, and FcBlock were purchased from 
Pharmingen (San Diego, CA). Neutralizing anti-TNF-o~ poly- 
clonal antiserum was purchased from Genzyme (Cambridge, MA). 
Activity of the anti-Fas antibody to inhibit Fas-Fas ligand interac- 
tion was measured as described (18; see legend to Fig. 4). 

Peptides. Peptides were synthesized on an automated peptide 
synthesizer (model 430A; Applied Biosystems, Inc., Foster City, 
CA) using t-boc chemistry (19). The peptides were cleaved from 
the resin with HF and initially purified by size exclusion chroma- 
tography (P4 Biogel; Bio-Rad Laboratories, Mountain View, CA). 
Purification to single peaks was achieved by reverse-phase HPLC 
on Ixbondapack reverse-phase C18 analytical and preparative 
columns (Waters Associates, Milford, PA). I10 (RGPGRAFVTI) 
is the imnmnodominant epitope from gp160 in BALB/c mice 
(20-22). 

Generation of C T L  Lines. 7.5 • 1if' responding BALB/c spleen 
cells from mice previously immunized with a recombinant vac- 
cinia expressing the gp16%m protein from H1V-1 were cocul- 
tured with 3.5 • 10 (' stimulating BALB/c splenocytes (3,000 rad) 

pulsed with various concentrations (100, 0.1, or 0.0001 I~M) of 
I10 peptide or in the presence of 1 jaM free peptide in a 24-well 
plate containing 2 ml of a 1:1 mixture of RPMI 1640 and Eagle 
Hank's amino acid (EHAA) medium supplemented with 
t-glutamine, sodium pyruvate, nonessential amino acids, penicil- 
lin, streptomycin, 5 • 10 -s M [3-mercaptoethanol, 10% FCS, and 
10% T-stim (Collaborative Biomedical Products, Bedford, MA). 
CTL lines were established from primary cultures and were main- 
tained by weekly restimulation of 3-5 • l0 s cells/well in the 
presence of 5 • lff' irradiated (3,000 rad) BALB/c spleen cells 
pulsed with the appropriate concentration of I 10 peptide. 

r The S~Cr release assay was carried out as 
previously described (23). 10 t' target cells were labeled with 301) ~Ci 
ofNa 2 SlCrO4 in 200-250 p,1 for 2 h at 37~ In some cases, tar- 
gets were pulsed with 10 p,M peptide during labeling. Cells were 
then washed three times and added at 3,000 cells/well along with 
the appropriate number ofeffector cells in 96-well round-bottom 
plates. In some cases, peptide was added directly in the CTL assay 
in the absence of previous pulsing. After 4 h, supernatants were 
harvested and counted in an Isomedic gamma counter (ICN, 
Horsham, PA). The mean of the triplicate samples was calculated, 
and the percent of SlCr release was calculated according to the 
following equation: 

percent specific 51Cr release = 10() X [(experimental 51Cr release - 
control 51Cr re#ase) / (maximum 5t Cr release - control s l Cr wlease) ], 

where experimental SICr release represents counts from target 
cells mixed with effector cells, control 51Cr release represents tar- 
get cells mixed with medium alone (spontaneous release), and 
maxinmm 51Cr release represents counts from target cells exposed 
to 2.5% Triton X-100. 

Proliferation Assays. CTL (day 4 [d41 or dl I after stinmlation) 
were plated at 5 • 10a/well in a 96-well round bottom microti- 
ter plate. Where appropriate, anti-CD8 antibody was added and 
plates incubated at 37~ for 15 rain. After this incubation, irradi- 
ated (3,000 rad) BALB/c splenocytes previously pulsed with 110 
peptide and washed three times were added at 3 • 10S/well. Su- 
pernatant from the final wash ofstinmlators pulsed with 100 I.zM 
I10 peptide was reserved and added to wells with I).001 ixM- 
pulsed stinmlators at a final dilution of 1:1 to ensure that effects 
seen with 100 b~M-pulsed stimulators was not caused by residual, 
free I10 peptide that could bind the CTL directly. In some cases, 
Jo2 anti-Fas (10 Ixg/ml) in combination with FcBlock (5 b~g/ml), 
both from Pharmingen, or anti-TNF-c~ (1:50) antibodies (Gen- 
zyme) were used. FcBlock was added to prevent possible cross- 
linking of anti-Fas by APC. Proliferation was measured by addi- 
tion of 1 txCi [3H]thymidine/well at 0, 24, or 48 h, and plates 
were harvested at 24, 48, or 72 h, respectively. Results obtained 
at all harvest times were qualitatively sinfilar. Results are the geo- 
metric mean of triplicate cultures. 

Apoptotic Death Assays. CTL were enriched by centrifuging 
lines over Ficoll. After washing, 1 if' CTL were added along with 
5 • 10 (' peptide-pulsed stimulators (depleted of Thy 1.2 + cells) in 
2 nfl of medium, containing 10% T-stim as a source of IL-2, per 
well of a 24-well plate. After 46 b, cells were harvested and incu- 
bated with biotin-conjugated Thy 1.2 mAb, followed by PE-avi- 
din or FITC-conjugated Thy 1.2 to identify CTL, washed, resus- 
pended in 50% FCS in PBS, and penneabilized by addition of 
three parts 70% EtOH. After overnight fixation at 4~ cells in- 
cubated with Thy 1.2-biotin and PE-avidin were washed with 
cold PBS and incubated for 30 nfin with 5 btg/ml Hoechst 33342 
(Molecular Probes, Inc., Eugene, OR) at 37~ Cells were then 
centrifuged, and the pellet was resuspended in 21) bL1 PBS. Apop- 
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totic nuclei were identified by fluorescent microscopy (24). Al- 
ternatively, EtOH fixed cells were washed and incubated with 
R.NAse A for 30 rain at 37~ followed by addition ofpropidium 
iodide (25). Cells were analyzed on a FACSort | (Becton Dickin- 
son & Co., Mountain View, CA). The percentage of Thy 1.2 + 
cells with hypodiploid DNA was used as a measure of apoptotic 
death as in (25). 

R e s u l t s  

C T L  Lines with Distinct Avidities Are Differentially Inhibited 
by ,Stimulators Presenting High Dose Antigen. CTL lines were 
generated by stimulation with splenocytes pulsed with ei-  
ther high dose (100 I~M) or low dose antigen (0.0001 lxM) 
(16). The  two lines are distinct in their determinant  density 
requirements for both  proliferation (Fig. 1 A) and CTL 1y- 
sis, and are stable in their respective phenotype  (16). The  
concentrat ion o fpep t ide  antigen required for optimal p ro-  
liferation varied by nearly 1,000-fold be tween the high and 
low avidity lines (Fig. 1 A). CTL were tested on d4 after 
routine stimulation and assays were done in the presence o f  
10% T-s t im as a source o f  IL-2, as required for proliferation 
by CD8 + cells in response to antigen. Fig. 1 A shows that 
in the presence o f A P C  prepulsed with 100 ~ M  I10 pep-  
tide, the higher avidity CTL (generated on 0.0001 IxM-  
pulsed stimulators) were completely inhibited in their p ro-  
liferative response. The  inhibi t ion was CD8 dependent ,  
since proliferation could be at least partially restored by the 
inclusion o f a n t i - C D 8  antibody (Fig. 1 /3). Further,  the res- 
toration was dose dependent  in that decreasing amounts o f  
an t i -CD8 antibody had a diminishing ability to block the 
inhibition. The  elegant interplay o f  CD8 with T C R  recep- 
tor signaling is evident in the contr ibut ion by an t i -CD8 at 
doses o f  antigen that are optimal for activation, as measured 
by proliferation (e.g., 0.001 I~M), where the presence o f  
an t i -CD8 antibody now blocks proliferation by up to 40%. 
Thus, the contr ibut ion o f  CD8 enhances either inhibit ion 
or activation o f  the CTL,  depending on the amount  o f  an- 
tigen present on the stimulator. In contrast to the high 
avidity line, the low avidity line is not  susceptible to inhibi-  
tion by the same high antigen dose (Fig. 1 A). In fact, con-  
centrations o f  pept ide antigen that are inhibi tory for the 
high avidity line promote  optimal proliferation o f  the low 
avidity line. Furthermore,  proliferation of  this line at all 
peptide doses, even 100 p,M, is susceptible to blocking by 
an t i -CD8 antibody (Fig. 1 B). 

To interpret the data, it is important  to determine that 
the inhibi t ion observed for the high avidity line is not  
caused by residual free peptide in the cells pulsed with high 
dose antigen, which can then bind to and be presented by 
M H C  molecules on the CTL. Such inhibit ion by self-pre- 
sentation o f  peptide has been shown, in some cases, to re- 
sult in CTL fratricide, suicide, or anergy (26-30). The  in- 
ability o f  supernatant from the final wash o f  the 100 or 10 
p~M-pnlsed cells to cause inhibit ion when added to wells 
containing 0.001 p~M I10-pulsed stimulators shows that the 
inhibit ion is caused solely by presentation o f  the relevant 
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Figure 1. The d4 high avidity line is inhibited in its proliferative re- 
sponse to APC pulsed with high concentrations ofpeptide, and this inhi- 
bition can be reversed by anti-CD8 antibody. (A) The high and low avid- 
ity CTL lines were assayed for proliferation on day 4 after routine 
stimulation. CTL were stimulated with APC pulsed with various concen- 
trations ofpeptide. Cultures were pulsed with [3H]thymidine at 48 h and 
harvested at 72 h. APC pulsed with 100 or 10 p,M peptide inhibited pro- 
liferation of the high avidity line (circle) while maximally stimulating the 
low avidity line (squares). As a control for residual free peptide, superna- 
tant from the final wash of the 100 and 10 p,M-pulsed APC was added at 
1:1 dilution into wells with 0.001 b~M-pulsed APC. Counts from addi- 
tion of the 100 I, tM-pulsed APC wash were 9,174 -+ 270 and from the 
10 ~M-pulsed wash APC were 9,982 + 409, i.e., no inhibition relative 
to wells in the absence of the wash supernatant. (B) The addition of solu- 
ble anti-CD8 antibody partially restored the proliferative response of the 
high avidity line while blocking the response of the low avidity line. An- 
tibody was added at four concentrations: 20 Ixg/ml (solid bars), 5 lig/nfl 
(striped bars), 1.3 ~g/ml (stippled bars), and 0.32 ~g/ml (cross-hatched bars). 
The percentage of shift in response was calculated as 100x (cpm in the 
presence ofanti-CD8 - cpm in the absence ofanti-CD8)/cpm in the ab- 
sence of anti-CD8. 

peptide ligand on APC and not to residual free peptide (see 
figure legend). 

To ensure that the lack o f  response observed with  high 
dose antigen was not  the result o f  very early proliferation 
that was complete by the t ime o f  pulsing with [3H]thymi- 
dine, a kinetic experiment  was performed. Inhibit ion by 
high dose antigen was observed even during the 0 -24-h  
per iod (data not  shown). This suggests that the inhibit ion 
observed was not  the result o f  a shift in the kinetics o f  
D N A  synthesis relative to the t ime o f  the pulse, but  in-  
stead, is a relatively immediate  arrest o f  the proliferative re- 
sponse o f  the high avidity CTL. 
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Inhibition by High Dose Antigen Does Not Depend on Recent 
Activation of the CTL. Previous studies have demonstrated 
the importance of  cell cychng for cell death resulting from 
exposure to high dose antigen (14) or high concentrations 
of  a n t i - T C R  antibody (31, 32). Thus, the high and low 
avidity lines were analyzed for susceptibility to high dose 
inhibition at a time point when they should not be actively 
cycling (d l l  after routine stimulation). As observed with 
activated d4 CTL, the high avidity resting C T L  were unre-  
sponsive to stimulators pulsed with high dose antigen (100 
and 10 ~M) (Fig. 2 A). Furthermore, the presence o fan t i -  
CD8 antibody could relieve the inhibition and allow for 
antigen-specific proliferation (Fig. 2 B). Again, in agree- 
ment  with results obtained with d4 CTL,  the low avidity 
CTL line was maximally stimulated by APC pulsed with 
high dose antigen (100 and 10 p.M), and the proliferation 
was dependent on CD8 interaction at all peptide concen- 
trations tested (Fig. 2, A and B). Thus, we find that CD8 + 
CTL are susceptible to high dose inhibition independent o f  
recent activation and cell cycling. 

High Dose Peptide Antigen Induces Apoptotic Death of the 
CTL. The  observed inhibition of  the proliferative re- 
sponse to high dose antigen could be the result either of  
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Resting dl 1 high avidity CTL are inhibited in the their pro- 
liferative response to high dose antigen. (A) The high and low avidity 
CTL lines that were dl 1 after routine stimulation were tested as described 
in Fig. 1. Both activated (Fig. 1) and resting high avidity CTL were sus- 
ceptible to high dose inhibition. (B) As with d4 high avidity CTL, anti- 
CD8 antibody allowed response to high dose antigen by dl 1 CTL. Per- 
centage of shift in response was calculated as described in Fig. 1. 

anergy or cell death. To  determine the mechanism o f  the 
reduction in the proliferative response of  high avidity CTL, 
lines were stimulated with 0.001 or 100 I-tM pept ide-  
pulsed splenocytes depleted o f  Thy  1.2 + cells. Depleted 
stimulators were required for discrimination of  CTL during 
analysis. 45 h after stimulation, cultures were harvested, in- 
cubated with biotinylated ant i -Thy 1.2 Ab followed by 
PE-avidin (to detect CTL), and fixed overnight. Samples 
were then incubated with Hoechst  33342 nuclear stain. 
W h e n  viewed by fluorescence microscopy, C T L  could be 
distinguished from APC by red membrane  staining. The  
number  of  C T L  with apoptotic nuclei, known to exhibit 
specific morphological changes including condensation of  
DNA,  could then be quantitated. Fig. 3 A shows that high 
avidity C T L  stimulated with APC pulsed with 100 txM 
peptide are undergoing significant apoptosis compared with 
CTL stimulated with 0.001 IxM-putsed APC (47 vs. 3%). 
No  apoptotic death was observed with the low avidity line 
under identical conditions (Fig. 3 A), although both high 
and low avidity lines were susceptible to apoptotic deletion 
using high concentrations o f  immobilized ant i -CD3 anti- 
body (data not shown). Results similar to those observed 
with d4 CTL were obtained with CTL that were 11 d after 
routine stimulation exposed to APC pulsed with high ver-  
sus low concentrations of  antigen (data not shown). Thus, 
regardless of  the activation state o f  the CTL,  the result o f  
exposure to high dose antigen is identical and occurs with 
the same kinetics. In addition to this analysis, CTL under- 
going apoptotic death were quantitated by hypodiploid 
D N A  analysis. Results from these analyses were in agree- 
ment  with results obtained by Hoechst  analysis (Fig. 3 B). 
Apoptotic death of  the C T L  line was found to correlate 
with inhibition of  proliferation. 

When  tested for cytolytic activity, high avidity CTL could 
readily lyse target cells pulsed with high concentrations of  
peptide (data not shown). As shown above, however,  these 
concentrations ofpept ide  cause inhibition and death. These 
two events can be reconciled by examining the kinetics of  
death. Apoptotic nuclei are not evident at 24 h, but require 
40-48 h to appear (data not shown). Thus, there is ade- 
quate time for the earlier event o f  cytolysis, which occurs 
within 4 h after exposure to antigen-pulsed targets, to take 
place before the ultimate death of  the C T L  at a later time 
point. 

Inhibition Can be Prevented by the Presence of Anti-TNF-ce 
Antibody. Recent  evidence suggests that TNF-(x can me-  
diate apoptotic death of  CD8 + T lymphocytes that are un- 
dergoing apoptotic death as a result of  hyperengagement of  
the T C R  of  recently activated cells via a n t i - T C R  antibod- 
ies (15). To  determine whether  TNF-cl  is involved in the 
inhibition observed in our cultures, an an t i -TNF-cl  poly- 
clonal antibody was added to C T L  stimulated with either 
high or low dose antigen-pulsed stimulators. As shown in 
Fig. 4, the presence of  anti-TNF-c~ antibody restored the 
proliferative response of  high avidity CTL stimulated with 
supraoptimal p e p t i d e / M H C  determinant density while 
having no effect on the response of  the low avidity CTL 
line to the same stimulators. Fas cross-linking, shown in 
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Figure 3. The lack of a proliferative response by the high avidity CTL 
to high dose antigen is the result of apoptotic death. 4 d after routine 
stimulation, high and low avidity CTL were analyzed for apoptotic nuclei 
(A) or hypodiploid DNA (B) 45 h after exposure to high dose or low dose 
antigen. APC (Thy 1.2-depleted splenocytes) were either unpulsed (stip- 
pled bars), or pulsed with 0.001 ktM (striped bars), or 100 p~M (solid bars) 
peptide. For analysis ofapoptotic nuclei, CTL were identified by incuba- 
tion with biotinylated-Thy 1.2 and PE-avidin. Cells were then fixed, and 
Hoechst dye was added to view the nucleus. CTL were assessed for apop- 
totic nuclear morphology by fluorescence microscopy. As a control for 
residual free peptide, supematant from the final wash of the 100 p,M- 
pulsed APC was added at 1:1 in some wells with 0.001 p.M-pulsed APC 
and 14% of CTL contained apoptotic nuclei. For hypodiploid DNA anal- 
ysis, CTL were identified by incubation with FITC-conjugated antibody 
specific for Thy t.2. Propidium iodide was added for DNA detection. 

mul t ip le  studies to induce  death o f  T lymphocytes ,  does 

no t  appear to be invo lved  in the inh ib i t ion  and death under  
the condi t ions  tested here,  since soluble anti-Fas ant ibody 
did no t  restore the prol iferat ive response o f  the h igh  avidity 
C T L  (Fig. 4). 

Discussion 

This  study reports the ability o f  h igh  dose pept ide  anti-  
gen  presented  by A P C  to induce  apoptot ic  death in a high 
avidity C D 8  § C T L  line whi le  maximal ly  act ivating C T L  o f  
l o w e r  avidity. This  is the first repor t  to d o c u m e n t  a role for 
increasing pept ide  l igand presented  by A P C  in the de le t ion  
o f  mature  C D 8  § C T L ,  as wel l  as the con t r ibu t ion  o f  avid-  
ity in de t e rmin ing  cell fate. These  findings are distinct f rom 
previous  studies o f  C D 8  § C T L  in w h i c h  the effect o f  su- 
praopt imal  T C R  st imulat ion via an t ibody or  purif ied al- 
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Neutralizing anti-TNF-a antibody can reverse the inhibi- Figure 4. 

tion obtained with supraoptimal peptide/MHC determinant density. 4 d 
after routine stimulation, high (A) and low (B) avidity CTL were assayed 
for proliferation resulting from stimulation with irradiated splenocytes 
pulsed with various concentrations ofpeptide antigen, as described in Fig. 
1 A. No antibody (stippled bars), neutralizing anti-TNF-er antibody, 1:50 
(solid bars), or Jo2 anti-Fas antibody (10 Ixg/ml; cross-hatched bars) was 
added to determine the role of these two molecules in the inhibition ob- 
served. In the case of the anti-Fas antibody, FcBlock (5 p~g/ml) was added 
to prevent possible cross-linking of the antibody by APC. (In other ex- 
periments, the presence of FcBlock alone did not affect the response.) No 
significant effect was observed in the presence of anti-Fas antibody. As a 
positive control for the function of the anti-Fas antibody, we tested its 
ability to inhibit lysis of Fas-expressing L1210 transfectants by the Fas 
ligand-expressing d11S CTL hybridoma (18). At a 15:1 E/T ratio, the 
anti-Fas antibody (10 p,g/ml) inhibited specific SlCr release from 78 + 
2% in the absence of antibody to 15 + 2%, in the presence of the antibody 
(81% inhibition). 

loant igen  was no t  assessed e i ther  w i th  regard to the inde-  
penden t  role o f  increasing pept ide  l igand density or  w i th  
regard to the effects o f  such t rea tment  on  resting C T L  (31, 
33). T h e  data presented in this study suggest that the n u m -  
ber  o f  pept ide  determinants  presented  by the A P C  regu-  
lates e i ther  posi t ively or  negat ively the ability o f  C T L  to 
proliferate in response to antigen. H i g h  avidity C T L ,  capa- 
ble o f  be ing  activated by a l o w  n u m b e r  o f  p e p t i d e / M H C  
complexes ,  are dele ted by exposure  to A P C  wi th  a very  
high density o f  p e p t i d e / M H C  complexes ,  whi le  l o w  avid-  
ity C T L  are maximal ly  s t imulated at this same h igh  de te r -  
minan t  density. 

T h e  ability o f  soluble a n t i - C D 8  Ab to restore the prol i f -  
erat ive response o f  h igh  avidity C T L  st imulated wi th  100 



p~M-pulsed APC suggests that the signal received by CTL 
is a summation of the interaction of  a number of  proteins, 
in this case, the T C R  and CD8. If  the combined signals 
from these two receptors reach a certain threshold, then 
cells are activated. If, however, the signal surpasses a higher 
threshold, above the range for activation, as is the case for 
high avidity CTL stimulated with APC pulsed with 100 
~M peptide, death will result, due at least in part to the re- 
lease of TNF-oc However, if the contribution of CD8 is 
blocked, then the lower level of  signal generated results in 
CTL proliferation. In situations in which the number of  
pept ide/MHC complexes is more limited, the level of  sig- 
nal delivered from T C R  binding alone is insufficient to 
reach the threshold required for activation, and signal am- 
plification via CD8 becomes a mandatory part of  the inter- 
action to stimulate proliferation. Thus, the engagement of  
CD8 and T C R  is critical both for positive and negative 
regulation of CTL. 

At first, the observed inhibition of the d4 CTL seems to 
be similar to the activation-induced death reported by oth- 
ers (14, 15, 31, 32, 34-38). It is thought that death via this 
pathway depends on the reexposure of  recently activated 
cycling cells to one of a variety of stimuli (8, 14, 31, 32, 
34-38). The inhibition of CD4 + cell proliferation at high 
antigen concentration may be the result of  a second en- 
counter of the cells with antigen within 24 h of  the initial 
stimulation, resulting in AICD (1, 14). 

The data presented here suggest that both resting and ac- 
tivated CD8 + CTL are equally susceptible to inhibition and 
apoptotic death by high concentrations of  peptide antigen 
presented by M H C  on the surface of APC. Similar to 
AICD, we observe apoptotic deletion in response to su- 
praoptimal pept ide/MHC determinant density. Before the 
present report, this had not been reported for peptide-spe- 
cific, CD8 + CTL. In addition, we have demonstrated that 
the mediator of  death is, at least in part, TNF-cx, in agree- 
ment with a recent study by Zheng et al. in which hetero- 
geneous populations of  CD8 + lymph node T lymphocytes 
were stimulated with high doses of  anti-CD3 antibody to 
induce AICD (15). In our study, the apoptotic death of  the 
high avidity CTL line suggests that TNF-cx is produced 
only after stimulation with very high pept ide/MHC deter- 
minant density or that high determinant density is required 
to achieve levels of  TNF-~  production that are capable of  
inducing apoptotic death. Alternatively, the action of TNF-~x 
may be attributable to differential TNF-cx receptor regula- 
tion after stimulation with various antigen doses. Identifica- 
tion of TNF-cx as the mediator of  the apoptotic signal is 
likely to be the explanation for the requirement of 40-48 h 
before apoptotic death is measurable after stimulation with 
high concentrations of  pulsed peptide antigen. Experiments 
are currently underway to determine whether this process 
is regulated by increased TNF-cx production or TNF-oL re- 
ceptor upregulation or both. 

Although the above similarities exist, several important 
differences from AICD are apparent. First, Fas and Fas 
ligand, which have been suggested to mediate classical 
AICD (39), do not play a role here (Fig. 4). Second, our 

data demonstrate that high avidity, activated d4 C T L ,  and 
resting d l l  CTL require 40-48 h for the appearance of 
apoptotic nuclei. As discussed above, for AICD to occur, 
resting CD4 + cells are thought to require two distinct acti- 
vation encounters with antigen, and it is the second en- 
gagement by the now cycling cell that is responsible for 
triggering death. Experiments with dl 1 CTL used in this 
study, in which 100 btM-pulsed APC were removed after 
9 h of  exposure and the CTL were replated in the presence 
of unpulsed APC, demonstrated that the commitment to 
death has already occurred during this initial antigenic en- 
counter, suggesting that these CTL do not require a second 
encounter with antigen while cycling to induce apoptosis 
(data not shown). The only precedent for inhibition and 
apoptosis resulting from a single encounter with antigen is 
in the nonphysiological case of  T cell hybridomas (40). 
Moreover, the same concentration of peptide is required 
for the deletion of both recently activated and resting CTL 
(Figs. 1 A and 2 A). Thus, there is no evidence that actively 
cycling CD8 + CTL ceils are more predisposed or sensitive 
to supraoptimal T C R  engagement for induction of apop- 
totic death. Finally, as noted previously, proliferation of the 
CTL in response to high dose antigen is inhibited from the 
very beginning of  the culture, as determined by a pulse 
with [3H]thymidine between 0-24 h after initiation of the 
culture. Together, these data support the hypothesis that 
the signal resulting in apoptosis of  resting CTL is a result of 
the first antigenic stimulation with supraoptimal detemai- 
nant density. These data argue that the strength of signal is 
much more important in determining the outcome of 
TC1L engagement by CD8 + CTL effector lines than is the 
activation state of  the ceils prior to encounter with pep- 
t ide/MHC. 

Several studies have shown that C T L - C T L  presentation 
ofpeptide can cause inhibition oflytic function, anergy, or 
death (26-30). However results obtained using T cell- 
depleted APC or addition of  control supernatant from the 
final wash of 100 I~M-pulsed APC rule out the possibility 
o f T  cell-T cell antigen presentation or free peptide inhibi- 
tion in our system. 

The data presented herein may help explain results by 
Moskophidis et al., which suggest that CTL capable of  viral 
clearance undergo deletion as a result of  clonal exhaustion 
after challenge with large doses of  virus (12). Under such 
circumstances, viral antigen may be either constitutively 
presented for extended periods of  time or presented at an 
increased level at the cell surface on a per cell basis. Our re- 
suits suggest that the latter would result in the deletion of 
high avidity CTL, which are more effective for viral clear- 
ance, leaving only low avidity CTL inadequate to control 
viral spread (16, 41). Moreover, it has been demonstrated 
that during the course of  HIV-1 infection, there is an on- 
going loss of  HIV-specific CD8 + T cells (42). Given the 
viral load attained during HIV-1 infection, it is possible 
that a determinant density is achieved which is capable of 
inducing deletion of the virus-specific cells, in a manner 
analogous to the deletion reported in this study. 

Our previous finding (16) that only low avidity CTL are 
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expanded under conditions o f  high dose antigen are ex- 
plained by the data presented here. Under  such conditions, 
high avidity cells would undergo apoptosis as a result o f su -  
praoptimal engagement o f  the T C R ,  and thus be deleted 
from the line. 

In conclusion, the delivery o f  an activating signal to 
CTL is complex and several proteins are likely to contrib- 
ute. Preeminent among these are the T C R  and CD8.  The 
number o f  pep t ide /MHC complexes required for optimal 
T C R  engagement is a function o f  the inherent require- 
ments o f  the CTL in that there is a specific range o f  deter- 

minant densities that is acceptable for activation and con-  
centrations o f  ligand that exceed this range will induce 
deletion o f  the CTL, mediated at least in part by the pro- 
duction o f  TNF-c~, and not by Fas-FasL interaction. In ad- 
dition, susceptibility to high dose inhibition by the CTL is 
not restricted to recently activated cells. The deletion re- 
ported here may contribute to high zone tolerance and/or  
clonal exhaustion, and loss ofHIV-specific CTL during pro- 
gression toward AIDS. Moreover,  this knowledge may 
have implications for therapy o fau to immune  diseases or al- 
lograft rejection. 
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