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Abstract

Motivation: Many software libraries for using Hidden Markov Models in bioinformatics focus on inference tasks,
such as likelihood calculation, parameter-fitting and alignment. However, construction of the state machines can be
a laborious task, automation of which would be time-saving and less error-prone.

Results: We present Machine Boss, a software tool implementing not just inference and parameter-fitting algo-
rithms, but also a set of operations for manipulating and combining automata. The aim is to make prototyping of
bioinformatics HMMs as quick and easy as the construction of regular expressions, with one-line ‘recipes’ for many
common applications. We report data from several illustrative examples involving protein-to-DNA alignment, DNA
data storage and nanopore sequence analysis.

Availability and implementation: Machine Boss is released under the BSD-3 open source license and is available
from http://machineboss.org/.

Contact: ihh@berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Bioinformatics is a field littered with state machines, many of them
still functional. The venerable Needleman–Wunsch, Smith–
Waterman and Gotoh algorithms from the 1970s and early 1980s
can be thought of as aligning pairs of sequences to input–output
automata (Gotoh, 1982; Needleman and Wunsch, 1970; Smith
and Waterman, 1981). Gribskov’s protein profiles of the late
1980s are state machines too (Gribskov et al., 1987). The 1990s
saw the probabilistic interpretation of both these kinds of machine
as Hidden Markov Models (HMMs); respectively, the ‘pair HMM’
and the ‘profile HMM’ (Brown et al., 1993; Durbin et al., 1998).
This inspired new applications of HMMs in emerging areas of se-
quence analysis, such as computational gene prediction (Burge and
Karlin, 1997). Further evolution of these ideas including HMMs
for multiple sequence alignment (Do et al., 2005; Holmes and
Bruno, 2001), comparative genefinding (Alexandersson et al.,
2003; Meyer and Durbin, 2004) and phylogenetics (Siepel and
Haussler, 2003; Siepel et al., 2006; Suchard and Redelings, 2006)
occurred in the 2000s. HMMs (and automata more generally) con-
tinue to represent the state of the art for many bioinformatic tasks;
for example, when reconstructing the indel histories of ancestral
sequences (Holmes, 2017; Löytynoja and Goldman, 2005;
Westesson et al., 2012) or aligning protein to DNA (Birney et al.,
2004). Meanwhile, the growing field of Deep Learning drew from
HMM model-fitting algorithms to train Recurrent Neural

Networks (RNNs) with sequential inputs and outputs; specifically,
using Connectionist Temporal Classification (CTC) which is based
on the Forward-Backward algorithm (Graves et al., 2006).
Inevitably, RNNs have found application in bioinformatics, some-
times surpassing HMMs; for example, RNN basecallers for nano-
pore sequence data (Boza et al., 2017) have been shown to
outperform the corresponding HMMs (David et al., 2017). Even in
cases such as this, where RNNs have displaced HMMs, useful con-
nections to automata theory can sometimes still be made due to the
underlying parallels between CTC and HMM dynamic program-
ming (Silvestre-Ryan and Holmes, 2018).

Over this period, a number of software libraries have been devel-
oped for parsing, annotating and aligning biological sequences using
generic state machines. Examples include Dynamite (Birney and
Durbin, 1997), DART (Holmes and Bruno, 2001), GHMM (Schliep
et al., 2004), C4 (Slater and Birney, 2005), HMMoC (Lunter,
2007), HMMConverter (Lam and Meyer, 2009), StochHMM (Lott
and Korf, 2014), MuxStep (Veli�ckovi�c and Liò, 2016) and ham
(Ralph and Matsen, 2016). These various libraries all have slightly
different capabilities but typical features include the ability to work
with state machines of arbitrary topology, implementations of com-
mon dynamic programming algorithms (like the Viterbi and
Forward-Backward algorithms) and generation of optimized code
implementing those algorithms. Some newer libraries for deep learn-
ing that are frequently used in bioinformatics, such as TensorFlow
(Abadi et al., 2016), often include implementations of algorithms
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with close state-machine analogs, even though the libraries them-
selves are not explicitly founded on automata theory. Examples in-
clude CTC loss-minimization, or beam search to find the most likely
output sequence of a RNN.

Despite all of these libraries for doing automata-based inference
on sequences, there are few (if any) general-purpose tools for work-
ing with the automata themselves as manipulable mathematical
objects. As one illustration of why this is useful, we consider
GeneWise, one of the most successful (and elaborate) automata of
bioinformatics. The underlying state machine of GeneWise aligns an
amino acid sequence to the (unspliced and imperfectly observed)
protein-coding genomic DNA. In doing so, it simultaneously models
translation, splicing and sequencing errors—as detailed in the
GeneWise paper (Birney et al., 2004). The machine developed to do
this in full is highly intricate, containing 21 states and 93 transitions
when expressed as a Moore (1956) machine; prototyping and subse-
quent optimization yielded a reduced-size machine with 6 states and
23 transitions. (In using these descriptions to assess the mathematic-
al complexity of GeneWise and the computational complexity of its
algorithms, one should note that the transition output labels are
strings, not just individual characters, and the transition weights in-
clude contributions from all the constituent submodels: translation,
splicing and sequencing errors.) GeneWise also includes an algo-
rithm that aligns profile HMMs of protein domains to genomic
DNA, accepting HMMER-format profiles as used by the PFAM
database (El-Gebali et al., 2019). All these state machines were la-
boriously developed, validated and debugged by hand (albeit with
the help of Dynamite to generate the dynamic programming code
once the state machines were specified). In principle—given that the
GeneWise model can notionally be ‘factorized’ into independent
component machines for translation, splicing and sequencing

error—this approach should be amenable to incremental variations
or enhancements; e.g. different profile HMM architectures (as may
be found in later releases of HMMER), alternate genetic codes or
richer models of the context-dependent error profile of later-
emerging sequencing technologies like that of Oxford Nanopore
Technologies (ONT) (Jain et al., 2015). In practice, however, be-
cause this factorization of the GeneWise state machine into subma-
chines is performed manually, these kinds of upgrade would take a
significant amount of work—and quick prototyping would be
impossible.

More generally, many bioinformatic automata can be viewed as
being derived from simpler state machines by operations such as
concatenation, composition (or multiplication), intersection, union
(or addition), reversal, complementation, substitution or other well-
defined mathematical transformations. This is particularly useful in
cases which inherently involve transforming one sequence into an-
other via several steps. GeneWise is one example. Another, very sim-
ple, example is the conversion of a DNA motif to an RNA motif, as
shown inFigure 1.

A more elaborate example occurs in the context of encoding bin-
ary information into DNA as a storage medium: in doing this, it is
desirable to avoid repeated nucleotides (which are easily misread by
DNA sequencers) and this can be conceived of as converting a bin-
ary sequence to a base-3 (ternary) sequence, followed by a conver-
sion from ternary to DNA. Each conversion can be formulated as an
input–output state machine (Fig. 2); related coding operations, such
as the introduction of parity bits for error correction, can similarly
be formulated using state machines (Supplementary Fig. S1).

The approach of formally composing automata is well-
documented in other applications of automata in computer science,
for example, in linguistics (Mohri et al., 2002). The automata, and
the operations to combine or transform them, can be expressed com-
pactly using the notation of linear algebra; in this view, an automa-
ton formally represents an infinite matrix whose rows and columns
are indexed by input and output sequences (Bouchard-Côté, 2013).
To take one example, the GeneWise combination of three transla-
tion, splicing and error submachines corresponds straightforwardly
to a three-way matrix multiplication. For some tasks, such as statis-
tical phylogenetic alignment (where such automata generalize the
idea of the ‘substitution matrix’ to whole sequences, allowing indels
as well as substitutions), this view of state machines as algebraic
objects that can be systematically combined on the branches of a

Fig. 1. A state machine that generates DNA sequences matching the TaqI restriction

enzyme binding site (left) can be converted, by multiplication with a DNA-to-RNA

conversion machine (center), to a state machine that generates the corresponding

RNA motifs (right)

Fig. 2. A non-repeating DNA storage code can be factored into two separate state machines: one for converting binary sequences to ternary, and one for converting ternary to

DNA (Goldman et al., 2013). In this diagram, a state machine transition is annotated x/y if it inputs x and outputs y; the symbol � denotes the empty string. (A) Machine for

(imperfectly) converting a binary input sequence into ternary, batching the input into groups of three binary digits and outputting pairs of ternary digits. This machine is ineffi-

cient in that the output is log ð9Þ= log ð8Þ ’ 1:06 times longer than it would be for a perfect conversion from base 2 to base 3 (because no triplet of input bits is ever converted

the pair of output trits ‘22’, which means one of the nine possible output–trit pairs is wasted; more fundamentally, perfect conversion between indivisible integer bases is not

possible with a finite state machine). In applications where the length of the input is not known in advance and so must be signaled with an end-of-file character (EOF), the

ternary sequence ‘22’ can be used to encode this EOF. (B) Machine for converting a ternary input sequence into a non-repeating DNA sequence. The output of this machine is

log ð4Þ= log ð3Þ ’ 1:26 times longer than the DNA would be if repeated nucleotides are allowed. (AB) Machine for a binary input sequence into a non-repeating DNA se-

quence, obtained by ‘multiplying’ A and B. The output of this machine is 4/3 times longer than the Shannon limit (obtained by multiplying the inefficiencies of the two constitu-

ent machines). The machine diagrams in this figure were generated automatically using Machine Boss and GraphViz
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tree is absolutely central to the underlying probabilistic framework
(Holmes, 2017; Holmes and Bruno, 2001; Redelings and Suchard,
2005, 2007; Suchard and Redelings, 2006; Westesson et al., 2012).
Even without adopting the linear algebraic view, there is clear utility
to being able to transform automata by simple operations like
reverse-complementation or concatenation. Yet, for all the general-
purpose state-machine libraries, this ability to formally operate on
the state machines themselves is not generally available. Certainly,
most libraries allow state machines to be constructed programmatic-
ally, by building appropriate data structures directly in the source
code that links to the library. However, this is an intricate and error-
prone procedure, and is a far cry from being able to construct state
machines from modular components using reliable, general-purpose
implementations of elementary operations such as ‘multiply’, ‘con-
catenate’ or ‘reverse-complement’.

Motivated by this gap in the bioinformatics tool chain, and find-
ing ourselves repeatedly in need of reference implementations of
automata-theoretic algorithms (for prototyping and debugging pur-
poses in both HMM- and RNN-based applications) that allowed for
algebraic manipulation of the underlying state machines, we devel-
oped Machine Boss, an open source software package that meets
this need. In Section 2 and the Supplementary Information, we re-
view the representation of state machines used throughout Machine
Boss, and outline its capabilities. In the Results section, we describe
non-trivial example applications of Machine Boss to several prob-
lems of interest; these include incorporating context-dependent error
models (appropriate for nanopore sequencing) into GeneWise-like
protein-to-DNA aligners, decoding the output of neural network
basecallers for ONT sequencing instruments, and prototyping
modular codes for encoding binary information in DNA. In the
Discussion, we discuss how this sort of prototyping fits into a bio-
informatics tool development workflow, and briefly mention several
further applications.

2 Materials and methods

Detailed descriptions of state machines and sequence data may be
found in the Supplementary Information to this article.

2.1 Weighted finite-state machines
The following uses notation introduced in the studies by Mohri
et al. (2002) and Westesson et al. (2012).

For our purposes, a machine is a tuple T ¼ ðXI;XO;U; s;H;W; tÞ
where XI is an input alphabet, XO is an output alphabet, U is a non-
empty ordered list of states (of which the first element is the start
state and the last is the end state), s � U� ðXI [ f�gÞ � ðXO [
f�gÞ �U is a set of transitions between states (labeled with input
and/or output symbols), H is a set of named parameters (a subset of
which are assigned non-negative real values), W is a set of con-
straints (partitioning H into rates, mutually exclusive probability
and other parameters) and t : s! K is the transition weight func-
tion, where K represents the set of closed-form differentiable expres-
sions over H (with an expression grammar that allows real numbers,
arithmetic operators, powers, exponentials and logarithms). Let M
denote the set of all such possible machines.

For a given input sequence x 2 X�I and output sequence y 2 X�O,
let Tx;y be the total weight of all paths through the transition graph
of T that have input label x and output label y. The sequence weight
Tx;y can be computed by the Forward algorithm in time Oðjxj � jyjÞ
and memory Oðminðjxj; jyjÞÞ. The derivatives

@Tx;y

@k for k 2 H can be
computed using the Forward–Backward algorithm. (Machine Boss
implements this algorithm only for the case when all transition
weights can be computed as real values, i.e. all relevant parameters
are specified.)

This notation encourages us to think of T as being like an infinite
matrix, indexed by sequences, with Tx;y being the element in row x
and column y. We can then, for example, multiply machines like
matrices: if T;U 2M, then we can readily find a machine TU 2 M
such that ðTUÞx;z ¼

P
y Tx;yUy;z. Other matrix expressions such as

TþU, transpose(T) or aT (for some scalar a) are also straightfor-
ward to implement.

A machine for which XI ¼1 is called a generator. A machine
for which XO ¼1 is called a recognizer. We can, for example, think
of profile HMMs as generators (because they generate sequences as
output) and regular expressions as recognizers (because they accept
sequences as input). The labeling of one sequence as ‘input’ and the
other as ‘output’ is arbitrary and, for many purposes, largely irrele-
vant. In the linear algebra analogy, the distinction between a gener-
ator and a recognizer corresponds to the choice as to whether to
represent a vector in row or column form, and exchanging the ‘in-
put’ and ‘output’ labels corresponds to taking the transpose.

2.2 Machine boss capabilities
Machine Boss defines a (validatable) JSON format for machines in
M, and implements the following operations:

• Matrix-like operations such as multiplication, transposition,

addition, intersection (a.k.a. point product), the matrix identity

(for a given alphabet) and scalar multiplication;
• String-like operations such as concatenation, reversal, reverse-

complement, repetition, Kleene closure, local matching (padding

with flanking states),
• HMM transition graph-related operations such as topological

sorting, elimination of �-transitions, elimination of redundant or

inaccessible states, downsampling, normalization and various

probabilistic weightings;
• Constructing generators and recognizers for sequences, elemen-

tary patterns (e.g. wildcards) or regular expressions;
• Import of models from various sources such as HMMER files

(Eddy, 2009), FASTA, CSV or HTTP fetches from PFAM (El-

Gebali et al., 2019) or DFAM (Hubley et al., 2016), and export

to GraphViz format;
• Useful built-in ‘preset’ machines such as probabilistic Smith-

Waterman (Bucher and Hofmann, 1996), GeneWise-like models

(Birney et al., 2004), DNA storage codes (Goldman et al., 2013),

the Jukes-Cantor model (Jukes and Cantor, 1969) and the TKF

model (Thorne et al., 1991);
• Implementations of common dynamic programming (Forward,

Forward–Backward, Viterbi) and HMM-related algorithms

(Baum-Welch and other forms of EM, respecting user-specified

constraints), including linear-space Forward/Viterbi (without

traceback), and banding heuristics;
• Implementation of search algorithms for finding the highest-

weighted input or output sequences, or sampling such sequences

probabilistically by weight; including prefix search, beam search,

MCMC and simulated annealing;
• Generation of Cþþ code (32- or 64-bit) and/or JavaScript code;
• Multiple ways to specify input and output sequences (as strings

from the command line, JSON arrays or FASTA files);
• A flexible logging system for debugging and progress reports.

To compute the sum over all state paths, the Forward algorithm
requires that the ‘silent’ (i.e. �-labeled) subset of the transition graph
is acyclic and topologically sorted (Durbin et al., 1998). Most
Machine Boss operations attempt to maintain this property in the
state machines that they construct, automatically topo-sorting and
eliminating silent cycles by marginalization. However, for large state
machines (particularly when the transition weights are expressed
symbolically as closed-form algebraic formulae, rather than as real
numbers), these operations can become computationally expensive.
For such cases, Machine Boss also offers inexact versions of the
operations that either attempt to break silent cycles (by deleting si-
lent transitions i! j where j< i, until no cycles remain) or just leave
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them in place (acknowledging that the Forward algorithm may then
give a technically incorrect, albeit stable, result).

With the operations described, prototyping and evaluating new
machines with Machine Boss is a relatively quick process that can
take place interactively on the command line. In fact, many of these
operations can be accessed in multiple ways: from the command
line, via the JSON API, or by interfacing directly to the Cþþ API.

Machine Boss compiles on Apple Mac and Linux systems to a
command-line executable with limited dependencies (GSL and SSL
if using the network capabilities) and can also be compiled to
WebAssembly using emscripten.

3 Results

3.1 Aligning protein sequences to nanopore reads with

a context-dependent error model
Our first test of Machine Boss was an experiment to see whether
richer error models might benefit a GeneWise-like protein-to-DNA
search. Specifically, we sought to prototype an application to search
amino acid sequences against individual nanopore reads, to see if
they contained coding genes for known E.coli proteins. To do this,
we combined a protein-to-DNA alignment model with two alternate
error models: a ‘symmetric context-independent’ error model para-
meterized by a substitution matrix and gap opening/extension
parameters, and a richer ‘asymmetric context-dependent’ error
model with separate parameters for insertion and deletion (hence
‘asymmetric’), that also allows the error probabilities at a particular
position of the genome to depend on the neighboring bases (hence
‘context-dependent’). For this application, we were primarily inter-
ested in the power of the DNA substitution model; to reduce compu-
tation time, we did not incorporate an amino acid substitution
model (as the analogous GeneWise algorithm does), but this can eas-
ily be incorporated.

The datasets and the construction and parameterization of the
constituent state machines are described in more detail in Section 2
and Supplementary Information. The protein-to-DNA model with
symmetric context-independent errors has 242 states and 803

transitions (329 IO-conditioned). The model with asymmetric
context-dependent errors has 1349 states and 7464 transitions
(2558 IO-conditioned).

After constructing the state machines, we used Machine Boss to
generate custom Cþþ code for the Forward algorithm, compiled
this code, and ran it to scan for a representative E.coli IS26 transpo-
sase protein (insB1, 167aa).

Figure 3A shows the results of this experiment. Broadly, both
error models performed similarly, scoring on average around 1.4 bits
per codon aligned. (This is a rather low alignment score, reflecting
the extremely noisy nature of the training alignments.) We observed
a small (3%) but significant improvement in log-odds scores for pos-
itives when using the asymmetric context-dependent model, with
negligible effect on log-odds scores for negatives.

To investigate how much of this improvement arose from the
separate insertion and deletion probabilities, we prototyped a third
error model, based on the symmetric context-independent model
(and having similar state and transition counts), but relaxing the
symmetry constraint between insertions and deletions. Results for
this model are not shown in Figure 3 but its log-likelihoods for
protein-to-DNA alignment generally lie in between the other two
models, with a relative improvement of around 1% over the sym-
metric context-independent model. Thus, the improvement from
allowing context-dependence appears to be roughly double the im-
provement from allowing symmetry-breaking, for this task.

3.2 Aligning protein domain profiles to nanopore reads
In the previous section, we developed a state machine to model
nanopore-specific sequencing errors and used that to better align
protein sequences to nanopore reads. Machine Boss is able to com-
bine arbitrary state machines, so the previous error models can be
easily combined with other bioinformatics state machines. We next
sought to investigate whether a richer error model would also bene-
fit a profile HMM search. Instead of aligning a single protein se-
quence to a nanopore read, we combined a profile HMM with our
nanopore-specific error model and aligned it to the same set of nano-
pore reads from the previous section.

Fig. 3. A richer error model slightly improves the discriminative power of both protein sequence (A) and profile HMM (B) alignments to noisy sequencing reads. The first plot

(A) shows the smoothed density of log-odds ratios of global alignments of E.coli protein insB1 to nanopore reads that fully contain a gene for that protein (Positives), versus

those that do not contain that protein or close homologs (Negatives). The second plot (B) shows the smoothed density of log-odds ratios of the PFAM domain DDE Tnp IS1

(PF03400) for the IS1 transposase, aligned to nanopore reads that fully contain a gene for the corresponding insB1 protein (‘Positives’), versus those that do not contain that

protein or close homologs (‘Negatives’). These alignments were done using error models with and without insertion/deletion asymmetry and context dependence (SCI ¼ sym-

metric context-independent; ACD ¼ asymmetric context-dependent). The log-odds ratio for a read is L ¼ log2
PðreadjH1Þ
PðreadjH0Þ where H1 is the hypothesis that the read contains the

insB1 gene or domain and H0 the hypothesis that it does not. The mean of L is indicated for each group with a dashed line. For the sequence-DNA alignment (A), using the

asymmetric context-dependent error model increases the mean of the positives (DL ’ 6:9 bits, a relative increase of around 3%) with negligible effect on the negatives

(DL ’ 0:1 bits). Similarly, for the profile-DNA alignment (B), using the asymmetric context-dependent error model increases the mean of the positives (DL ’ 4:1 bits) with a

smaller effect on the negatives (DL ’ 2:2 bits)
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For this experiment, we again focused on the insB1 transposase
from the previous example and used the Pfam DDE_Tnp_IS1 do-
main (accession PF03400), which profiles its catalytic domain. We
imported the HMMER-formatted profile HMM from the Pfam
database into Machine Boss, and composed it with each of two error
models: the symmetric context-independent error model, and the
asymmetric context-dependent model. We did not use the asymmet-
ric context-independent model in this experiment. For this experi-
ment, we did not generate custom Cþþ code and instead relied on
Machine Boss’s internal Forward algorithm implementation (see
Supplementary Information).

Results are shown in Figure 3B. Proceeding from the symmetric
context-independent model to the richer asymmetric context-
dependent model, we see a relative increase in the log-likelihood of
4.1% for positives and 2.2% for negatives.

3.3 Decoding the most likely output sequence of a

neural network basecaller
Our third experiment tests the decoding algorithms used for base-
calling on the Oxford Nanopore Technologies (ONT) sequencing
platform. As a single strand of DNA (or RNA) passes through the
protein nanopore, it perturbs an electrical current signal in a
sequence-dependent way. A neural network trained with
Connectionist Temporal Classification (CTC, Graves et al., 2006)
outputs a probability distribution over sequences, which requires an
additional decoding step to find the most likely sequence. CTC was
developed for speech recognition and first applied to nanopore
sequencing by Chiron (Teng et al., 2018), and was later adopted by
various ONT basecallers.

Bonito (https://github.com/nanoporetech/bonito) is ONT’s most
recent research basecaller: it uses a convolutional architecture based
on QuartzNet (Kriman et al., 2020), and is trained with CTC loss.
In practice, Bonito uses Viterbi decoding, which simply takes the

argmax of the logits and concatenates the resulting nucleotide and
gap characters.

In this test, we compare the use of a Viterbi decoding scheme,
which just finds the single most probable path through the data,
with a beam search, a heuristic search algorithm which looks for
the best label sequence. The CTC probability outputs are similar
to profile HMMs and as such can be interpreted as state
machines (Silvestre-Ryan and Holmes, 2018). We evaluated these
algorithms on a small sample of 100 reads from a publically
available R9.4 Klebsiella pneumoniae dataset (Wick et al., 2019).
Accuracy was evaluated by aligning basecalled reads with mini-
map2 (Li, 2018) to a reference genome from the same study.
Each read was basecalled with a version of Bonito modified to
save the network output, which was then loaded as a state ma-
chine into Machine Boss using the recognize-merge-csv option,
which constructs a state machine that merges repeated characters
in the same manner as the CTC loss, as described in (Graves
et al., 2006).

Results are shown in Figure 4. We found that the beam search
yielded an increase of 0.2% median accuracy over Viterbi, though in
practice its greater computational cost would likely not be worth
such a slight improvement. These results were obtained with a beam
width of 5; a larger beam size of 50 did not noticeably improve the
results.

In addition to the decoding of single reads, more elaborate dy-
namic programming algorithms for consensus decoding (Silvestre-
Ryan and Holmes, 2018) can also easily be implemented and tested
in Machine Boss. In this case, performance is too slow for practical
application to large datasets, though these reference implementa-
tions can be used to debug domain-specific software. In our case,
Machine Boss has helped with testing our own consensus basecalling
software PoreOver (https://github.com/jordisr/poreover, Silvestre-
Ryan and Holmes, 2020).

3.4 Constructing a repeat-avoiding code for DNA data

storage
Our last computational experiment is motivated not by sequence
analysis, but by analysis of the state machines themselves. We
sought to investigate the complexity of error-tolerant codes for stor-
ing information in DNA.

We developed a state machine for converting binary information
to DNA sequences using, as a starting point, the DNA storage code
developed by Goldman et al. (2013). The central idea of this code is
that DNA homopolymers are often misread by many sequencing
technologies, so this class of errors can be avoided altogether by
never repeating a base in the encoded sequence. This leaves three
nucleotides available for encoding information at any given position
in the sequence, which corresponds to a radix-3 (ternary)
representation.

We implement this as a multiplication of two machines: one that
converts binary to ternary (with some unavoidable inflation of the
message size), and a second machine that converts ternary to non-
repeating DNA. This configuration is shown in Figure 2.

Using Machine Boss, we were able to successfully prototype this
machine and to confirm that it accurately encodes binary messages
to non-repeating DNA strings and decodes in the opposite direction,
with the ratio of binary to DNA message lengths asymptotically
approaching the expected limit of 3/2. This ratio is calculated as fol-
lows. The conversion of binary to ternary is approximate, batching
the input bits into triplets (with 23 ¼ 8 possibilities per batch) and
outputting trits—i.e. ternary digits—in pairs (with 32 ¼ 9 possibil-
ities per batch). Thus, the input sequence has 3/2 as many characters
as the output. The ternary-to-DNA conversion converts each ternary
digit to a single nucleotide, so the overall input/output ratio for the
full binary-to-DNA conversion is also 3/2.

This is slightly wasteful given that the Shannon information con-
tent of a non-repeating DNA sequence is log23 ’ 1:58 bits/symbol,
slightly greater than 3/2. The wastage is incurred by the batched
binary-to-ternary conversion, since there are more output possibil-
ities than input possibilities for each batch. As can be seen in

Fig. 4. A beam-search decoding of the maximum likelihood sequence of Oxford

Nanopore’s Bonito basecaller slightly outperforms a Viterbi best-path decoding on

a sample of 100 Klebsiella pneumoniae reads. The percent accuracy is defined as the

number of identities in the alignment divided by the total alignment length. Median

accuracy with Viterbi was 92.8% while beam search yielded a median accuracy of

93.0%. This slight increase in accuracy does incur a computational cost: the beam

search (width of 5) takes roughly 1.25 times as long as the Viterbi decoding. We fur-

ther observe that a bespoke Python implementation of Viterbi decoding (optimized

for this model architecture) was roughly five times as fast as Machine Boss’s generic

Cþþ implementation of Viterbi decoding (which spends most of its time construct-

ing and topo-sorting the state machine). This reinforces the conclusion that

Machine Boss is better suited to development-stage prototyping, than to computa-

tionally intensive end-user applications
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machine A of Figure 2, there is no triplet of input bits that will ever
output the pair of trits ‘22’. This reflects a more general phenom-
enon that a finite-state machine cannot perfectly convert a radix-2
input to a radix-3 output (essentially, it can only compute the last
digit of this conversion, which amounts to dividing the input by 3
and outputting the remainder; the quotient must then be fed into a
similar machine to compute the second-last digit, and so on). It is
possible to get quite close to the limit, though, by batching input bits
in this way, and a batch size of 3 bits is a reasonably efficient com-
promise in terms of the number of states required by the machine;
no improvement can be gained by improving the batch size until one
reaches 11 bits, whereupon the ratio of input/output message lengths
is 11=7 ’ 1:57, but this requires Oð211Þ states to track each batch.
Such a machine can readily be prototyped with Machine Boss, but
the algorithms to manipulate and use the state machines become
quite cumbersome for large machines (in addition to the well-
known time complexity of dynamic programming to state machines,
Machine Boss performs operations like topological sort and state
elimination that can be slow for very large machines).

The input/output ratio of 3/2 is approached asymptotically from
below, because there is a necessary overhead involved in encoding
the message length itself; our machine encodes this using the
otherwise-unused pair of output trits ‘22’ as an end-of-message ter-
minator sequence. For simplicity, this mechanism is not included in
Figure 2; when it is included, the combined machine for binary-to-
non-repeating-DNA conversion has 85 states and 132 transitions
(44 IO-conditioned). The component machines were constructed
with a short JavaScript program, and are available as presets in
Machine Boss.

We can readily extend the above-described approach to study
more elaborate DNA storage codes. For example, we can develop a
DNA-encoding machine that avoids not just repeated nucleotides in
the output, but also avoids certain nucleotide motifs, such as restric-
tion enzyme sites; briefly, the transition graph of such a machine can
be found by starting with a de Bruijn graph over k-mers, from which
the prohibited k-mers are then deleted. (Of course, restriction en-
zyme sites that contain repeated nucleotides would already be
excluded.) We might also incorporate error-correction units, such as
Hamming codes or indel-resistant ‘watermarks’. Finally, we can in-
corporate technology-specific models of sequencing error, such as
the nanopore error models described in previous sections, when
decoding messages. All these variations can be implemented as
modular machines and factored into the ‘matrix multiplication’ of
Figure 2. For example, introducing a Hamming(7,4) error-
correcting parity code (Supplementary Fig. S1) to the non-repeating-
DNA code (Fig. 2) yields a machine with 1365 states and 1812 tran-
sitions (292 IO-conditioned), whose input/output ratio is 4

7� 3
2 ¼ 6

7.
A deeper exploration of these ideas, using state machines to proto-
type the codes and investigating their error-correcting properties by
simulation, is available in a separate preprint (Holmes, 2016).

4 Discussion

Machine Boss can be useful for prototyping, testing, and theoretical
analysis of state machines. In most cases, it is not suitable for devel-
oping polished bioinformatics tools, since further heuristic or cus-
tom optimizations of the generated state machines and code (beyond
Machine Boss’s automated capabilities) is often possible.

As an example of this further optimization, our context-
dependent error model has 50 states: a start state, an end state, and
48 states which consist of match, insert, and delete states repeated in
16 different flanking contexts. However, it is unnecessary to allocate
storage for all 50 states during dynamic programming: the flanking
context is always exactly determined by the position in the input
genomic sequence, so only 5 states are ever accessible at any position
in the dynamic programming matrix. An optimized implementation
could make use of this, but Machine Boss currently lacks the sophis-
tication to deduce such optimizations automatically. Rather,
Machine Boss can be used (as we have done here) to evaluate
whether such development is worthwhile, and to provide a robust

reference implementation against which the results of a more opti-
mized version can be checked.

Another application involves nanopore basecalling. The outputs
of deep learning basecallers can be interpreted as machine transition
weights (Jain et al., 2018; Wick et al., 2019). In building on these
results, we have found Machine Boss useful as a debugging and
profiling tool (Silvestre-Ryan and Holmes, 2018).

Compared to recent deep learning approaches, automata retain
some merits: they are highly interpretable, conceptually straightfor-
ward and generally predictable. The interpretability is especially
appealing when paths through the automaton have clear meaning—
as is the case when state machines are used to represent biological
processes such as translation and splicing, information-theoretic
processes like radix-based coding, or evolutionary processes such as
indels (for which purpose Machine Boss includes a reference imple-
mentation of the Thorne–Kishino–Felsenstein model, Thorne et al.,
1991). The software development was motivated directly by these
cases, but the algorithms implemented are general enough that we
have been able to use it for applications in nanopore analysis as
well. The README file in the Machine Boss repository describes
several further applications, including machines to search for a
PROSITE regular expression in a protein sequence and to count cop-
ies of this motif in a (translated) DNA sequence. As with the exam-
ples in this article, the power of this approach rests on the ability to
combine such state machines in a general way, together with new
machines as yet undeveloped.
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